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Using the Landau-Ginzburg-Devonshire theory and one component approximation, we examined the conditions
of the soft acoustic phonon mode (A-mode) appearance in a ferroelectric (FE) depending on the magnitude of
the flexoelectric coefficient f and temperature T . If the flexocoefficient f is equal to the temperature-dependent
critical value f cr(T ) at some temperature T = TIC, the A-mode frequency tends to zero at wave vector k = kcr

0 , and
the spontaneous polarization becomes spatially modulated in the temperature range T < TIC, where TIC is turned
into the transition temperature to the incommensurate spatially modulated phase (SMP). When f > f cr(TIC),
the A-mode becomes zero for two wave vectors k = kcr

1,2, and does not exist in the range of wave vectors
kcr

1 < k < kcr
2 , indicating the transition to SMP. The corresponding temperature dependence of the dielectric

susceptibility is in agreement with experimental data in ferroics with SMPs. This gives us a background to
predict flexocoupling-induced soft acoustic amplitudon-type modes in FEs with SMPs of type II. The available
experimental results on neutron scattering in organic incommensurate FE betaine calcium chloride dihydrate are
in semiquantitative agreement with our theoretical results.
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I. INTRODUCTION

Dynamical characteristics of phase transitions in ferroics
have attracted great attention from scientists for many years,
being the source of valuable information for fundamental phys-
ical research and advanced applications [1,2]. Typically, the
phase transitions lead to the instability of soft phonon modes
[3]. In particular, for ferroelectrics (FEs), the frequency ωTO of
transverse optic (TO) soft phonon mode depends on tempera-
ture T so that ωTO(TC) = 0 at transition temperature T = TC .

Basic experimental methods, which contain information
about soft phonon modes and spatial modulation of the
order parameter in ferroics (such as anti-FEs, proper,
and incipient FEs), are dielectric measurements [4],
inelastic neutron scattering [3,5–10], x-ray [11–14], Raman
[15], and Brillouin [11,14,16–19] scatterings, and the
ultrasonic pulse-echo method [16,18], allowing hypersound
spectroscopic measurements.

Scattering experiments proved that, not only does the TO
mode soften substantially with decreasing temperature to
freeze out at TC in ferroics (such as FE perovskites), but
also finite wave vector anomalies appear in the transverse
acoustic (TA) mode for structural phase transitions [20–22].
In particular, Cowley [20] measured the softening of the TA
mode in SrTiO3 at (105–110) K. The acoustic soft mode
was observed in the incipient FE SrTiO3 near the structural
antiferrodistortive phase transition by Bussmann-Holder et al.
[23], and the authors supposed that such behavior is driven
by polar optic soft mode. Axe et al. [5] experimentally
studied the coupling between TA and TO modes in KTaO3

at different temperatures. The pronounced softening of the TA
mode has been revealed in betaine calcium chloride dihydrate
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[(CH3)3NCH2COO·CaCl2·2H2O] by Hlinka et al. [9]. The
linear interaction of acoustic mode and soft optic mode leads
to pronounced softening of the TA mode manifesting itself
in the remarkable lowering of hypersound velocity for the TA
phonons observed in the incommensurate FE Sn2P2(SexS1−x)6

in the vicinity of the Lifshitz point (LP) [16]. The flexoelectric
coupling-induced interaction of TA and TO modes in anti-FE
PbZiO3 led to the recent paper by Tagantsev et al. [12]. Besides
these original papers, lots of information about experimental
and theoretical investigations of soft modes in different ferroics
can be found in the seminal textbooks [1,24,25].

However, the question about the type of soft modes,
which cannot be optic ones in the incommensurate spatially
modulated phases (SMPs) of ferroics, is still highly relevant,
although mechanisms and details of the incommensurate
SMPs’ appearance in solids have become the subject of many
theoretical and experimental studies since early 1970s [1,5,20]
until nowadays [9,12,16]. In particular, the transition to the
incommensurate phase is a question that has not been explored
in detail yet, while the very idea of Axe et al. [5] is that the
TO-TA mode coupling causes the instability of the TA mode
at some temperature that, in turn, leads to the appearance
of an incommensurate phase. Notably, the idea based on the
static flexoelectric coupling between polarization and strain
gradients (in the form of a tensorial Lifshitz invariant) was
used by Tagantsev et al. (see Eq. (4) in Ref. [12]) to explain
the origin of antiferroelectricity in PbZiO3. To estimate the
TO-TA mode coupling and incommensurate SMP appearance
in proper FEs, Kohutych et al. [16] included the flexoelectric
term in the form of Lifshitz invariant f

2 (P ∂u
∂x

− u∂P
∂x

), where
P is polarization component, u is the strain component, and f

is the static flexoelectric coefficient.
Having mentioned the impact of the Lifshitz invariant

f

2 (ξ ∂η

∂x
− η

∂ξ

∂x
) relating the order parameters ξ and η on the

appearance of the incommensurate phase, it is necessary to
discuss the adopted classification of incommensurate phases
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in ferroics. Following Bruce et al. [26], the consideration of
incommensurate phases based on the Landau theory of phase
transitions, it is customary to distinguish two cases, those in
which the symmetry of the order parameter(s) is such that
the Lifshitz invariant can exist (called incommensurate phases
of type I) and those in which the invariant is absent (called
incommensurate phases of type II). From the beginning most
of the Landau theory-based theoretical studies considered type
I phases (see, e.g., Golovko [27] and Levanyuk et al. [28]),
the studies of the type II phases were more rare (see, e.g.,
Hornreich et al. [29] and Golovko [30]).

Since the direct and converse static flexoelectric effects,
which lead to the appearance of polarization due to the
strain gradient and vice versa [31,32], exist in a ferroic of
arbitrary symmetry [33–35], the tensorial Lifshitz invariant
fklij

2 (Pi
∂ ukl

∂xj
− ukl

∂ Pi

∂xj
) should be included to the free energy

functional of all those ferroics for which the polarization
component(s) Pi is a primary order parameter. Also, the
invariant can be included if the polarization is a secondary
order parameter, but in this case, Pi should be expressed
via the primary order parameter(s). It was shown that the
flexocoupling term in the form of a Lifshitz invariant can
induce incommensurate SMPs in many ferroics, including
anti-FE and antiferrodistortive ones [12,36–38].

