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First-principles analysis of solute diffusion in dilute bcc Fe-X alloys
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The diffusivities of substitutional impurity elements in iron have been computed with ab inito electronic
density functional techniques, using exchange-correlation functional PW91. Excess entropies and the attempt
frequency for a jump were determined by calculating phonon frequencies in the harmonic approximation. The
influence of the degree of spontaneous magnetization on diffusivity is taken into account by means of the
Girifalco model. The activation energy for diffusion has been determined by computing the vacancy formation
energy, impurity-vacancy binding energies, migration barrier energies, and the effective energy associated with
correlation of vacancy-mediated jump. For each type of impurity atom these contributions have been evaluated
and analyzed up to and including the fifth nearest-neighbor shell of the impurity atom. It is found that impurities
that have a low migration energy tend to have high effective energy associated with vacancy migration correlation,
and vice versa, so that the total diffusion activation energies for all impurities are surprisingly close to each other.
The strong effect of vacancy migration correlation is found to be associated with the high migration energy for
iron self-diffusion, so that movement of vacancies through the iron bulk is in all cases, except cobalt, the limiting
factor for impurity diffusion. The diffusivities calculated with the PW91 functional show good agreement with
most of the experimental data for a wide range of elements.
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I. INTRODUCTION

Diffusional processes in metals are relevant for a wide
variety of mechanisms, such as phase transformations and
partitioning. In many cases the substitutional diffusivity
is rate limiting for growth and coarsening of precipitate
phases. Understanding and predicting such processes accu-
rately requires knowledge of diffusivities of all elements
present in a host. Here we present a systematic calcu-
lation of substitutional impurity diffusivities in bcc iron
that makes it possible to compare the various contributing
factors.

The diffusion of dilute substitutional impurities in iron has
been the subject of many experimental studies [1–45]. It has
become apparent that in contrast to impurity diffusion in,
say, fcc aluminum, the diffusivities of subsitutional impurities
in bcc iron do not differ very much from one another.
However, a comprehensive comparison of ab initio computed
substitutional diffusivity with actual experimental data, not just
the fitted parameters, is highly desirable. This is particularly
the case for diffusion in iron where an Arrhenius plot does
not show a simple linear relation in the ferromagnetic state.
Density functional theory (DFT) calculations have proven
successful in predicting experimental data such as lattice pa-
rameters [46,47], elastic properties [48,49], and energy barriers
for diffusion, e.g., diffusivities in aluminum [50], magnesium
[51,52], and nickel [53]. Many impurity diffusivities in bcc
iron [54–61] have been calculated with DFT methods, but
oftentimes only experimentally fitted data, such as activation
energy for diffusion, have been compared with the computed
results. The fact that the Arrhenius plot of the diffusivity in bcc
iron is not linear makes it desirable to compare the computed
and experimentally determined diffusivities directly. This is
because the determination of an activation energy for diffusion

experimentally is not trivial because of the narrow temperature
range available in the paramagnetic state.

The calculations were performed for the following elements
(in the order of atomic number): Mg, Al, Si, P, S, Ca, Ti, V, Cr,
Mn, Fe, Co, Ni, Cu, Zn, Ge, Zr, Nb, Mo, Ag, Sn, Sb, Hf, Ta, W,
Au, Pb, and Bi. These elements were chosen to represent the
entire periodic system of the elements and because of their use
in the steel industry. In order to clarify trends, most elements
of the fourth row, and of several columns, in the periodic table
were considered. For 21 of these 28 diffusing elements the
calculated results could be compared to experimental data.
Some elements, such as the heavier alkaline-earth species and
the rare earths proved to be so large in the iron matrix that
a single-vacancy-assisted impurity diffusion mechanism was
deemed unrealistic. We therefore excluded the elements Sr,
Ba, Ce, and La from this study.

