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Universality of the shear viscosity of alkali metals
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The universality of the shear viscosity of alkali metals is studied up to high pressure. Equilibrium molecular
dynamics simulations are used to calculate the stress autocorrelation function, which allows us to obtain the value
of shear viscosity using the Green-Kubo formula. Atomic interactions are computed from Fiolhais pseudopotential
and are validated by comparison between pair distribution functions and mean-squared displacements obtained
from classical and ab initio molecular dynamics simulations. The description of the interactions is accurate at
least up to 12 GPa, 9.4 GPa, 6.6 GPa, and 3 GPa for Na, K, Rb, and Cs, respectively, and to a lesser extent up
to 4.8 GPa for Li. A good agreement between simulation and experimental viscosity results along the liquid-gas
coexistence curve is found. The viscosity appears to be a universal property over a wide range of the liquid phase
of the phase diagram, between 0.85 and 1.5 times the ambient melting density and up to seven times the ambient
melting temperature. Scaling laws are proposed following relations formulated in [Meyer, Xu, and Wax, Phys.
Rev. B 93, 214203 (2016)] so that it is possible to predict the viscosity value of any alkali metal with an accuracy
better than 10% over the corresponding density and temperature range.
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I. INTRODUCTION

Over the last decade, the high pressure topic has become
considerably attractive, especially in the case of alkali metals
because they undergo several structural transformations [1,2]
under very high pressure. Strikingly, it even happens that Na
becomes transparent at about 200 GPa [3]. At ambient con-
ditions, alkali metals are considered as simple ones whereas
application of high pressures induces changes in the electronic
distribution which turns to nonspherical. Given these changes,
numerous studies on structural transformations under pressure
were done, but rarely on other physical properties.

Among the properties that are not investigated under high
pressure is the shear viscosity. Indeed, the viscosity of alkali
metals has never been studied experimentally beyond normal
pressure conditions. However, for some technological issues
such as the use of alkali metals as heat transfer fluid in nuclear
power plants [4] or for geophysical purposes where liquid
alkali are models of the earth’s core [5], it is necessary to
know the behavior of the viscosity of alkali elements with
respect to the different state variables such as temperature,
pressure, or density. Measuring viscosity at such pressures or
temperatures still remains impossible for the moment, except
a few noticeable feats like Ref. [6] (see also references therein)
on Fe and Fe-S up to 6.4 GPa. Moreover, alkali metals react
chemically and their viscosity is very low (lower than water);
this induces additional difficulties.

An interesting feature of the group of alkali metals is
the universality of some properties such as static [7] and
dynamic structure [8,9] or the self-diffusion coefficient [10,11]
along the liquid-gas coexistence curve. Beyond a qualitative
analogy of their behavior, these studies have demonstrated
the existence of real quantitative scaling properties between
the alkali metals. In the present study, the universality of the
shear viscosity of Li, Na, K, Rb, and Cs is investigated. If
confirmed, such a property would be interesting as it would
allow to quantitatively estimate the viscosity of any alkali
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metal from the knowledge of the data for one of them. This
issue was already suggested by Kaptay [12], but for all the
metals of the periodic table and at ambient pressure.

Taking into account the thermodynamic conditions consid-
ered, numerical simulation appears to be an efficient predictive
tool and permits to develop models useful to conveniently
determine the viscosity value. In our previous work on Na [13],
we explored a wide range of the liquid phase of this system. We
also studied K and Cs [14] and revealed a qualitative analogy
between the viscosity of these elements. Along isochoric lines,
viscosity presents a minimum as temperature increases, except
at the lowest densities investigated. On the other hand, it
monotonically increases along isotherms.

Furthermore, we proposed relations [13], which quali-
tatively and quantitatively describe the viscosity of liquid
sodium, even up to high densities corresponding to pressures
about 12 GPa. The behavior of viscosity η versus temperature
T is well reproduced by

η(T ) = (AT 2 + C)eB/T , (1)

where A,B, and C are parameters depending on the density.
By replacing parameters A,B, and C by their expressions as
functions of the density ρ in Eq. (1), we obtained

η(ρ,T ) =
[(

αA

ρ2
+ βA

)
T 2 + (αC + βCρ)

]
e

( αB

ρ2 +βB )/T
, (2)

where αs and βs are parameters characteristic of sodium.
Finally, when T is kept constant and by rearranging terms
in Eq. (2), we obtained the following dependence on density:

η(ρ) =
(

a

ρ2
+ b + c ρ

)
ed/ρ2

, (3)

where a, b, c, and d are temperature dependent parameters.
In this study, the shear viscosity is simulated for the five
alkali metals. This collective property is calculated from
the stress autocorrelation function (SACF) using the Green-
Kubo relation. The correlation functions are computed from
microscopic configurations generated by molecular dynamics
(MD) simulations.
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Classical simulations imply getting accurate atomic interac-
tions in order to realistically describe the properties of the ma-
terial. It is a fortiori true in the case of metallic materials where
the density strongly influences the interactions. Usually, alkali
metals are studied at ambient conditions with an effective pair
potential because the electronic structure is simple. Each atom
has only one valence electron which is only loosely bound, that
induces a monatomic structure with a homogeneous cloud of
nearly-free electrons. However, above the normal pressure, it
is commonly accepted that ab initio methods are more reliable
because alkali metals have very nonuniform and nonspherical
distribution of electron density around ions that does not
allow the application of spherical effective pair potentials
at high pressures anymore. However, in fact, the use of an
effective pair potential derived from Fiolhais pseudopotential
[15] still remains possible up to a certain density, as shown in
Ref. [13]. Ab initio simulations are more accurate, but much
more demanding from the computation time point of view.
This prohibits the extensive study of some properties such as
the shear viscosity which requires a rather long simulated time
in order to improve statistical accuracy.

Consequently, in this study, our simulations are performed
using Fiolhais potential. Nevertheless, we will first confirm
the reliability of the description of the interactions for the five
alkali metals up to a certain density/pressure by comparing the
pair distribution functions and mean-squared displacements
(MSD) obtained from our MD simulations with those from
ab initio. The only available experimental data for viscosity
are obtained at ambient conditions and we will check the

agreement with our simulations. Then, in order to investigate
the universality of the viscosity, we will extend the study to
reduced thermodynamics states for Li, Na, K, Rb, and Cs,
namely, along three isochoric lines (0.75 ρm, ρm, 1.5 ρm) and
along an isotherm (4.3 Tm) where ρm and Tm denote the density
and temperature at the melting point under ambient pressure.
In order to demonstrate the universal behavior of the viscosity,
we will then define reduced quantities to reveal scaling laws.
The possibility to determine the viscosity of any alkali metal
from the known viscosity of only one will be discussed.