Note that the static flexoelectric effect is omnipresent from
the symmetry theory considerations (in the sense that fklij

has nonzero components for any point symmetry), and the
earliest [32] and recent [39,40] microscopic calculations give
nonzero (and sometimes rather high) values of flexoelectric
coefficients for many FEs. It is possible to define the static
flexoelectric coefficients from direct experiments [41–43], as
well as from the fitting of soft phonon spectra in FEs (see,
e.g., Ref. [44] and refs. therein).

From considerations of the symmetry theory stating that
all terms and invariants, whose existence does not violate the
symmetry of the system, are allowed, Tagantsev et al. [12]
predicted the existence of a cross-term in the kinetic energy
Mij

∂Pi

∂t

∂Uj

∂t
and named it dynamic flexoelectric effect, as it

originates from the cross-term of polarization and elastic
displacement time derivatives ∂Pi

∂t

∂Uj

∂t
(see reviews [45,46]

and references therein). At present, the situation with the
magnitudes Mij of dynamic flexoeffect is more complex
and controversial than for the static one because there are
microscopic theories in which the effect is absent. Namely,
Stengel [47] has shown that, since both polarization and
elastic displacement are supposed to be normal modes of the
crystal at the center of Brillouin zone, they should diagonalize
the dynamical matrix, leading to the absence of the cross-term
in the matrix. It should be noted that the Stengel result [47]
was argued later on by Kvasov and Tagantsev [48], who
evaluated the strength of the dynamic flexoelectric effect
in SrTiO3 from microscopic calculations, and it appeared
comparable to that of the static bulk flexoelectric effect. More
discussion of the problem can be found in Refs. [44,49].

The impact of dynamic flexoelectric coupling on the
soft phonon spectra in ferroics has not been studied until
recently [48,50,51]. Note that the best fitting of the soft
phonon spectra observed in SrTiO3, PbTiO3, Sn2P2S6, and
Sn2P2Se6 performed by Morozovska et al. [50,51] corresponds

to nonzero values of dynamic flexoelectric coefficient, which
are of the same order as the ones calculated by Kvasov and
Tagantsev [48]. However, the indirect evidences followed from
the fitting with many parameters [50,51] cannot be the crucial
argument, and so we believe that direct measurements of
the static and dynamic flexoelectric coefficients are urgently
required.

Since a wave excitation of any nature is impossible without
a local gradient of the corresponding physical quantity
[52,53], the static and dynamic flexoelectric effects should
influence the propagation of acoustic waves in all solids,
although the effect should be more pronounced for short than
for long wavelengths [54]. For example, an acoustic wave will
be inevitably accompanied by a local gradient of mechanical
strains and stresses. Due to the direct static flexoelectric
effect, the wave of the strain gradient induces the wave of the
electric polarization, even in the paraelectric (PE) phase (i.e.,
local polarization, the mean value of which is zero). The local
polarization gradient, due to the converse flexoelectric effect,
will affect the elastic stresses associated with the wave.

Recently, to extend the Axe et al. theory [5], Morozovska
et al. [50,51] used the Landau-Ginzburg-Devonshire (LGD)
approach to consider the influence of the flexocoupling on
the appearance of SMPs, and on the properties of optic and
acoustic phonons in the FE and PE phases of FEs PbTiO3,
Sn2P2(S,Se)6, and PE SrTiO3. In order to derive the analytical
expressions from the LGD free energy, which includes the
higher gradient terms, static flexocoupling in the form of a
Lifshitz invariant and dynamical flexoelectric effect in the form
proposed by Kvasov and Tagantsev [48], we were subjected
to restriction of our consideration by one component of the
polarization and strain. These restrictions can be called the
one component approximation [51]. The consequence of this
approximation is the occurrence of only one optical and
one acoustic mode, which interact via electrostriction and
flexoelectric couplings.

Allowing we are interested in SMP transition that does not
belong to the FE one [55], optic modes are not suitable to
be soft ones at the transition. In the following sections, we
are going to consider mainly acoustic mode dispersion and its
temperature dependence.

The simplified dispersion law cannot describe the inter-
action between different transverse and longitudinal optical
modes and three acoustic modes induced by cooperative
effects, flexoelectric, and electrostriction couplings in the FE
phase of multiaxial FEs. Moreover, the coupling between
different optic phonon modes can either act cooperatively
with the flexocoupling or against it [see, e.g., the models
by Kappler and Walker [56] and Hlinka et al. [57] adopted
for organic FEs such as (CH3)3NCH2COO·CaCl2·2H2O].
If acoustic and optic modes are considered, their mutual
coupling contributes to the SMP appearance, similarly to
the flexoelectricity standing alone [57]. Actually, it was
shown that elastic softening in the hypersound range in
Sn2P2(SexS1−x)6 is induced mostly by linear interaction
between soft optic and acoustic phonon branches, so that the
Landau-Khalatnikov model explains temperature dependence
of hypersound velocity in the FE phase [16].

Taking into account the limitations of the one component
approximation validity, we can reasonably apply the analytical
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results to describe the experimentally observed phonon dis-
persion in uniaxial ferroics only, e.g., for the monoclinic FEs
Sn2P2(SexS1−x)6 [58,59], as well as in the PE phase of organic
FEs, like (CH3)3NCH2COO·CaCl2·2H2O [9], if the interaction
between different phonon modes appeared relatively small at
high temperatures.

Motivated by the above argumentation, we derived analyt-
ical expressions for the singular points (zero points, complex
ranges) of the A-mode frequency ω(k) dependent on the wave
vector k and examined the conditions of the soft acoustic
mode appearance in FEs depending on the magnitude of the
flexoelectric coefficient and temperature in this paper.

II. ANALYTICAL ONE COMPONENT THEORY

Using LGD theory and one component approximation in the
considered one-dimensional (1D) case, the Lagrange function
L = ∫

t
dt

∫ ∞
−∞ dx(F − K) consists of the kinetic energy K

and free energy F of a FE [45,46]. Following Ref. [51], the
density of kinetic energy

K = μ

2

(
∂P

∂t

)2

+ M
∂P

∂t

∂U

∂t
+ ρ

2

(
∂U

∂t

)2

, (1)

includes the dynamic flexocoupling [45,46,48] with the magni-
tude M; ρ is the density of a material; μ is a kinetic coefficient.
The elastic displacement component U is related to the strain
u as u = ∂U/∂x.