II. THEORY

Diffusivities in most metallic crystalline solids can be
accurately described with an Arrhenius equation over a wide
range of temperature with just two parameters, the activation
energy for diffusion Q and the diffusivity prefactor D0,

D = D0e
−βQ, (1)

where β = 1/(kBT ) with kB the Boltzmann constant and T the
absolute temperature. Accordingly, for most diffusivities, an
Arrhenius plot gives a straight line, but for diffusion in bcc iron
there is a systematic deviation from linearity near the Curie
temperature. This deviation indicates the effect of magnetic
order in the bcc iron matrix. Extensive experimental work
[2–5,7,62] has resolved that around the Curie temperature
the diffusivity prefactor is relatively little affected, but that

2469-9950/2017/96(9)/094105(13) 094105-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.094105


VERSTEYLEN, VAN DIJK, AND SLUITER PHYSICAL REVIEW B 96, 094105 (2017)

the activation energy for diffusion changes significantly. In
analogy with CsCl type ordering on a bcc lattice, as occurs in
β brass Cu-Zn alloys, Girifalco [63,64] derived a mean-field
model to relate the magnetic order parameter to the diffusion
activation energy,

Q = QPM(1 + αs2), (2)

where QPM is diffusion activation energy in the paramagnetic
state (PM), α is a dimensionless proportionality constant,
and s is the (dimensionless) magnetic order parameter in
the ferromagnetic state (FM). The magnetic order parameter
is given as a ratio of spontaneous magnetizations: s =
M(T )/M(T = 0), where M(T ) is the temperature-dependent
spontaneous magnetization in the ferromagnetic state. In the
perfectly ordered ferromagnetic state, with s = 1 the activation
energy for diffusion QFM can be computed ab initio, so that
QPM is obtained through

QPM = QFM

1 + α
. (3)

The activation energy for substitutional diffusion in a pure
metal includes a vacancy formation energy and a migration
energy for the actual movement of the vacancy. As these energy
terms are computed within finite-size supercells, rather than
within a more or less infinitely large crystal, special care must
be taken. To limit errors associated with wave expansions,
calculations are performed in a supercell of constant (cubic)
shape and volume. However, when a vacancy is introduced
in such a cell, and/or when an iron atom is replaced by
a large substitutional atom, under normal (practically zero
external pressure) conditions, the supercell should relax to
some other volume and/or shape. Therefore, we convert ab
initio computed internal energies to zero pressure enthalpies
according to

H [supercell] = U [supercell] + P [supercell]V0

+ 1
2Uint[supercell], (4)

where P [supercell] is the hydrostatic pressure as computed
ab initio within the fixed size supercell, and V0 is the volume
of the supercell. Uint is the elastic interaction between lattice
defects due to periodic images that are unavoidable in supercell
calculations. The energy correction has been computed using
the program ANETO of Varvenne et al. [65], using the stiffness
matrix parameters used to obtain the hydrostatic and dipole
energies of all supercells. The stiffness matrix values are as
follows: C11, C22, and C33: 268.760 GPa; C12, C21, C13, C31,
C32, and C23: 154.450 GPa; and C44, C55, and C66: 89.400 GPa.
We used supercells consisting of 4 × 4 × 4 bcc cubes with
a lattice parameter of a = 0.283 nm, giving V0 ≈ 1.45 nm3.
We selected a = 0.283 nm because it is the zero pressure
value for pure bcc iron according to the PW91 generalized
gradient approximation (GGA) exchange-correlation potential
(xc potential). At T = 0 K, the vacancy formation enthalpy
can then be computed with

�Hf,� = H [FeN−1�] − N − 1

N
H [FeN ], (5)

where FeN−1� refers to a supercell with N − 1 iron atoms and
a single vacancy, where N = 128 for a 4 × 4 × 4 supercell.