This paper is laid out as follows. Section II is devoted to the
description of phase diagrams of each alkali metal from the
literature data. We will point out the analogies and differences
that exist. In Sec. III, the formalism is developed. We will
give relevant computational details in order to obtain the shear
viscosity from the SACF and check the validity of Fiolhais
potential, essential ingredient in the use of MD simulation.
In Sec. IV, we will analyze the results of shear viscosity for
Li, Na, K, Rb, and Cs. A comparison with experimental data
available in the literature will be done. Then, the temperature
and density dependence of the viscosity will be qualitatively
discussed. Lastly, we will examine the issue of its quantitative
universality. Finally, in Sec. V, we will give the conclusions
and the perspectives of this work.

II. UNIVERSALITY OF PHASE DIAGRAM

Observing a universal behavior among several systems
presupposes that some thermodynamic states of these different

FIG. 1. Schematic universal phase diagram of alkali metals. Thick solid lines correspond to the investigated state points. The red one is
along the liquid-gas coexistence curve, while the green and blue ones correspond to an isotherm at 4.3 Tm and 3 isochoric lines (0.75 ρm, ρm,
1.5 ρm), respectively. Thin solid black lines separate transitions between two different phases.
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TABLE I. Experimental melting [16] and critical [17] points
values of alkali elements.

Tm (K) Tc (K) ρm (kg m−3) ρc (kg m−3) Tc/Tm ρc/ρm

Li 453 3500 519 118 7.73 0.227
Na 371 2508 925 230 6.76 0.249
K 337 2239 829 192 6.64 0.231
Rb 312 2017 1459 290 6.46 0.198
Cs 301 1924 1835 380 6.39 0.207

systems can be considered as equivalent. Therefore we first
compare the phase diagrams of the five alkali metals in order
to point out the similarities and differences as well.

Degtyareva [1] summarized the sequences of structural
transformations on pressure increase for all the alkali elements.
From these observations, we can find similarities that we
schematize in a universal (T , ρ) phase diagram in Fig. 1.
The solid, liquid, and gas phases are separated by thin solid
lines. At low densities, the liquid-gas coexistence is recovered
with a critical point corresponding to temperatures higher than
1900 K. The critical and melting points of the five alkali
elements are summarized in Table I. For all alkali metals,
a metal-nonmetal (M-NM) transition is observed at about 2 ρc

[18]. In order to remain in the metallic region, densities lower
than 2.5ρc will not be investigated in our study.

At ambient conditions, alkali metals are considered as
simple because they only have one valence electron and
crystallize in the body-centered cubic (bcc) structure type.
Under pressure, they transform first into face-centered cubic
(fcc) structure. On further compression, a wide variety of more
or less complex phases has been observed and reviewed in
recent years.

Considering the melting curve of each element, starting
from the melting point, a positive gradient is first observed that
indicates that the solid phase is denser than the corresponding
liquid. Then, two maxima are found (except perhaps for Na
where the second one is under debate), which separate the
structural transition from a bcc to a fcc crystal. These maxima
correspond to temperatures lower than Tc. Then, the curve has
a negative gradient meaning that the liquid phase is denser
than the solid fcc one. At higher pressure, the fcc structure
transforms into more exotic structures. The presence of a
minimum corresponds to this transition.

We now can look in more details at each element. Lithium
is the lightest and simplest of all the alkali elements (only
three electrons and no p electron in the core). At high
pressure, a possible analogy with metallic hydrogen [19] could
be done which explains part of the broad interest for this
element. Recently, the melting curve of Li under pressure was
determined by x-ray diffraction [20] and electrical resistivity
measurements [21]. From the melting point, a positive slope of
the melting temperature is observed up to (10 GPa; 535 K). At
this pressure, a jump in the melting temperature is noted [21]
and could indicate the structural phase transition bcc-fcc. From
11 GPa, the melting temperature declines sharply when the
underlying solid is in the fcc phase, down to a minimum
located at (190 K; 40 GPa) or at 310 K according to
Refs. [20] or [21], respectively. Then, these two studies showed
that this minimum extents over a broad pressure range between

40–64 GPa. Consequently, the general trend of the melting
temperature is the same and the difference in the minimum
temperature could come from the cooling speeds of samples,
which could be different and might form glassy states [22].

Concerning sodium, its melting curve is drawn in the thesis
of Mc Bride [2] from the studies of Gregoryanz et al. [23] and
Marques et al. [24]. As the pressure increases, solid sodium
undergoes a structural transition from a bcc to a fcc crystal. A
pressure-induced drop of the melting temperature from 1000 K
at approximately 30 GPa down to room temperature at more
than 100 GPa was predicted by simulation [25] and confirmed
experimentally [26]. At higher pressures, the temperature of
the liquid-solid transition is thought to increase again and solid
sodium is thought to undergo further transitions to more exotic
structures.

The phase diagram of potassium is drawn up to 22 GPa
by Narygina et al. [27]. From the melting point, the positive
gradient of the melting temperature plateaus at (5.8 GPa;
550 K). The melting curve decreases up to the bcc-fcc-liquid
triple point found at (13.6 GPa; 466 K). For pressures higher
than this point, the melting temperature remains constant up to
15.6 GPa. Further pressure increase induces a negative slope
up to a clear minimum (19 GPa; 390 K).

Among the alkali group, the phase diagram of rubidium is
the least well known and the last melting study dates back to
1986 [28]. Two melting maxima in the bcc phase were found at
(7 GPa; 550 K) and (11 GPa; 520 K). Between those, the bcc-
fcc-liquid triple point was located at (9.5 GPa; 500 K). After
the second maximum, a decrease of the melting temperature
was observed down to a minimum which could be at about
(13 GPa; 500 K). After that, the melting temperature may
continue to rise.

In the work of Falconi et al. [29], the phase diagram
of cesium is presented in the (T ,P ) plane. The Cs melting
curve shows drastic changes in slope with pressure. A positive
slope followed by two maxima at (2.25 GPa; 470 K) and
(3.05 GPa; 471 K) was found. Further increase of the pressure
induces a strongly negative slope of the melting curve until
(4.2 GPa; 361 K) it becomes strongly positive again. This study
reached the highest pressure investigated by experimental
measurements, equivalent to 9.8 GPa.

So, a common shape of the phase diagrams emerges from
this description even if differences can be observed on a
quantitative point of view (see Tc/Tm or ρc/ρm values, for
instance).