The bulk density of the free energy F that depends on
polarization component P and strain component u, and their
gradients, has the following form [51]:

F = α

2
P 2 + β

4
P 4 + γ

4
P 6 + g

2

(
∂P

∂x

)2

− quP 2

− f

2

(
P

∂u

∂x
− u

∂P

∂x

)
+ c

2
u2 + v

2

(
∂ u

∂x

)2

− PE − NU.

(2)

According to the Landau theory [60,61], the coefficient
α linearly depends on the temperature T for proper FEs
α(T ) = αT (T − TC). Here, TC is the Curie temperature. All
other coefficients in Eq. (2) are supposed to be temperature
independent. The coefficient β > 0 for the FEs with the
second-order phase transition, and β < 0 for the first-order
one. The coefficient γ � 0 for the stability of the free energy
for all P values. The gradient coefficients g and v determine
the magnitude of the gradient energy. The coefficient f is
the component of the static flexocoupling tensor. The elastic
stiffness c should be positive for the functional stability. The
electrostriction coefficient q can be positive or negative. The
polarization interacts with an external electric field E. Also,
N is the bulk density of external mechanical force.

We did not include the term PEd/2 in Eq. (2), assuming that
the depolarization field Ed is absent. The case corresponds to
the transverse fluctuations of polarization, which we consider
and regard that the longitudinal fluctuations of polarization are
much smaller due to the depolarization field [55].

Unlike our previous work [51], we did not included the
higher polarization gradient term proportional to w(∂2P/∂x2)2

in Eq. (1) and therefore consider only positive g > 0. This

is done in order to study those and only those types of
SMPs which are driven by the flexocoupling only, due the
presence of the Lifshitz invariant f

2 (P ∂u
∂x

− u∂P
∂x

) in Eq. (1).
The higher polarization gradient term determines the possible
appearance of the minima on the optic mode frequency and
so promotes the appearance of an incommensurate phase with
increase of its strength w (see, e.g., Figs. 1 and 2 in review
[62]). We regard that it is really important to distinguish
between the scenario of SMP origin in initially homogeneous
commensurate ferroics (with g > 0 and w = 0) under the
flexocoupling strength f increase [37] from other possible
scenarios of incommensurate SMP appearance in different
ferroics (see Ref. [62] and refs. therein).

The strain gradient coefficient v is typically omitted in the
free energy of ferroics, despite that its necessity under the
presence of flexocoupling had been established [40,63–65]. If
the expansion in Eq. (1) is cut on the strain-gradient squared
term (as in our case), the necessary condition of the free energy
global minimum (as opposed to the maximum or saddle point)
requires the positive sign of the coefficient v. If v is negative,
it is necessary to take into account the further terms of the
expansion (together with higher derivatives of polarization)
in order to obtain a self-consistent theory. Unfortunately,
we did not know the direct way of v determination from
experiments that is fully reliable and unambiguous, and so
its calculations from the first principles are in order. Following
the first principle calculations of Maranganti and Sharma
[66], the conclusion v < 0 steams from the dispersion of the
acoustic branch, whose frequency dependence on the wave
vector usually curves downward. However, the conclusion
[66] is valid in the framework of the “oversimplified” theory,
without any coupling with other modes. Approach [50,51]
shows that the “down” or “up” bending of the dispersion
curve is determined at least by three parameters, v, M , and
f , and the latter is responsible for the coupling (attraction or
repulsion) between acoustic and optic modes. Comparison of
the phonon spectra observed in different perovskites with the
phenomenological theory performed in Ref. [51] shows that
the best fitting of the observed spectra is possible for positive
values of v when taking into account the lattice discreteness
(see e.g. Fig. 4 and Table I in Ref. [51]). However, the fitting
procedure used in Refs. [50,51] is indirect and so its results
cannot solve the controversy with atomic simulations leading
to the negative values of v for some materials. Perhaps there is
no contradiction because, according to Stengel [40], the lattice
discreteness is one of the possibilities to avoid considering
negative strain-gradient squared energy.

Using the methodology described in detail in Refs. [50,51],
the dynamic equations of state are obtained from the variation
of the Lagrange function L on P and U . The dependence
of the soft phonon frequency ω(k) on its wave vector k

can be calculated from the linearized time-dependent dy-
namic equations of state for the polarization and elastic
displacement components P and U, correspondingly (see
Appendix A in the Supplemental Material [67]). After the
linearization of the equations, the solution acquires the form
of the Fourier integrals P = PS + ∫

dtdkeikx−iωt P̃ (ω,k),
u = uS + ∫

dtdkeikx−iωt ũ(ω,k), E = ∫
dtdkeikx−iωt Ẽ(ω,k),

and N = ∫
dtdkeikx−iωt Ñ (ω,k), where the spontaneous

094111-3



MOROZOVSKA, GLINCHUK, ELISEEV, AND VYSOCHANSKII PHYSICAL REVIEW B 96, 094111 (2017)

values P 2
S = (

√
β∗2 − 4αγ − β∗)/2γ and uS = qP 2

S /c are
nonzero in the long-range ordered phases; and coefficient
β∗ = (β − 2q2/c). As a result, the polarization P̃ and elastic
displacement Ũ are linearly proportional to external electric
field and mechanical force variations Ẽ and Ñ . The solution
has the matrix form(

P̃

Ũ

)
=

[
χ̃(k,ω) η̃(k,ω)
η̃∗(k,ω) ϑ̃(k,ω)

](
Ẽ

Ñ

)
, (3a)

where the matrix elements (generalized susceptibilities) are
given by expressions:

χ̃(k,ω) = vk4 + ck2 − ρω2

�(k,ω)
,

η̃(k,ω) = −f k2 − Mω2 − 2iqkPS

�(k,ω)
, (3b)

ϑ̃(k,ω) = αS + gk2 − μω2

�(k,ω)
,

�(k,ω) = (αS + gk2 − μω2)(vk4 + ck2 − ρω2)

− (f k2 − Mω2)2 + 4k2q2P 2
S . (3c)

Hereinafter, the positive temperature-dependent function
αS(T ) is introduced

αS(T ) = α(T ) +
(

3β − 2
q2

c

)
P 2

S (T ) + 5γP 4
S (T ). (4)

Below, we will be interested in the linear dielectric
susceptibility χ̃(k,ω), since Ñ = 0 in the considered case.