Of course, the effect of a vacancy or impurity atom is
not limited to the ground-state properties, as excitations are
also affected. Therefore, the formation free energy of a defect
is evaluated by adding the free-energy contribution due to
excitations to defect formation enthalpy. In the case of a
vacancy this gives

�Gf,�(T ) = �Hf,� + ��Gexc,�(T ), (6)

where ��Gexc,�(T ) is the free-energy change associated with
a defect (here a vacancy) due to excitations, such as related
to electrons and phonons. Calculations in supercells with and
without a defect give

��Gexc,�(T ) = �Gexc(T )[FeN−1�]

− N − 1

N
�Gexc(T )[FeN ], (7)

analogous with Eq. (5). The electronic excitations are evalu-
ated by varying the electron temperature in the Fermi-Dirac
distribution function in the supercell calculations. Vibrational
excitations have been evaluated in the harmonic approximation
using zone-centered supercell modes. Then, the vibrational
free energy Gvib is computed from the phonon frequencies ωi

using [66]

�Gvib(T ) =
∑

i

1

2
h̄ωi + kBT ln(1 − e−βh̄ωi ). (8)

At high temperatures the excess vibrational free energy
associated with a defect is approximately linear with tem-
perature, limT →∞ �Gvib(T ) = T

∑
i kB ln(h̄ωi). The excess

vibrational enthalpy difference behaves as the reciprocal of
temperature and therefore vanishes. The vibrational formation
energy of a vacancy is obtained through

��Gvib,�(T ) ≈ ��Hvib,� − T ��Svib,�, (9)

where, in the high-temperature limit, ��Hvib,� = 0 and the
effective vacancy formation entropy arises from the difference
between the �S contributions of a cell with and without a
vacancy;

��Svib,� = −
∑

i

kB ln(h̄ωi[Fe127�])

+ 127

128

∑

i

kB ln(h̄ωi[Fe128]). (10)

Specific to bcc iron is a correction for the diffusivity activation
energy in order to capture the effect of magnetism [64] [see
Eq. (2)] through the relative spontaneous magnetization s. The
temperature dependence of s is accurately represented by an
empirical formula [67],

s(τ ) = (1 − τ )B

1 − Bτ + Aτ 3/2 − Cτ 7/2
, (11)

where τ is the reduced temperature (τ = T
TC

), with
the Curie temperature TC = 1043 K in bcc iron. The constants
take the values [67] A = 0.11, B = 0.368, and C = 0.129.
The parameter α, which indicates how much the magnetic
disordering affects the activation barrier for diffusion, was
found to be similar for all solute elements in bcc iron. The
determination of this parameter is discussed by the authors in a
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separate paper [68]. The parameter α = 0.10 for all impurities
in Fe, except for iron self-diffusion where α = 0.16.

A. Self-diffusion

To determine the self-diffusivity D[Fe], the migration
energy for the movement of a vacancy to a neighboring iron
atom needs to be calculated. The migration energy �Hmig is
the energy difference between energies of the transition state
(tr) and equilibrium state (eq). The rate � at which a vacancy
trades place with its neighbor atom can then be expressed as

� = νe−β�Hmig , (12)

where ν is the attempt frequency and where the exponential
gives the probability of success. In the transition state the
evaluation of the vibrational excitations requires care because
of the negative curvature of the energy along the transition
path. Therefore, the vibrational contribution to the migration
free energy is treated according to transition-state theory [69].
The effective jump attempt frequency ν̃ is given by [69]

ν̃ =
∏

νi[eq]
∏′

νi[tr]
, (13)

where the product of vibrational modes (
∏

νi) of a system with
a vacancy is computed with a diffusing atom in the transition
state ([tr]) and with all atoms in the equilibrium state ([eq]).
The imaginary frequency representing the direction of the
unstable vibrational mode of the transition state is specifically
excluded from the product, as is indicated by the prime in the
product operator in the denominator. In our calculations, we
ignore the effect of thermal lattice expansion, and the small
contribution of the electronic excitations is neglected also. The
vacancy migration rate is then

� = ν̃e−β�Hmig , (14)

where ν̃ is given by Eq. (13), and �Hmig is computed with

�Hmig = Htr [FeN−1�] − Heq[FeN−1�], (15)

where Htr [FeN−1�] is the enthalpy of a supercell in the
transition state (the saddle-point configuration where an atom
is about midway its jump) and Heq[FeN−1�] concerns the
situation prior to the jump where all atoms are still in their
equilibrium positions.