III. FORMALISM

A. Simulation method

From MD simulations, we obtain atomic trajectories and
velocities of each particle. This allows to calculate the
instantaneous stress-tensor elements σαβ(t) = σαβ + δσαβ(t).
Using the Green-Kubo relation, by integration of the time-
autocorrelation function of the off-diagonal elements of the
stress tensor, the value of the shear viscosity is obtained as

ηαβ = V

kBT

∫ ∞

0
〈δσαβ (0)δσαβ(t)〉dt, (4)

where V is the volume of the system, T , its temperature,
kB , Boltzmann’s constant. Notation 〈. . . 〉 refers to an average
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over a sufficiently large number of phase-space trajectories in
order to reach the thermodynamic mean and 〈δσαβ(0).δσαβ (t)〉
is called the stress autocorrelation function (SACF). δσαβ(t)
denotes the fluctuating part of the instantaneous αβ component
of the stress tensor (with α,β = x,y,z) [30]

σαβ(t) = − 1

V

⎛
⎝ N∑

i=1

mi(vi)α(vi)β +
N−1∑
i=1

N∑
j>1

(rij )α(fij )β

⎞
⎠

+ σ
(0)
αβ (ρ,T ). (5)

In this expression, σ
(0)
αβ (ρ,T ) is a density dependent term that

is specific to metals as it stems from the electron gas and
is nonzero only for diagonal terms (see Appendix). The two
other contributions have kinetic and interatomic origins. Note
that in the thermodynamic limit, the diagonal terms, −σαα ,
identify with the pressure, while the off-diagonal terms, −σαβ ,
are zero.

Equilibrium simulations were carried out in the micro-
canonical NV E ensemble, in which the number of particles,
N , the volume and the total energy E of the system are keep
constant. Cubic simulation boxes of side L contained 2048
atoms and their walls were replaced by periodic boundary
conditions. The interaction cutoff radius was chosen at the
position of the node of the force directly smaller than L/2,
in order to limit truncation errors. To calculate the trajectories
and velocities of the particles, Verlet’s algorithm in its velocity
form was used to solve Newton’s equations of motion.

To reach the required accuracy when computing the
viscosity, an important computational effort is required. 6 000
000 production steps corresponding to at least 1 ns depending
on the metals appeared to be large enough a number to
sample the whole phase-space. In order to reduce the strong
fluctuations of the SACF and improve its convergence, three
techniques were used. (1) We considered a large number of
time origins [at least 590 000 in Eq. (4)]. (2) An average
was done over three off-diagonal elements of the stress tensor
σxy, σyz, σxz, and three directions obtained by 45◦ rotations of
the axes, namely 1

2 (σxx − σyy), 1
2 (σyy − σzz), and 1

2 (σxx − σzz).
(3) Eight independent microscopic states corresponding to the
same macroscopic state point were considered. Thus we reach
an uncertainty of less than 5%. For further details about this
point, please refer to our previous work [13] where the method
for viscosity calculation is exactly the same and developed in
more details.

For calculations on alkali metals, Fiolhais potential [15] has
been chosen. From a perturbation development of the energy
and using self-consistent screening, the effective pair potential
can be written as

u(r) = Z2

r

[
1 − 2

π

∫ ∞

0
FN (q)

sin qr

q
dq

]
, (6)

which comprises a direct Coulombic repulsion between ions
of valency Z plus an indirect attraction involving the electron
gas. This last term is expressed using the energy-wave number
characteristic

FN (q) =
(

q2

4π

)2
1

Z2
w2(q)

[
1 − 1

ε(q)

]
[1 − G(q)], (7)

accounting for the electron-ion interactions [w(q), Fiolhais
pseudopotential] and the electron-electron contribution [ε(q)
and G(q), screening functions]. It is responsible for the density
dependence of the effective pair potential u(r). This explains
why MD simulations at constant pressure can not easily
be undertaken. Complete analytical expressions, as well as
references to earlier studies, can be found in Ref. [31].

B. Validity of Fiolhais potential

The use of a realistic potential is one of the main conditions
to run accurate MD simulations and allows the analysis of
properties of real materials such as the shear viscosity. The
potential used to describe the atomic interactions in this
study was initially developed for the solid state at ambient
pressure and has proven its capability to describe the liquid
state near the liquid-vapor coexistence [10,31–33]. The lower
limit of our interaction model corresponds to the M-NM
transition in the low-density direction. Indeed, at about twice
the critical density, there is a continuous increase in the electron
localization leading to ion clustering [34]. Near or below the
critical density, all the conduction electrons are localized and
it has been observed the presence of dimers, feature of a
dilute gas. Consequently, near the M-NM transition, electronic
distribution can not be considered as nearly free anymore and
this implies that the self-consistent screening formalism (and
consequently Fiolhais potential) can not be used below 2ρc.

On the other hand, for the high densities or pressures, it
cannot be stated a priori with certainty that this potential is
able to account for these changes. Usually, the liquid metals
under very high pressure have nonuniform and especially
nonspherical distribution of electron density around ions.
The overlapping atoms force their outer electrons into the
interstices [3,35], that does not allow the application of
self-consistent screening at high pressures.

In order to test the reliability of the interaction description
in the high-density range, we considered the following. For
each alkali metal, at a density close to the estimated value
of the maximum of its melting curve, we performed several
classical simulations by increasing gradually the tempera-
ture. The MD simulations were initialized with a perfect
body-center cubic (bcc) lattice structure at a temperature
slightly below the melting temperature. The temperature was
increased gradually until melting in order to determine the
transition temperature by considering the MSD. At each
temperature, the thermalization stage lasted 60 000 time steps
and the production stage 90 000. Even if superheating is
expected to occur, the renormalization of the velocities during
the thermalization stage strongly reduces the extent of the
phenomenon [36].