Using the results of Ref. [51], the condition �(k,ω) = 0
gives us the biquadratic equation for the frequency ω(k),
(μρ − M2)ω4 − C(k)ω2 + B(k) = 0. The solution of the bi-
quadratic equation can be represented in the form

ω2
1,2(k) = C(k) ±

√
C2(k) − 4(μρ − M2)B(k)

2(μρ − M2)
, (5)

where the functions C(k) = αSρ + (cμ − 2f M +
gρ)k2 + μvk4 and B(k) = k2(αSc − 4q2P 2

S + (cg + αSv −
f 2)k2 + gvk4), respectively. The dispersion relation in
Eq. (5) contains one optical (O) phonon mode and one
acoustic (A) phonon mode, which correspond to the signs
“+” and “−” before the radical, respectively. The O mode
is in fact transverse, and the A mode can be longitudinal or
transverse. Note that the A mode ω2(k) is independent on the
flexocoupling at very small k, namely ω2(k → 0) ∼= (

√
c/ρ)k.

Note that the analytical expressions for χ̃(k,ω) and ω(k)
look simpler that the corresponding expressions (21) and (23)
in Ref. [51] due to the condition w = 0.

III. SOFT ACOUSTIC MODE IN THE SMP

A. The critical points in the soft phonon spectra

The dependence of the O mode on the flexocoupling
constant is weak and noncritical at small k. The softening
law of the optical phonons is valid near Curie temperature
TC, ω(T ) ∼ √

αS(T ) ∼ √|TC − T |. However, the flexocou-
pling leads to the fact that the condition ω2 = 0 can be valid
for the A mode not only at k = 0, but also at k = kcr. Actually,

FIG. 1. (a) Phase diagram in coordinates “relative tempera-
ture T /TC− absolute value of dimensionless flexoconstant f ∗ =
|f |/√cg” calculated for v = 10−7 V s2/m2 and other parameters
corresponding to the solid solution Sn2P2(S,Se)6 (listed in Table SI
of the Supplemental Material [67]). The boundaries between the PE,
homogeneous FE, and incommensurate SMP that gradually tends
to the homogeneous FE phase via partially polar modulated phase
(SMP-FE) are shown by solid, dashed, and dotted curves, respectively.
Red circle indicates the LP, where the PE, FE, and SMP phases
coexist. (b) Dependence of the SMP transition temperature TIC/TC on
the dimensionless flexoconstant f ∗ calculated for different v values,
v = 100 (red curve 1), v = 50 (magenta curve 2), v = 10 (blue curve
3), and v = 5 in 10−9 V s2/m2 (black curve 4).

the condition ω2 = 0 in Eq. (5) leads to the biquadratic
equation for k2

cr[(αS + gk2
cr)(vk2

cr + c) − f 2k2
cr − 4q2P 2

S ] = 0.
Except for the trivial solution kcr = 0, the biquadratic equation
has four roots kcr = ±kcr

1,2, where

kcr
1,2 =

√√√√ c

2v

[
Q(f ) ∓

√
Q2(f ) − 4

v

cg

(
αS − 4

q2

c
P 2

S

)]
.

(6)

Subscripts “1” and “2” correspond to the signs “−” and
“+” before the radical, respectively. The function Q(f ) =
f 2

cg
− 1 − αSv

cg
.

Both roots in Eqs. (5) and (6) are real and so exist under the
condition |f | > fcr, where the temperature-dependent critical
value fcr is given by expression

|fcr(T )| =

√√√√
αS(T )v + cg + 2

√
cgv

[
αS − 4

q2

c
P 2

S (T )

]
.

(7)

Under the condition |f | = fcr, both roots for the A mode
in Eq. (5) coincide, kcr

1 = kcr
2 = kcr

0 and ω(kcr
0 ) = 0, where the

critical value is given by the expression kcr
0 = √

cQ(f )/2v.

B. Flexocoupling-induced SMPs

The critical point ω2(kcr
0 ) = 0 corresponds to the sys-

tem transition at temperature T = TIC from the PE phase
into the incommensurate SMP with polarization P (x) =
δP1sin(kcr

1 x) + δP2sin(kcr
2 x) that gradually tends to the homo-

geneous FE phase with temperature decrease to T = TC [see
Ref. [51] and the regions of PE and SMP in Fig. 1(a)]. Under
the condition P 2

S = 0, that is valid in the PE phase at the onset
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of SMP, the coefficient αS = αT (TIC − TC), and so the critical
value is kcr

0 ∼ (TIC − TC)1/4. Three phases (PE, FE, and SMP)
coexist at the flexocoefficient value |f | =√

cg, that is a formal
analog of a LP [Fig. 1(a)].

The transition temperature from PE to the SMP TIC can be
found from the condition B(kcr

0 ,TIC) = 0 (see Appendix A in
the Supplemental Material [67]). The solution of the equation
exists at flexocoefficients |f | >

√
cg and has the form

TIC(f ) =
{

TC + (|f |−√
cg)2

αT v
, |f | >

√
cg

absent, |f | <
√

cg
. (8)

The expression in Eq. (8) shows how the transition
temperature TIC(f ) to the SMP depends on the flexocoupling
constant f and the strain gradient constant v [see Fig. 1(b)].

Also, we predict that the incommensurate modulation
of polarization P (x) = P0(T ) + δP1sin(kcr

1 x) + δP2sin(kcr
2 x)

can appear at temperatures below TC and high enough flexoco-
efficients |f | >

√
cg in the initially commensurate FE [see the

region of SMP-FE in Fig. 1(a)]. The only physical reason for
the SMP-FE existence is the flexocoupling in the considered
case, since we impose the condition g > 0 and do not include

the gradient term proportional to w(∂2P/∂x2)2. However,
we included the higher term γP 6, keeping in mind that the
strength γ can strongly affect the SMPs stability via the higher
harmonics and modulation pattern nonlinearities [68,69]. The
analytical expression for the transition temperature from
incommensurate SMP-FE to commensurate homogenous FE
is absent, so that the diffuse boundary between the phases can
be found numerically from the minimum of the free energy in
Eq. (2).

Let us consider some additional remarks about the phase
diagram depicted in Fig. 1(a). The superposition of SMP
and FE was named “rippled phases”, and it was regarded
to appear in the incommensurate ferroics of type I (see,
e.g., Refs. [27,28,62]). In fact, the existence of the SMP-FE
in the incommensurate ferroics of type I (corresponding
to the second-order phase transition from almost solitonic
incommensurate SMP to FE in incipient FEs, like K2SeO4) or
in the type II (corresponding to the first-order phase transition
from almost sinusoidal incommensurate SMP to FE in proper
FEs, like Sn2P2(SexS1−x)6 family [70]) can be crucial for our
model verification, since our prediction of SMP-FE is based
on the flexocoupling impact only.