The self-diffusivity D[Fe] is the product of the migration
rate �, the vacancy concentration C�, a correlation factor f ,
and the actual jump distance l that a migrating atom travels
squared,

D[Fe] = C�l2f �. (16)

The jump distance is equal to the nearest-neighbor distance
l =

√
3

2 a in the case of bcc iron, where a is the bcc lattice
parameter of iron. The correlation factor f describes how
efficiently the vacancy contributes to the movement of iron
atoms. It can be calculated with the nine-frequency model of
Le Claire [70,71], which yields a constant value f = 0.727 in
the case of self-diffusion in bcc.

The vacancy concentration is assumed to be at equilibrium
in the low-concentration limit and therefore given by an
Arrhenius equation with prefactor unity and with the Gibbs

FIG. 1. The nine-frequency model by Le Claire [70,71]. Each
distinct jump frequency is indicated, with the red numbers indicating
the nearest neighbor with respect to the impurity atom. �2 concerns
the impurity trading places with the vacancy, �3 concerns an iron
atom that is a second neighbor of the impurity exchanging with a
vacancy and thereby becoming a nearest neighbor to the impurity, �4

is the reverse of �3, �3′ is a jump whereby an iron atom changes from
a first to a third neighbor of the impurity, �4′ is the reverse of �3′ , an
iron atom jumping from first to fifth impurity neighbor is �3′′ , and �4′′

is the reverse of �3′′ . All other jump frequencies are assumed to be
unaffected by the presence of a substitutional solute and are assumed
to take the same value as the one in pure iron bulk �0.

energy of vacancy formation �Gf,� as

C� = e−β�Gf,� , (17)

where �Gf,� is given by Eq. (6).

B. Impurity diffusion

In comparison with self-diffusion, impurity diffusion intro-
duces several new factors because of the interaction between
the impurity atom and the vacancy. One can recognize the
influence of the two point defects (a) on the correlation factor
because of a variety of migration barriers and (b) on vacancy
binding at various distances from the impurity both as a binding
enthalpy and as a binding entropy. First we consider how a
vacancy moves in the immediate vicinity of a substitutional
diffusing species via the correlation factor. Unlike in the case
of self-diffusion, there are multiple jump rates because after
a jump the vacancy can have a new position relative to the
impurity atom, as is illustrated in Fig. 1. Each of the distinct
jumps has its own migration enthalpy and its own jump rate. Of
course, the migration enthalpy is generally not the same in both
directions. We will assume that the jump attempt frequency, ν̃

in Eq. (14), takes the value of pure iron for all jumps of iron
atoms given by Eq. (13). For the �2 jump, where an X impurity
atom jumps, we compute the jump rate according to Eq. (13).
Details concerning the attempt frequency are generally not
extremely important because it varies over a relatively small
range of values compared to the Boltzmann factor which varies
over many orders of magnitude as a function of temperature.

The correlation factor f of an impurity diffusing in a bcc
system was approximated by Le Claire [70,71] with a model
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explicitly considering nine distinct jump rates �, the so-called
nine-frequency model,

f =
3�3+3�3′+�3′′− �3�4

�4+F�5
− 2�3′ �4′

�4′+3F�0
− �3′′ �4′′

�4′′ +7F�0

2�2 + 3�3+3�3′+�3′′− �3�4
�4+F�5

− 2�3′ �4′
�4′ +3F�0

− �3′′ �4′′
�4′′ +7F�0

,

(18)

with the factor F = 0.512.
The correlation factor f , Eq. (18), depends on temperature

because each of the � varies with temperature [Eq. (14)]. The
influence of temperature on the correlation factor can be quite
significant for elements with large variations in �Hmig,i . In
spite of the complex formal temperature dependence of the
correlation factor, usually it is well approximated by a simple
Arrhenius equation because one of the jump frequencies �i

tends to become the bottleneck in the diffusive process. A
simple analysis of Eq. (18) shows that the numerator is domi-
nated by the largest terms; either �3, �3′ , or �3′′ . If the largest
� in the numerator is larger than �2 in the denominator, f will
be approximately unity almost independent of temperature.
However, if �2 is larger than the largest � in the numerator,
their ratio will be a good estimate of f ,

f ≈ max(�3,�3′ ,�3′′ )

max(�2,�3,�3′ ,�3′′ )
. (19)