Then, in the liquid state, we compared the pair distribution
function, g(r), obtained with our model to ab initio molecular
dynamics (AIMD) simulations. For Li, Na, and Rb, g(r) from
AIMD results at high pressure were found in the literature
[37–39] where the atomic volume or density is indicated,
allowing us to perform classical MD simulations at the same
density. Concerning K and Cs, there are neither experimental
nor ab initio studies done at high pressure, which give
g(r) or, if they exist, the corresponding densities are not
specified. In this context, we performed AIMD simulations
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FIG. 2. Validity of Fiolhais potential at high densities. Pair distribution function, g(r), at several temperatures. Classical MD results of g(r)
are also compared with AIMD in order to check the reliability of the description of the interactions. Lines correspond to data obtained from
classical MD simulations while circles are AIMD results. Ab initio simulations are performed in this study for K and Cs, whereas data of Li,
Na, and Rb are those of Refs. [37–39]. Red, green, and blue curves of g(r) are shifted 0.5, 1, and 1.5 up compared to the black one, respectively.
Pressure values correspond to AIMD simulations.

using VASP code [40] with 300 atoms at a temperature of
600 K for K and Cs in canonical NV T ensemble. After
thermalization stage, the production lasted 10 000 time steps
3-fs long in order to compute g(r) and check that the system
is liquid. We used projector-augmented-wave (PAW) pseu-
dopotentials [41] treating p and s semi-core states as valence
states. Exchange and correlation were described within the
generalized gradient approximation (GGA) using the PBE
functional [42].

The pair distribution functions, g(r), are plotted in Fig. 2
and the MSD in Fig. 3 along the isochoric line corresponding
to density 768, 1800, 1800, 3079, and 3600 kg m−3 for

Li, Na, K, Rb, and Cs, respectively. We observe that the
effective pair potentials recover the AIMD results of g(r) at
temperatures where the metal is liquid. Except a small phase
shift in the case of Li, the agreement is excellent between
the predictions of both kinds of simulations. We also plot the
MSD obtained from our ab initio simulations of K and Cs
(Fig. 3). The agreement is only qualitative. We recall that
self-diffusion coefficient related to the MSD slope is very
sensitive to the temperature. Surely, most of the difference can
be attributed to the interactions even if differences between
the way simulations are performed (statistical ensemble, size,
time step, ...) should also be considered.
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FIG. 3. Validity of Fiolhais potential at high densities. For each element, mean-squared displacement are displayed at several temperatures
in order to evaluate the melting temperature. Same legend as in Fig. 2 for g(r).

At these densities, we observe melting between [750–
800 K], [750–760 K], [570–585 K], [545–550 K], [500–505 K]
for Li, Na, K, Rb, and Cs, respectively. To our knowledge,
the only available data of density at the melting temperature
as a function of pressure are those provided by ab initio
simulations. Na is well documented (see Ref. [13]), but not
the other alkali metals so that performance of our potentials
in determining the melting temperature can only be evaluated
indirectly. Looking for instance at Cs, the experimental melting
curve plateaus at 470 K between 2.25 and 3.05 GPa. At 3600 kg
m−3 and 600 K, ab initio simulations predict that it is liquid at
a pressure of 3 GPa. Thus it is reasonable to believe that this
density is part of the plateau. At this density, Fiolhais potential
estimates the melting temperature between 500 and 505 K.
Considering the existence of overheating, we can assert that

the agreement with experimental data is probably good. Such
an argument is effective for K, Rb, and Cs, but not for Li. As
for Na, it has already been discussed favorably in Ref. [13].

The pressures estimated from AIMD simulations (see
Table II) are consistent with the experimental phase diagram
data reported above. With density-dependent potentials, the
evaluation of pressure has to be performed carefully. Indeed,
additional terms appear in its expression due to the existence
of the electron gas. To cut the long story short (see Appendix
for more details), the energy reads

E = Ek + U (V ) + U (R,V )

= 3

2
NkBT + Nu0(n) + 2πNρN

∫ ∞

0
r2u(r,n)g(r)dr, (8)
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TABLE II. Pressure corresponding to the thermodynamic states at which AIMD simulations are performed. Top part corresponds to classical
MD simulations with Fiolhais pseudopotential: Pid, P0, and Pi−i are contributions to the total pressure, PFiol. Bottom part compares AIMD

(PAIMD) and classical MD values obtained from Eq. 9 (PFiol) and from the stress-tensor (Pxyz).

T (K) ρ (kg m−3) Pid (GPa) P0 (GPa) Pi−i (GPa) PFiol (GPa)

Li 1000 768 0.92 −7.60 19.88 13.20
Na 830 1800 0.54 −4.17 16.49 12.86
K 600 1800 0.23 −2.72 10.85 8.36
Rb 573 3079 0.17 −1.93 7.58 5.82
Cs 600 3600 0.13 −1.39 4.91 3.63

T (K) ρ (kg m−3) PAIMD (GPa) PFiol (GPa) Pxyz (GPa) Pxyz + P0 (GPa)
Li 1000 768 4.8 13.20 19.98 12.38
Na 830 1800 12 12.86 17.08 12.91
K 600 1800 9.4 8.36 10.86 8.13
Rb 573 3079 6.6 5.82 7.30 5.37
Cs 600 3600 3 3.63 4.87 3.48

where ρN and n are the atomic and electronic densities,
respectively. In this expression, the term U (V ) is due to the
electronic gas, as well as the explicit density dependence
of the effective pair potential (which is usually omitted).
Consequently, the pressure has the following expression:

P = ρNkBT + ρNn
du0

dn
− 2πρ2

N

3

∫ ∞

0
r3 ∂u(r,n)

∂r
g(r)dr

+ 2πρ2
N

∫ ∞

0
nr2 ∂u(r,n)

∂n
g(r)dr. (9)

In the right-hand side of this equation, the first term is the
ideal pressure Pid , the second one is volume-dependent and
noted P0, while the last two terms correspond to the structure-
dependent part which sum is noted Pi−i . For consistency, these
last terms are evaluated by taking the cutoff radius of the
interactions used in MD simulations into account. As can be
seen in Table II, except for lithium, the pressure obtained from
our description of the interactions is close to the AIMD value.
So, we believe that, except for Li, the melting temperature is
well predicted by our description of the interactions.

The pressure may also be obtained from the diagonal
elements of the stress-tensor. However, as can be seen
in Table II, care must be taken as the volume-dependent
contribution P0 must be accounted for. Anyway, this does not
prevent us to compute the viscosity from the diagonal terms
as the this contribution vanishes when computing difference
such as Pxx − Pyy .