C. Soft acoustic mode behavior in the vicinity of critical wave vectors

As a next step, let us expand the frequency ω(k) of the A mode given by Eq. (5) in a series in the vicinity of critical values
k → ±kcr

1,2 and k → kcr
0

ω
(
k → kcr

1 − 0
) ≈

√
2gv

(
kcr

1

)3∣∣(kcr
1

)2 − (
kcr

2

)2∣∣√kcr
1 − k√

αSρ + (
kcr

1

)2
(cμ + gρ − 2f M) + μv

(
kcr

1

)4
, (9a)

ω
(
k → kcr

2 + 0
) ≈

√
2gv

(
kcr

2

)3∣∣(kcr
1

)2 − (
kcr

2

)2∣∣√k − kcr
2√

αSρ + (
kcr

2

)2
(cμ + gρ − 2f M) + μv

(
kcr

2

)4
, (9b)

ω
(
k → kcr

0

) ≈ 2
√

gv
(
kcr

0

)2∣∣k − kcr
0

∣∣√
αS(T )ρ + (cμ + gρ − 2f M)

(
kcr

0

)2 + μv
(
kcr

0

)4
. (9c)

For derivation of Eq. (9), see Appendix B in the Sup-
plemental Material [67]. The difference |(kcr

1 )2 − (kcr
2 )2| ≡

| αSv+cg−f 2

gv
| in accordance with the Vieta theorem. Note that

an addition of higher order terms proportional to w
2 ( ∂2P

∂x2 )2 in
the free energy in Eq. (1) changes the difference between
kcr

1 and kcr
2 , since gv → (gv + cw) in the denominator of the

difference |(kcr
1 )2 − (kcr

2 )2| (see also eq. (10) in Ref. [51]).
However, the “gap” between kcr

1 and kcr
2 remains for reasonable

values of parameter w > 0 (see Fig. 3(c) in Ref. [51] and
compare with Fig. 8(a) in Ref [16].). We consider the case
w = 0 in this paper, since for the most commensurate FEs, the
value and sign of w is unknown.

Figure 2 illustrates that the frequency of the A mode is
independent on the flexocoupling at very small k, namely
ω(k) ∼= (

√
c/ρ)k in accordance with Eq. (5). If the inequality

|f | 
 fcr is valid, the A mode frequency is equal to zero
at k = 0 only, and it monotonically increases as k increases
(curve 1). As f increases in the range finf(T ) < |f | < fcr(T ),

the A mode frequency is zero at k = 0 only, but then the local
minimum appears at k = kmin (curve 2).

Under the condition |f | = fcr, the A mode frequency is also
zero at k = kcr

0 (namely, its graph touches the k axis, see curve
3), where kcr

0 is given expression kcr
0 = √

cQ(f )/2v. Under the
condition |f | > fcr, the A mode frequency is positive in the
regions 0 < k < kcr

1 and k > kcr
2 ; it is zero at k = 0, k = kcr

1 ,
and k = kcr

2 ; and it does not exist in the region kcr
1 < k < kcr

2

(curve 4), so that the square root laws ω(k) ∼ √
kcr

1 − k and
ω(k) ∼ √

k − kcr
2 are valid in the vicinity of critical values k →

kcr
1 − 0 and k → kcr

2 + 0, respectively (see dashed curves).
Analyzing the results shown in Fig. 2 for the case |f | > fcr,

one should ask two reasonable questions: What happens in a
FE if the spatial fluctuations of the wave vector k are within
the range kcr

1 � k � kcr
2 ? Are there any experiments that reveal

the “softening” of the A mode similar to the ones shown by
the curves 2, 3, and 4 in Fig. 2?

The answer to the first question is quite simple. Using the
results of Refs. [50,51], the SMP with the modulation vectors
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FIG. 2. Dependences of the phonon frequency ω∗ on the wave
vector k∗ = ak/π . The lattice constant is a. O mode (black curve) is
not sensitive to the f value for small k. A-mode curves calculated
at f = 0 (red curve 1), |f | = 0.5fcr (magenta curve 2), |f | = fcr

(dark violet curve 3), and |f | ≈ 1.1fcr (blue curve 4) are shown.
Dotted curve is the linear approximation ω(k) ∼= (

√
c/ρ)k, dashed

curves show are square root approximations from Eqs. (9a) and (9b),
respectively (see Appendix B in the Supplemental Material [67]).

k = kcr
1 and k = kcr

2 can occur in the temperature range for
which |f | > fcr(T ). In essence, this means that any fluctuation
having a wave vector in the interval kcr

1 � k � kcr
2 relaxes in

a short time to the value k = kcr
1 or to k = kcr

2 (which is less
probable, since the larger the wave vector is, the greater the
influence of the lattice anharmonicity on the phonon spectrum
is, and so the less applicable the linear approximation for the
perturbations of P̃ and ũ are). In this sense, acoustic vibrations
with wave vectors kcr

1 < k < kcr
2 are absent in the lattice, so

the frequency of the corresponding A mode is absent in this
interval of wave vectors. The “normal” A mode exists in
the interval 0 < k < kcr

1 and k > kcr
2 ; it softens approaching

the point k = kcr
1 , as well as at k = kcr

2 . On the other hand,
following the idea that, owing to the mode-mode coupling, at
some temperature, the transverse A mode gets unstable and
triggers the appearance of an incommensurate phase [12]. The
simulation of the dispersion relations in the range of wave
vectors kcr

1 < k < kcr
2 at certain temperature values requires a

consistent consideration of the fact that there is a stable SMP in
this region. The latter must substantially affect the nature of the
solutions of the linearized equations [27,68,69]. Unfortunately,
the linear theory we developed does not allow any quantitative
predictions about the properties of the nonlinear solutions in
the SMP region.