The jump rates are all Boltzmann factors, so that f is
approximated by an Arrhenius equation. This leads to the
definition of an effective entropy and effective enthalpy of
correlation by fitting a linear relation between ln(f ) and β,

ln(f ) ∼ �Sc/kB − β�Hc. (20)

The approximation for f in Eq. (19) then yields for �Hc ≈
max[0, min(�Hmig,3,�Hmig,3′ ,�Hmig,3′′ ) − �Hmig,2]. When
fitting within the temperature range between 600 and 1200
K and accounting for the negative terms in the numerator and
denominator in Eq. (18), it is found that a minor rescaling is
required which gives

�Hc,approx = 1.2 max[0, min(�Hmig,3,�Hmig,3′ ,�Hmig,3′′ )

−�Hmig,2]. (21)

The effective entropy of correlation is not easily estimated by
an approximate expression.

The impurity-vacancy binding at various separation dis-
tances is temperature dependent and thus can be thought of as
both a binding enthalpy and as a binding entropy. The enthalpy
differences at zero pressure are evaluated with

�Hbind,X�(Rj ) = H [FeN−2X�](Rj ) − H [FeN−1X]

−H [FeN−1�] + H [FeN ], (22)

where each of the supercell enthalpies have been computed
using Eq. (4), and where Rj indicates the shortest vector that
separates X and �. The entropic binding terms then arise
from electronic, magnetic, and vibrational excitations. The
electronic excitations are easily incorporated self-consistently
through the Fermi-Dirac distribution function. We find these
effects to be negligible. The magnetic excitations are globally
included through the Girifalco model. Of course, magnetic
behavior, and its temperature dependence, must be expected
to differ from the global pure Fe bulk in the vicinity of a defect.

We have chosen to neglect such local defect-induced excess
terms. The excess vibrational free energy associated with
vacancy-impurity binding has been calculated from supercells
with and without defects, analogous to Eq. (10).

��Sbind,X�(Rj )

= −
∑

i

kB ln(h̄ωi[FeN−2,X,�]) +
∑

i

kB ln(h̄ωi[FeN−1,X])

+
∑

i

kB ln(h̄ωi[FeN−1,�]) −
∑

i

kB ln(h̄ωi[FeN ]).

(23)

As indicated in Eq. (9), the excess vibrational free energy
can be separated in a vanishing excess vibrational enthalpy
�Hvib,X�(Rj ) and an approximately temperature-independent
vibrational impurity-vacancy binding entropy �Svib,X,�(Rj )
term. The activation barrier for diffusion in the fully ferromag-
netically ordered state is calculated as the sum of the various
contributions,

QFM = �Hf,� + �Hbind,X�(R1) + �Hmig,2 + �Hc,

(24)

where R1 indicates a nearest neighbor in the bcc crystal
structure. The paramagnetic activation energy for diffusion is
computed from QFM with Eq. (3). The preexponential factor
D0 in Eq. (1) is calculated in the purely ferromagnetic state and
is assumed to be the same for PM and FM states. This is jus-
tified by the relatively small shifts in phonon shift frequencies
[72–74]. In addition, the shift in phonon frequencies is gradual
with temperature [75,76]. The entropy contribution which
originates from the correlation is modest and the difference
with magnetic order is expected to be small as well.

D0 = 3
4a2ν̃2e

(��Svib,�+��Sbind,X�(R1)+�Sc)/kB , (25)

where ��Svib,�/kB applies to pure iron.