Our previous study of sodium had already shown the
validity of Fiolhais potential even in the high-density region
for this element and we can draw the same conclusion for
the other alkali metals. We consider that our interaction
description is reliable up to the highest density investigated.
At higher densities and pressures, electron localization appears
which is not compatible with self-consistent screening. This
corresponds to the upper limit of our interaction model.
Consequently, the investigated thermodynamic states are all
located below the pressure where the structure and physical
properties of liquid alkali metals are expected to change,
namely, 60 GPa [43] for Na, 19 GPa [27] for K, 12.5 GPa
[37] for Rb, and 3.9 GPa [29,44] for Cs. They are represented
schematically in Fig. 1. The red line corresponds to the

liquid-gas coexistence. Three isochors were studied (blue
lines): at the density of the melting point ρm, at a lower density
corresponding to 0.75 ρm, and at a higher one equal to 1.5 ρm.
The temperature ranges from the liquid-gas coexistence curve
at 0.75 ρm or in other cases from the melting curve, up to
7000 K. For the density dependence, we investigated state
points along an isotherm (green line) with density ranging
from the liquid-gas coexistence limit up to 2 ρm. To summarize,
Fiolhais potential can accurately describe the behavior above
the M-NM transition and up to at least 12, 9.4, 6.6, and 3 GPa
for Na, K, Rb, and Cs, respectively, and to a lesser extent up
to 4.8 GPa for Li.

IV. RESULTS

We turn now to the presentation of our results which we
will especially discuss in the scope of the universality issue.

A. Comparison with experimental data

Before discussing the universality of the shear viscosity be-
tween alkali metals, we compare our results with experimental
data available in the literature in Fig. 4 for each metal. Red
circles correspond in each case to the simulations while the
color symbols are the measurements. These experimental data
were obtained under atmospheric pressure, i.e., close to the
liquid-gas coexistence line. Our simulations were performed
along this line.

In each case, a shift clearly appears between experimental
and simulated data, of the order of 40% for Li (compared to
Novikov’s data [45]), 18% for Na (Ewing [49]), 25.8% for
K (Lemmon [51]), 9% for Rb (Genrikh [54]), and 21.5% for
Cs (Tsai [55]). Due to the very low viscosity of alkali metals,
these relative differences seem to be rather high, but in fact
the difference is only about 4 × 10−5 Pa s for Na, K, Rb,
and Cs.

Inaccuracies in the description of the interactions may
be one of the reasons for this difference and it could also
explain why the melting temperature found for Li is in slightly
worse agreement with the experimental one. Nevertheless,
it should be recalled that due to chemical reactivity of
alkali elements, the viscosity is indirectly measured from the
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FIG. 4. Viscosity as a function of temperature along the liquid-gas coexistence for Li, Na, K, Rb, and Cs. Comparison between experimental
data and our simulation results (red circles). For Li, Novikov [45], Kalakutskaya [46], Andrade [47], and Ito’s [48] data are represented by
squares, stars, X-triangles, and triangles, respectively. For Na, X-triangles and stars correspond to Ewing [49] and Godfrey’s data [50]. For K,
Lemmon [51], Chiong [52], Kalakutskaya [46], and Ewing’s data [49] are symbolized by X-triangles, triangles, stars, and squares, respectively.
For Rb, Weatherford [53], Andrade [47], and Genrikh’s [54] data correspond to stars, X-triangles, and squares. Lastly, measurements for Cs
were done by Andrade [47] (triangles), Tsai [55] (stars), and Grosse [56] (X-stars).

damping of the oscillations of a container filled with fluid.
These measurements are very delicate and, surprisingly, date
back to the 1970’s for the most recent (apart from Ref. [48], to
the best of our knowledge). Moreover, some studies showed
that the viscosity of liquid metals is very sensitive to metallic
impurities [57] or to the presence of air introduced into the
atmosphere over the metal (gaseous impurities) [54]. For
instance, an oxygen concentration of 0.15 wt.% in Rb leads
to an increase of 20% of the viscosity. Except Genrikh et al.
[54], authors did not take specific measures to purify the metal
of gaseous impurities. The occurrence of these impurities,
particularly atmospheric oxygen, might have caused part of the
difference between our data and those in the literature. Thus it
could explain why taking into account the viscosity values of
Genrikh, the relative difference is much smaller for Rb contrary
to other metals. Consequently, even if the pair potential
is certainly the most important source of discrepancies, an
updating of the experimental measurements of the viscosity of
these metals is clearly needed. However, lithium differs from
others and shows a greater discrepancy. As it has already been
mentioned above, this difference could be related to its unique
electronic structure (no p electron in the core).

On the other hand, notwithstanding the above-mentioned
shift, our data nicely reproduce the variation of the viscosity
along this line and we believe that they are appropriate to
discuss temperature and density dependence of this physical
quantity.

B. Qualitative analysis

Similar qualitative behaviors of the viscosity of the different
elements is a necessary condition for universality. In panel (a)
of Fig. 5, the temperature dependence of the shear viscosity of
all alkali metals is studied along three well specified isochoric
lines: 0.75 ρm, ρm, 1.5 ρm. For densities equal or higher
than ρm, the same qualitative behavior of the viscosity is
found for all elements. As temperature increases, viscosity
decreases quickly at lower temperatures, reaches a minimum,
and increases slowly in the high-temperature region. In
the low-temperature region, near freezing, the viscosity is
determined mainly by interaction effects. As the temperature
increases, these effects go down and η is determined by the
kinetics of pair collisions. The minimum is predicted to occur
in the intermediate region. This behavior has been discussed in
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(a) (b)

FIG. 5. Viscosity of Li (stars), Na (circles), K (triangles), Rb (X-triangles), and Cs (left-triangles) as a function of temperature along three
isochoric lines 0.75 ρm, ρm, and 1.5 ρm (a) and as a function of density along an isotherm 4.3 Tm (b). In (a), curves at ρm and 1.5 ρm are shifted
1.5 × 10−4 and 3.5 × 10−4 Pa s up, respectively.

details in our study of Na [13] and already confirmed for K and
Cs [14]. It has been shown that the occurrence of a minimum
which is first counter-intuitive, is not solely typical of alkali
metals since the viscosity behaves in the same way in other
systems like rare gas at liquid densities [58]. Experimental and
simulation studies on argon have shown this feature. Moreover,
Rosenfeld [59] predicted a minimum of the viscosity as a
function of temperature on the basis of the entropy scaling. At
low densities (0.75 ρm), we can model this group of isochors
by a simple linear low. Indeed, the liquid-gas coexistence line
prevents from giving a clear overview of the viscosity behavior
at lower temperatures.

In panel (b) of Fig. 5, the density dependence of the shear
viscosity of alkali elements is studied along an isotherm
corresponding to 4.3 Tm. For all elements, the viscosity
increases with the density, due to the increase of atomic
interaction effects. In the high-density region, the behavior of
the viscosity is linear while viscosity values are not accessible
at lower densities due to the liquid-gas coexistence line.

For both kinds of dependence, the same behavior was
recovered for each alkali elements. This raises the question
of whether a universality exists both for the temperature and
for the density dependence on a quantitative level.