The answer to the second question is not simple because
the value of the flexocoefficient f is fixed for each specific
FE, and in a general case, it is relatively weakly dependent
on the temperature, and so one cannot vary it within the
necessary limits in order to “get into” the interval |f | > fcr(T ).
However, experimentalists have all the possibilities to measure
phonon spectra in a wide range of temperatures, corresponding
to variable fcr(T ) that essentially depends on temperature,
primarily due to the temperature dependence of αS(T ) accord-
ing to Eq. (4). In particular, αS(T ) depends linearly on the
temperature in the PE phase αS(T ) = αT (T − TC). Thus, the
form of the acoustic branch can be changed similarly to the
changes shown in Fig. 2, by changing only the temperature
for an arbitrary value of the flexocoefficient f . A typical
scenario is shown in Fig. 3(a), where the dimensionless pa-
rameter α∗

S(T ) = α∗
T [(T /TC) − 1] is introduced, where α∗

T =

FIG. 3. (a) Dependences of the A-mode frequency ω∗ on the
wave vector k∗ = ak/π . The curves calculated for fixed parameters
f ∗ = 1.98, M∗ = 0.1, μ∗ = 0.05, and different temperatures, which
corresponds to different α∗

S = 0.8 (red curve 1), α∗
S = 0.9 (magenta

curve 2), α∗
S = 1.0 (blue curve 3), and α∗

S = 1.5 relative units (black
curve 4). (b) Acoustic phonon spectra measured experimentally in
incommensurate organic FE (CH3)3NCH2COO·CaCl2·2H2O (sym-
bols from Refs. [9,57]) and calculated at 300, 205, 171, and 164
K (solid curves). Experimental data for 164 K is absent. Fitting
parameters are Curie temperature TC = 125 K, stiffness constant
α∗

T ≈ 1 in the coefficient α∗
S = (T ) = α∗

T [(T /TC) − 1], static and
dynamic flexocoupling constants f ∗ ≈ 1.280 and M∗ = 0.095, μ∗ =
0.3, and amplitude ω0 = 3 × 1012 s−1.

vαT TC/(gc) is the dimensionless stiffness constant; k∗ = ak/π

is the dimensionless wave vector, a is the lattice constant.
The dependence ω(k) shows only a very small bend for the
highest relative temperature α∗

S = 1.5 (curve 4). With the
temperature decrease corresponding to the value of α∗

S = 1.0,
a local minimum appears instead of the bend, which becomes
deeper and noticeable as αS decreases (curve 3). With a further
decrease in temperature to a critical value of α∗

S = 0.9 (that
corresponds to the temperature of the SMP transition T = TIC),
the zero point ω(k) = 0 arises at k = kcr

0 (curve 2). Finally,
the “dip” occurs on the acoustic branch in the wave vector
interval kcr

1 < k < kcr
2 at α∗

S = 0.8 (see curve 1) corresponding
to the appearance of SMP in a certain temperature interval
T < TIC.

Following Ref. [51], the dimensionless variables and
parameters, which were used in Figs. 1 –3, are described
in Appendix A in the Supplemental Material [67]. The
dimensionless stiffness constant α∗

T = vαT TC/(gc) and tem-
perature T /TC are not the sole parameters which control the A
mode frequency behavior. Another important parameter is the
dimensionless static flexoconstant f ∗ = |f |/√cg that controls
the values kcr

1,2 as well as the k scale, i.e. the saturation rate
of ω(k) [see Fig. 2]. At fixed f , the dimensionless dynamic
flexoconstant M∗ = cM/(2ρf ) strongly affects the A mode
behavior starting from small k∗, since the increase of |M∗|
leads to the noticeable changes of the frequency value and
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its slope at k∗ � 0.05 (see Fig. S1(a) in the Supplemental
Material [67]). The increase is monotonic at f M < 0, and
nonmonotonic for f M > 0 (compare dashed and solid curves
in Fig. S1(a) in the Supplemental Material [67]). The pole
at M2 = μρ exists for the O mode only; for the A mode, it
cancels as a virtual one [see Eqs. (5)]. The increase of the
strain-gradient coefficient v leads to the same effect as the
increase of temperature (see Fig. S1(b) in the Supplemental
Material [67]) because α∗

S(T ) ∼ v[(T /TC) − 1]. The change of
the parameter μ∗ = cμ/(2gρ) affects the A-mode frequency
spectrum relatively weakly. Being positive for g > 0 and
typically small μ∗ affects the saturation value of the A
mode frequency. The saturation value decreases 2–10 times
as μ∗ increases (10–100) times. The dimensionless frequency
amplitude is given by the expression ω0 = c/

√
4vρ that is

about 3 THz for chosen parameters. A rigorous analysis of the
A-mode frequency dependence on all these parameters can be
done using the analytical expression in Eq. (5) and its series
expansion in Eq. (9). Since it depends on the parameters fixed
for a particular problem, and on the ones varying, we defer the
cumbersome task to future studies.

An analysis of the available experimental data has shown
that the anomalous flattening, bends, inflections, minima, and
maxima in the A-mode frequency spectra ω(k) are observed
experimentally at k ∼ (0.2 − 0.4)π/a quite often [6,9,16,59],
and are explained by the interaction of optical and acoustic
modes in proper FEs [57], as well as by electron-density
multiphonon interactions in incipient FEs [20]. For example,
from the experimental data shown in Fig. 3(b), it can be seen
that the bend on the lowest acoustic A mode is absent at 300 K
in organic FE (CH3)3NCH2COO·CaCl2·2H2O. A noticeable
minimum appears even at 205 K, and the softening of the
A mode continues at 171 K. The true incommensurate phase
occurs at 164 K and coexists with commensurate FE phase
from TC = 125 K up to 43 K according to the “devil staircase”
scenario [9]. However, the experimental scenario [9] agrees
semiquantitatively with the theoretical one shown in Fig. 3(a).
To illustrate this, we add solid curves for the A mode calculated
from Eq. (5) for the temperatures (300–164) K in Fig. 3(b).
One can see the agreement between theoretical curves and
experimental points.

However, the “true” soft A modes, which are absent at
kcr

1 < k < kcr
2 , have not been observed so far, although the

absence of the A mode in proper and incipient FEs at definite
k-range is possible in a number of microscopic theories (see,
e.g., Fig. 6(b) for organic FE (CH3)3NCH2COO·CaCl2·2H2O
in Ref. [57], Fig. 2 for SrTiO3 in Ref. [23], and Fig. 8(a)
for Sn2P2(Se0.28S0.72)6 in Ref. [16]). It is also quite possible
that the value fcr(T ) is not reached for some real materials,
or the range of critical values kcr

1 < k < kcr
2 goes beyond the

region of the linear model applicability. The possibility of other
reasons (originated mainly from the modes interaction) cannot
be excluded (see, e.g., Ref. [19]).