C. Universality of the shear viscosity

In order to establish the universality of the viscosity among
the alkali metals, we need to define reduced quantities and
check if they quantitatively obey the same law. One possible
procedure could consist in plotting pair potentials in proper
reduced units to state their scalable shapes; then define reduced
length and energy units in order to reduce the viscosity. This
is what we have done in a former study about self-diffusion
coefficient [11]. However, this would only be relevant for
people using pair potentials. We prefer to consider more

general features that are also meaningful to experimentalists,
as well as in the framework of ab initio simulations. Thus the
proposed relations will be relevant in all these contexts.

Two possible choices can be used to reduce the data:
the melting point (Tm, ρm) or the critical point (Tc, ρc). The
viscosity values corresponding to both particular points are
summarized for the five alkali metals in Table III.

1. Reduced viscosity

In panel (a) of Fig. 6, the shear viscosity is shown as a
function of temperature as obtained in our simulations for
Li, Na, K, Rb, and Cs, along the liquid-gas coexistence line.
Reduced by the appropriate parameter, i.e., the melting point,
we see that there is no doubt about the universality of viscosity
of alkali along the coexistence curve. If the viscosity is reduced
by the critical point then the curves do not start at the same
value of Tm/Tc, given that the ratio is different according to
the metals.

In panel (b) of Fig. 6, isotherms are drawn corresponding
to 4.3 Tm and reduced by the melting point for Li, Na, K, Rb,
and Cs. Once again, an obvious universal behavior of viscosity
arises along reduced isotherms up to 1.6 ρm. From this density,

TABLE III. Experimental values of the shear viscosity at the
melting point for Li [48], Na [52], K [51], Rb (as cited in Ref. [60]),
and Cs [47]; estimated values at the critical point from Ref. [17].

ηm (10−4 Pa s) ηc (10−4 Pa s)

Li 6.96 0.62
Na 7.20 0.58
K 5.60 0.49
Rb 6.44 0.62
Cs 6.80 0.64
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(c)

(a)

(d)
(e)

(b)

FIG. 6. Reduced viscosity of Li, Na, K, Rb, and Cs. (a), (b), (c), (d), and (e) represent the viscosity values reduced by the melting point
along the coexistence line, isotherm 4.3 Tm, and isochors 1.5 ρm, ρm, and 0.75 ρm, respectively. The viscosity values of Li, Na, K, Rb, and Cs,
are represented by black squares, sky blue diamonds, blue down-triangles, red circles, and green triangles, respectively. Inset in (b) corresponds
to an enlargement of the low-density range, while in (c) and (d), they show the curves over the full temperature range; in (e), it displays the
data reduced by the critical point. Solid lines are fit as explained in the text.

the isotherms seem to split into two groups. The lightest metals,
lithium, and sodium, tend to separate from the heaviest ones.
Even if the phase diagrams of elements are qualitatively the
same, they are quantitatively very different at high density.
Thus it is not surprising that the splitting occurs in this density
range. At ordinary densities, the band structure of alkali metals
is free-electron like, but at higher densities their electronic
structures depart from this behavior due to the core electrons
which start to overlap [61]; this implies changes in the valence
electron configuration that may not occur at the same relative
pressure/density. The highest densities at which we work are
lower than the densities where these electronic transitions
occur. Nevertheless, viscosity behavior under pressure could
be sensitive to germs of these modifications. Moreover, an s-d
transition occurs for heavy metals while it is a s-p transition
for Li and Na [1]. The two kinds of transitions could also be
the origin of the separation between light and heavy metals.

Below ρm, a splitting is also recovered [see inset of panel
(b)]. Its origin could be explained by the fact that, near to
the M-NM transition, there are changes in the electronic
distribution and the viscosity reflects it. However, the splitting
into two groups in this density region is only about 7%. So, the

discussion about the universal feature of the viscosity remains
relevant.

In panels (c) and (d) of Fig. 6, the simulated viscosity is
represented along two well-defined isochors: at the melting
density, ρm, and at a higher density, 1.5 ρm. For both, the
viscosity was calculated for Li, Na, K, Rb and Cs, up to
7 000 K. First, it appears that the best way to reduce these data
is to draw them as a function of the melting point. We observe
that all alkali elements exhibit a clear universality along
both isochoric lines, but only within a specific temperature
range. Indeed, up to 7 Tm, the behavior of the viscosity is
quantitatively the same whatever the metal considered. As
cited above, it is mainly the interaction effects which dominate
in this range. In the study of Wax et al. [10], atomic interactions
of alkali metals were calculated using Fiolhais potential and a
universal behavior of the diffusion properties was also found
near the melting point. Here, the same is observed for viscosity
at ρm, but also at 1.5 ρm.

In the low-temperature range, the potential part prevails
over the kinetic one. Looking at the shape of the potential u(r)
for the alkali metals (Fig. 7), it could be objected that this
is a consequence of the use of the same expression for the
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FIG. 7. Effective pair potentials in reduced units at the melting
point under ambient pressure; Tm and RWS are the corresponding
melting temperature and Wigner-Seitz radius.

pseudopotential, namely that proposed by Fiolhais. Knowing
this universal behavior of the interactions of alkali metals, it
would not be surprising to recover a universal behavior of
the viscosity in this density range. In other words, one may
think that the viscosity is universal because the shape of the
potential is universal due to the use of the same pseudopotential
for all alkali metals. However, in the work of Wax et al.
[62], Fiolhais pseudopotential has been used to calculate the
effective interactions, u(r), of alkaline-earth metals. It has been
shown that this potential describes accurately the interactions
in these metals, but it appears that there does not exist a
universal behavior of u(r). So, Fiolhais potential is not the
cause of the scalability of the effective pair interactions (and
of the universality of the viscosity) which is a feature of
alkali metals. This scalability already mentioned for Fiolhais
potential in Ref. [11] was also observed by Balucani et al. [8]
with Price’s pseudopotential.

In contrast, at higher temperatures, the ratio is reversed
and the interactions effect becomes negligible compared to
the thermal excitation. Given that the kinetic part depends of
the particle mass, it explains the small difference of viscosity
behaviors at high temperatures between the metals.

Along isochor 0.75 ρm [panel (e)], the universal behavior
is not quantitatively recovered. This can be attributed to
differences in the density and temperature ratios between
melting and critical points among the five alkali metals. As a
first consequence, in the low-temperature region, the viscosity
of the elements seem to follow qualitatively the same behavior
but do not coincide. Indeed, as Li has the highest ratio between
critical and melting temperatures, this leads to consider lower
T/Tm values than for the others. Moreover, the coexistence
curves of alkali metals are extremely asymmetric compared
to those of rare gases, for instance. This could be due to
the “principle of corresponding states” [63], which is not
respected in the alkali group since the type of bonding are
not similar in the liquid or vapor states. Near the M-NM
transition, most of the electrons are attached to their parent
atoms, occupying spatially localized atomic orbitals [64].