Also, we should note that Perez-Mato [71] performed
the symmetry analysis of the phase transition sequence in
(CH3)3NCH2COO·CaCl2·2H2O using the theory of irrepro-
ducible representations for the Pnma point group of its
structural order parameter Q. Unfortunately, the results [71]
do not contain a direct way to express polarization components
Pi via Q and Q*, and so this may impose symmetry

FIG. 4. (a) Temperature dependences of the acoustic mode
velocity V (T ) calculated at f = 0 (red curve 1), |f | = 0.5fcr

(magenta curve 2), |f | = fcr (dark violet curve 3), and |f | ≈ 1.25fcr

(blue curve 4). (b) Experimental temperature dependence of shear
XZ ultrasonic mode velocity (x displacement in z direction of
propagation) near the LP in Sn2P2(Se0.28S0.72)6 crystal (circles from
Ref. [16]) and calculated V (T ) at |f | = fcr (solid curve).

limitations of the Lifshitz invariant in the continuous medium
approximation.

Another limitation is that we used as a one component ap-
proximation f

2 (P ∂u
∂x

− u∂P
∂x

) of the tensorial Lifshitz invariant
fklij

2 (Pi
∂ ukl

∂xj
− ukl

∂ Pi

∂xj
), containing several terms which were

nonzero for all point symmetry groups, including Pnma. For
the Pnma group, the tensor of flexoelectric coupling fklij has
the form listed at the end of Appendix A in the Supplemental
Material [67]. The result was obtained using the direct matrix
method adopted by Eliseev et al. [37,72,73] for the tensors
of flexomagnetic, flexomagnetoelectric, and piezomagnetic
couplings.

Hence, the question is whether it is correct leaving the only
one term f

2 (P ∂u
∂x

− u∂P
∂x

) from the full tensorial invariant, since
the fluctuations of polarization and strain can be nonzero for
several polarization components and directions of the wave
vector. However, we can argue that we used the flexoelectric
term allowed by arbitrary symmetry (up to the symmetry of
an isotropic body) without claiming a quantitative description
of the dispersion relations for (CH3)3NCH2COO·CaCl2·2H2O
for an arbitrary direction of the wave vector.

Note that Patel et al. [74] developed an ab initio model
predicting the phase transition dynamics of antipolar cation
phonon modes towards the Pnma phase and revealed that
some antipolar phonons are rather soft in the phase. The effect
can originate in BiFeO3 from a specific trilinear energetic
coupling between antipolar cation phonons and fluctuations of
oxygen octahedral tiltings.

D. Elastic softening of the sound velocity

Let us discuss the indirect evidences of the A-mode soften-
ing in the FEs with incommensurate SMP. The phase velocity
of the acoustic wave is given by the expression V (k) = |ω|/k.
Temperature dependences of the A-mode velocity calculated
for different values of flexoconstant and temperatures T > TC

(α∗
S > 0) are shown in Fig. 4(a). The velocity monotonically

increases and saturates as T increases at f = 0 and |f | < fcr

(curves 1–2), the pronounced minima at T = TIC(f ) appear
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at |f | � fcr, and the values of TIC(f ) increase as f increases
(curves 3–4).

The sound velocity can be measured in FEs by Brillouin
scattering and the ultrasonic pulse-echo method [16,11,14,18].
In particular, the temperature dependencies of sound velocity
and attenuation were measured by these methods in proper
uniaxial Sn2P2(SexS1−x)6 FEs in the vicinity of LP (x = 0.28
and TLP = 284 K) [16,18]. The pronounced softening of
the A mode, manifesting itself as remarkable lowering of
hypersound velocity for the TA phonons that are polarized
in crystallographic plane containing the vector of sponta-
neous polarization and the wave vector of modulation, was
observed [see Fig. 4(b)]. It was shown that elastic softening

in the hypersound range is induced mostly by lin-
ear interaction between soft optic and acoustic phonon
branches [16].

E. Temperature dependence of static dielectric susceptibility

Let us analyze the temperature dependence of the static
dielectric susceptibility that follows from Eqs. (3)–(6).
The temperature-dependent k spectrum of the static dielec-
tric susceptibility χ̃ (k,ω = 0,T ) can be represented in the
form

χ̃ (k,0,T ) =
⎧⎨
⎩

vk2+c

gv[k2−(kcr
0 )2]2 , T = TIC, kcr

1,2 = kcr
0 ≡ 4

√
cαT (T IC−TC )

4vg

vk2+c

gv{k2−[kcr
1 (T )]2}{k2−[kcr

2 (T )]2} , T �= TIC, kcr
1 (T ) �= kcr

2 (T ).
(10)

Derivation details of Eq. (10) are given in Appendix C of
the Supplemental Material [67].

The x-dependent static susceptibility χ (x,0,T ) can be
obtained after inverse Fourier transformations of the spectrum
in Eq. (10), whose results depend on the temperature via the
properties of kcr

1 (T ) and kcr
2 (T ) [see Eq. (C2)]. The average

susceptibility of a bulk FE 〈χ (x,0,T )〉 = ∫ ∞
−∞ dxχ (x,0,T ) can

be derived from Eq. (10) in the temperature ranges of PE (T >

TIC) and homogeneous FE (T < TC) phases [see Eq. (C3)]. In
the SMP phase (TC < T < TIC), the integral

∫ ∞
−∞ dxχ (x,0,T )

does not exist is the sense of normal convergence, and it was
substituted by the integration

∫ 2L

−2L
dxχ (x,0,T ) followed by

the averaging of the oscillated functions over the size L → ∞.
The average static susceptibility obtained by the way has the
form

〈〈χ (T )〉〉 ∼=

⎧⎪⎪⎨
⎪⎪⎩

1
αT (T −TC )+3β∗P 2

S (T )+5γP 4
S (T )

, T � TC

1
αT (T −TC )+3β∗δP 2(T )+5γ δP 2(T ) , TC < T � TIC

1
αT (T −TC ) , T > TIC.

(11)

where P 2
S = 1

2γ
[
√

β∗2 − 4γαT (T − TC) − β∗] is the square
of spontaneous polarization that is homogeneous and stable
at temperatures lower than Curie temperature T � TC .The
spontaneous polarization appears at T = TC in accordance
with the law P 2

S ∼ (TC − T ).
The transition temperature to the SMP phase TIC(f ∗) exists

at f ∗ > 1 and depends on the flexoconstant f ∗ in accordance

with Eq. (8), namely TIC(f ∗) = TC[1 + (f ∗−1)2

α∗
T

].

The function δP 2(T ) is the mean square value of the
polarization modulation existing in SMP at TC < T � TIC. It
should be found from the free energy in Eq. (1) minimization in
a self-consistent manner allowing for the nonlinear terms (see,
e.g., Refs. [27,68,69]). The temperature dependence of δP 2 in
the vicinity of T = TIC is δP 2(T ) ∼= δP 2

0 (1 − T
TIC

), where the

temperature-dependent function δP 2
0 is nonzero at T = TIC.

At T � TC , the function δP 2(T ) can either disappear at once
[according to the scenario of the second-order phase transition

for PS(T ) ∼ √
TC − T ], or firstly becomes metastable T = TC

and then unstable with the temperature decrease below TC

[more close to the first-order scenario for PS(T )], leading
to the coexistence region of FE and SMP phases, shown in
Fig. 1(a). The metastability of SMP should lead to the pro-
nounced temperature hysteresis of the dielectric susceptibility,
but its quantitative description is beyond the scope of this
paper.

Solid curves in Figs. 5(a) and 5(b) illustrate the temperature
dependences of direct and inverse average static susceptibility

FIG. 5. Temperature dependence of the (a) direct and (b) inverse
static dielectric susceptibility for a FE with the second-order phase
transition at TC calculated for different flexocoupling constants f ∗ =
0 (dashed black curve 1), 1.5 (red curve 2), 1.75 (magenta curve 3),
and 2.0 (blue curve 4); v = 5 × 10−8 V s2/m2 and other parameters
corresponding to Sn2P2S6 (listed in Table SI the Supplemental
Material [67]).
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calculated from Eq. (11) for the FE with the second-order
phase transition at T = TC (corresponding to β∗ > 0 and
γ � 0) at different flexocoupling constants f ∗. Dashed black
curves corresponding to f ∗ = 0 are the reference curves,
which in fact are conventional Curie-Weiss dependences. The
dependences of averaged direct and inverse susceptibility do
not change from the ones calculated at f ∗ = 0 until |f ∗| < f ∗

cr.
Solid curves corresponding to |f ∗| > f ∗

cr have the specific
features (maxima or fracture) at T = TIC(f ∗) which become
more pronounced as f ∗ increases [compare solid curves 2,
3, and 4 in Fig. 5]. The interval of SMP stability increases as
f ∗ increases from 1.5 to 2; the result is in accordance with
Eq. (9).

Note that the existence of a fracture or a maximum at
T = TIC is a characteristic feature of SMP transition [55,70],
and so the solid curves 2–4 in Fig. 5(a) look similar to
the black curves (cooling) shown in Figs. 1(f) and 1(g) in
Ref. [70]. However, the description of pronounced temperature
hysteresis of dielectric susceptibility revealed in Ref. [70]
is beyond the scope of our model. Actually, we calculated
the solid curves in Fig. 5 using the specific temperature
dependence of the amplitude δP 2(T ) in the SMP and regarding
it independent on the direction of the temperature change
(heating or cooling). Due to this, the amplitude δP 2(T ) is
zero at T = TIC (as it should be for the type II SMP), then it
increases and reaches a maximum in the interval TC < T <

TIC, and then becomes zero at temperature T = TC , when the
homogeneous FE polarization PS appears according to the law
PS(T ) ∼ √

TC − T . As a consequence, the susceptibility has
a feature at T = TIC and diverges at T = TC .

However, the coexistence of SMP and FE is absent for the
solid curves. In other words, solid curves in Fig. 5 do not reflect
the possible coexistence of the metastable SMP with the ab-
solutely stable FE below TC [shown in Fig. 1(a)]. For the first-
order scenario of PS appearance at T = TC , P 2

S (T → TC) =
−β∗
γ

realized in the case β∗ < 0 and γ > 0, the temperature

dependence of δP 2(T ) should be different, leading to another
form of the dielectric susceptibility temperature dependence.
Actually, for the FE with the first-order phase transition at
T = TC (corresponding to the case β∗ < 0 and γ > 0), the
temperature dependences of the dielectric susceptibility in the
existing SMP-FE region have the form shown schematically
by the dotted curves in Figs. 5(a) and 5(b).

IV. CONCLUSIONS

Using the LGD theory and one component approximation,
we derived analytical expressions for the singular points
(zeros, breaks, etc.) of the phonon A-mode frequency ω(k)
dependent on the wave vector k and examined the conditions
of the soft acoustic modes appearance in FEs depending on the
magnitude of the flexoelectric coefficient f and temperature
T of the FE.

If the magnitude of the flexocoefficient f is equal to the
temperature-dependent critical value f cr(T ) at the temperature
T = TIC, |f | = f cr(TIC), then the A-mode frequency tends to
zero at k → kcr

0 according to the linear law ω(k → kcr
0 ) ∼

|k − kcr
0 |, and the FE polarization becomes spatially modu-

lated.
When the magnitude of the flexocoefficient is more than

the critical value |f | > f cr(T ) in a temperature range TC <

T < TIC corresponding to the incommensurate SMP, the A
mode becomes zero for two wave vectors k = kcr

1,2 according
to the square root law ω(k → kcr

1,2) ∼ √|kcr
1,2 − k| and does

not exist in the range of wave vectors kcr
1 < k < kcr

2 . At fixed
flexocoefficient f , the transition into the SMP can appear
at the temperature TIC that depends on f as TIC(f ) − TC ∼
(|f | − √

cg)2, where TC is the FE Curie temperature.
The available experimental data on neutron scattering

in organic FE (CH3)3NCH2COO·CaCl2·2H2O [9] are in
a semiquantitative agreement with our theoretical results.
For improvement and for quantification of the theory, it is
necessary to measure the frequency dependence of the A mode
in a uniaxial FE with a SMP in the temperature interval near
its occurrence. In addition, we predicted the appearance of the
“rippled” flexocoupling-induced SMP-FE phase in the initially
commensurate ferroics.

Finally, the temperature dependence of dielectric suscepti-
bility in the incommensurate SMP phase was calculated, and
the feature (maximum or fracture) at incommensurate phase
transition temperature is in agreement with experiments for
many ferroics with SMPs [55,70].
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