TABLE IV. Universal parameters of Eq. (10).

A B C

α′ 1.814 × 10−4 −1.900 9.111 × 10−3

β ′ 1.633 × 10−4 3.474 0.143

So, the nature of the electronic interactions between atoms
changes with the decrease of the density and the increase
of the temperature (along the coexistence curve). Again, the
different ratio between critical and melting densities implies
that for densities quite low when compared with ρm, the M-NM
transition may be at a more or less advanced stage, depending
on the metal.

Reducing the data with the critical point [inset of panel (e)]
leads to a better agreement. However, this may be fortuitous,
first because the viscosity at the critical point is only estimated,
so that uncertainty about these values is high. Second, the
critical points may not be accurately located, specifically for
Li where it is the highest among alkali metals. The accuracy of
measurements is severely limited by the highly reactive nature
at high temperatures, but also by the control and measurement
of temperature in any high-temperature experiment. The
measure of the temperature becomes particularly difficult close
to the critical point due to the presence of spurious effects
caused by the temperature gradients [65]. Anyway, in any
other situation, reducing data by the critical point leads to
results worse than by the melting point.

Consequently, the viscosity has a quantitative universal
behavior over a wide range of temperature (up to 7 Tm), of
density (up to 1.6 ρm). However, it seems not be the case at
low densities (lower than �0.85ρm), mainly because of the
different ratios between critical and melting points which do
not permit to accurately define corresponding states between
alkali metals.

2. Universal expression

As we mentioned before, by universality, we mean that it
is possible to define a set of reduced (universal) variables
which allow to obtain quantitatively the behavior of the
viscosity for any alkali metal in any thermodynamic state.
Given the difficulty to measure experimentally the viscosity,
this possibility would be helpful as it would allow to evaluate
the viscosity of a metal from the data of another one. This
should of course also be possible from simulation results.

Considering Eq. (2), which explicitly accounts for temper-
ature and density, and reducing it with respect to the melting
point, i.e., introducing the reduced quantities η′ = η

ηm
, T ′ =

T
Tm

, and ρ ′ = ρ

ρm
, we obtain

η′(ρ ′,T ′)=
[(

α′
A

ρ ′2 + β ′
A

)
T ′2 + (α′

C + β ′
C ρ ′)

]
e

(
α′
B

ρ′2 +β ′
B )/T ′

.

(10)

In this expression, α′
A = (αAT 2

m)/(ρ2
mηm), β ′

A = (βAT 2
m)/ηm,

α′
B = αB/(ρ2

mTm), β ′
B = βB/Tm, α′

C = αC/ηm, and β ′
C =

(βCρm)/ηm are universal parameters valid for any alkali metal,
of which values are deduced from our study of sodium [13]
and summarized in Table IV.
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TABLE V. Values of fit parameters. A′, B ′, and C ′ are parameters
from Eq. (11), while a′, b′, c′, and d ′ stem from Eq. (12). Except in
the case of the coexistence curve where the parameters were obtained
by fitting simultaneously the reduced data of the five alkali metals,
the values are obtained from α′ and β ′ of Table IV.

a′ b′ c′ d ′

isotherm 4.3 Tm 7.51 × 10−3 0.0272 0.319 −0.441
A′ B ′ C ′ –

coexistence −5.72 × 10−4 1.98 0.104 –
isochor ρm 3.45 × 10−4 1.57 0.152 –
isochor 1.5 ρm 2.43 × 10−4 2.63 0.223 –

For states where the viscosity is obtained as a function of
temperature, i.e., along isochoric lines, the data set can be fitted
by a reduced version of Eq. (1). This equation becomes

η′(T ′) = (A′T ′2 + C ′) eB ′/T ′
(11)

with A′ = AT 2
m

ηm
, B ′ = B

Tm
, and C ′ = C

ηm
, being universal pa-

rameters (i.e., independent of the metal) although functions of
the reduced density ρ ′. Moreover, this expression also works
remarkably well along the coexistence line. In this case, A′, B ′,
and C ′ are independent of the density.

For state points along an isotherm, a reduced version of
Eq. (3) can be used

η′(ρ ′) = (a′ρ ′−2 + b′ + c′ρ ′) ed ′/ρ ′2
, (12)

where a′ = a
ρ2

mηm
, b′ = b

ηm
, c′ = cρm

ηm
, and d ′ = d

ρ2
m

, are universal
parameters depending only on the temperature.

The values of the parameters for all fitted curves drawn as
solid lines in each panel of Fig. 6 are specified in Table V.
First, along the liquid-gas coexistence curve, it is possible to
find the reduced viscosity value with an uncertainty of 10% for
any alkali element. This is very satisfactory given the accuracy
with which this property can be measured which is at least
of the same order. Second, considering the isochoric lines
ρm and 1.5 ρm in panels (c) and (d), we obtain a reduced
viscosity value with an uncertainty less than 10% in both cases
for temperatures up to 7 Tm. This corresponds to very high
temperatures (higher than 2 500 K), difficult to achieve in
the case of viscosity measurements of alkali metals. Anyway,
between 7 and 25 Tm, the agreement remains very satisfactory.
Lastly, given that the viscosity behavior along the isotherm is
universal between ρm and 1.6 ρm, it is possible to determine
the reduced viscosity within this range with 5% uncertainty.
Concerning the isochor at 0.75 ρm, the great disparity of curves
of the five alkali metals does not permit to fit them with a single
curve.

So, with the universal parameters obtained from Eqs. (10),
(11), or (12), we get a reduced viscosity which permits to
recover the viscosity value of any alkali metal along the
fitted thermodynamics states. Conversely, if the viscosity
of one alkali metal is known in a given thermodynamic
state, it is possible to calculate the reduced viscosity, and
consequently to estimate the viscosity of any other alkali
metal in a corresponding thermodynamic state. In our previous
work [14], we studied the viscosity of Na in greater details,
investigating many more thermodynamic states than in the

present study, and from which we obtained the universal
parameters of Table IV. Thus, knowing the respective values
of ηm, ρm, and Tm of rubidium, for instance, we can calculate
that, at (1.3ρm; 5Tm) = (1897 kg m−3,1750 K), its viscosity
is about 2.08 × 10−4 Pa s, consistent with Fig. 5. Using the
present study, the viscosity value of any alkali metal can be
estimated in the range between Tm and 20 Tm, and between ρm

and 2ρm.
In our previous study, we also investigate the validity of

Stokes-Einstein relation

D = kBT

CπηR
, (13)

where D is the self-diffusion coefficient. We concluded that
this relation is valid in the case of sodium over the investigated
states, provided C = 3.6 and R identifies with Wigner-Seitz
radius, which is proportional to ρ−1/3. The universality of
the self-diffusion coefficient has already been questioned
at ambient pressure [10,11,66] and our study extends this
topic to high pressures. If we consider for instance the
reduced thermodynamic state (1.5ρm; 4 Tm), corresponding
to (778.5 kg m−3; 1790 K) and (2752.5 kg m−3; 1200 K) for
Li and Cs, respectively, we can estimate from Eq. (10) the
viscosity value for these two metals (3.05 × 10−4 and 2.99 ×
10−4 Pa s, respectively). Using Eq. (13), we obtain estimates
of the self-diffusion coefficient for this thermodynamic state
(DLi

SE = 4.69 × 10−8 m2 s−1 and DCs
SE = 1.83 × 10−8 m2 s−1),

in very good agreement with the values obtained directly
from our simulations using the MSD after correcting for
finite size effects (namely, DLi

MD = 4.76 × 10−8 m2 s−1 and
DCs

MD = 1.76 × 10−8 m2 s−1).

V. CONCLUSION

We studied the universality of shear viscosity of alkali
metals by equilibrium molecular dynamics simulations over a
wide range of density, including the very high-density region.
To investigate this part of the phase diagram, it was required to
check the reliability of the interactions and Fiolhais potential
has shown its validity up to 12, 9.4, 6.6, and 3 GPa for Na, K,
Rb, and Cs, respectively, and to a lesser extent up to 4.8 GPa for
Li. A comparison between experimental and simulated shear
viscosity was done and the agreement is very good. Even if part
of the discrepancies may arise from the interionic potential, an
updating of the experimental data is needed. Indeed, the study
of Genrikh [54], which is the most recent on viscosity, has
shown that part of the difference is certainly due to gaseous
impurities contained in the sample during measurements.

The same qualitative behavior of the viscosity was found
for all alkali. Along isochoric lines, viscosity presents a
clear minimum as temperature increases, except at the lowest
densities investigated. Along isotherms, it monotonically
increases with the density. A universal behavior was found
along the liquid-gas coexistence curve, but also along the
isochors corresponding to ρm and 1.5 ρm up to a temperature
of 7 Tm. Concerning isochors in the low-density region of the
phase diagram, it seems difficult to unify the viscosity behavior
of the different alkali elements. The different temperature
and density ratios between melting and critical points may
be responsible for these differences.
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Thanks to Eqs. (10), (11), or (12), a reduced viscosity
is obtained which permits to deduce the viscosity of any
alkali elements along any isotherm or isochor, or at any
thermodynamic state in this region of the phase diagram. Along
an isotherm, for densities greater than 0.85 ρm, the viscosity
appears to be a universal property up to a density corresponding
to 1.5 ρm, density at which the electronic structure of alkali
metals begins to change. Among the five alkali metals, lithium
does not follow so accurately the universal behavior. This
surely has to be related to its unique electronic structure, but
anyway, differences remain small.

Finally, as many other physical properties, viscosity has a
universal behavior over a wide range of the phase diagram. This
is particularly useful since, as we explained, the knowledge
of a given property for one of the alkali element allows to
estimate the same property in corresponding thermodynamic
states for all the others. This possibility should also apply to
self-diffusion coefficient.
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APPENDIX

In this section, as well as in the article, Hartree atomic
units are used (me− = e = h̄ = a0 = 2 Ryd = 1). Some cited
references using Rydberg atomic units (2me− = e2/2 = h̄ =
a0 = 1 Ryd = 1), corresponding original expressions have
been converted. Let us denote ρN = N/V and n = ZN/V =
ZρN , the atomic and electronic densities, respectively. The
electronic sphere radius, rs , can be obtained from 4πr3

s /3 =
1/n.

Due to the electron gas, expressions of thermodynamic
quantities such as energy or pressure in metals are different
than in Lennard-Jones fluids for instance. At the second-order
of perturbation in the framework of screened pseudopotential
formalism, the total energy reads

E = Ek + U (V ) + U (R,V )

= 3

2
NkBT + Nu0(n) + 2πNρN

∫ ∞

0
r2u(r,n)g(r)dr.

(A1)

The first term is the kinetic energy of ions. The potential energy
splits into two contributions. The first one is a nonstructural
density-dependent term stemming from the electron gas, while

the second one is structure- and density-dependent. According
to Jakse and Bretonnet [67] and Hasegawa [68],

u0(n) = Eeg − Beg

2ρN

+ φ(r = 0), (A2)

where

Eeg = Z

2

[
2.21

r2
s

− 0.916

rs

+ 0.031 ln(rs) − 0.115

]
(A3)

is the energy of the electron gas that can be estimated using
Nozières and Pines [69] formula. The electron gas bulk
modulus Beg reads [70,71]

Beg = 4πn2

[
π

4kF

− γ0(rs)

k2
F

]
, (A4)

where kF is the Fermi wave vector and γ0 is defined as

lim
q→0

G(q) = γ0
q2

k2
F

. (A5)

Finally,

φ(r = 0) = −Z2

π

∫ ∞

0
FN (q)dq, (A6)

where FN (q) is defined in Eq. (7). All these expressions are
consistent with the relations given in Ref. [62].

Turning to the pressure [72], it reads, for local pseudopo-
tentials [68]:

P = Pid + P0 + Pi−i = ρNkBT + ρNn
du0

dn
+ Pi−i . (A7)

The structural term is Pi−i = P ′
i−i + P ′′

i−i with

P ′
i−i = −2πρ2

N

3

∫ ∞

0
r3 ∂u(r,n)

∂r
g(r)dr (A8)

and

P ′′
i−i = 2πρ2

N

∫ ∞

0
nr2 ∂u(r,n)

∂n
g(r)dr. (A9)

The volume-dependent term ρNndu0
dn

can be computed by
numerically differentiating u0. As for (ρNkBT + P ′

i−i), it also
corresponds to the diagonal terms of the stress tensor.

Finally, it should be pointed out that due to the linear
screening approximation and to the perturbation method,
terms are lacking in the expression of the pressure. Therefore
the evaluation of pressure is only approximate within the
framework of these kinds of effective potentials.
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