III. FIRST-PRINCIPLES CALCULATIONS

Enthalpies (total energies) have been computed within
the local density approximation using the Vienna ab initio
simulation program (VASP) [77,78] version 5.2 at a pressure of
0 GPa. The calculations were performed using pseudopoten-
tials of the projector augmented wave type [79]. Standard
potentials were used [80], except for atoms much larger than Fe
where harder potentials with semicore states treated as valence
states were used: Bi_d, Ca_pv, Ge_d, Hf_pv, Mo_pv, Nb_pv,
Pb_d, Sn_d, Ta_pv, Ti_pv, V_pv, W_pv, and Zr_sv. Supercells
with 4 × 4 × 4 conventional bcc cubes (128 lattice sites) were
employed, with 5 × 5 × 5 �-centered k-point grids in the
case of the vacancy formation energies and migration barriers
with an energy cutoff of 400 eV for plane-wave expansions.
For the vacancy-impurity binding phonon calculations the
cutoff frequency was chosen to be 440 eV, in 3 × 3 × 3
bcc supercells with 4 × 4 × 4 �-centered k-point grids. All
calculations were spin-polarized. Migration barriers have been
calculated with the nudged-elastic band (NEB) method with
the climbing image algorithm [81]. Elastic energy corrections
for image interactions associated with supercells were made
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TABLE I. Calculated vacancy formation enthalpies (�Hf,�)
calculated with Eq. (5), and entropies (��Svib,�) calculated with
Eqs. (5) and (10), comparison of various xc functionals.

xc type �Hf,� (eV) ��Svib,� (kB )

PW91 2.129 (this work) 4.14 (this work)
PW91 2.02 [56]
PW91 2.0 [104]
PW91 2.16 [88]
PW91 2.16 [46]
PW91 2.16 [94] 4.08 [94]
PBE 2.18 [105] 4.62 [105]
PBE 2.13 [87]
PBE 2.23 [57]
PBE 2.01 [89]
PBE 2.22 [46]
PBE 2.31 [90]
PBEsol 2.626 (this work)
PBEsol 2.47 [46]
revTPSS 2.64 [46]

using the method of Varvenne et al. [65]. The elastic interaction
energy is computed from the pressure and the deviatoric
stress computed ab initio within supercells with fixed volume
and fixed (cubic) shape. Elastic energy corrections for image
interactions were typically in the order of meVs at most for
the 4 × 4 × 4 supercells, with the larger values occurring for
the transition-state configurations. In our calculations two
GGA xcfunctionals were used: PW91 [82,83] and PBEsol
[84]. The PBEsol xc functional was designed with the aim
to correct for an inaccuracy in predicted lattice constants of
PW91 and PBE. The overestimation of lattice parameters
[in the case of Perdew-Burke-Ernzerhof (PBE)] coincides
with an underestimation of the bulk modulus of pure metals;
PBEsol is reported to give a better approximation for many
different pure metals [47]. However, PBEsol for bcc iron fails
at predicting the lattice parameter, giving 2.79 Å [85], to be
compared with an experimental value of about 2.86 Å. At the
theoretical lattice parameter (2.79 Å), PBEsol gives a rather
high vacancy formation enthalpy [46,86], about 2.47 eV, which
is beyond the current generally accepted value of about 2.2 eV
[46,57,87–90]. The results of the PBEsol calculated energies
are therefore presented only in Table I and in the Supplemental
Material [91]. The PBEsol computed value increases to even
higher values when a more realistic value for the lattice
parameter is selected [46]. At the bcc lattice parameter selected
in this work—2.83 Å, the PW91 equilibrium value—it is to
be expected that too large a vacancy formation enthalpy is
computed for PBEsol. However, recent work by Glensk et al.
[92] has called into question the validity of currently generally
accepted vacancy formation enthalpies, so that we find it of
interest to consider the PBEsol functional.

IV. RESULTS AND DISCUSSION

A. Vacancy formation and impurity-vacancy binding enthalpy

The vacancy formation enthalpy in pure bcc iron was
computed with Eq. (5) (see Table I). Table I shows that there is
agreement with previously published data. Our PW91 vacancy
formation enthalpy is in the middle of the range of values

FIG. 2. Vacancy binding enthalpy next to a single impurity atom
as computed with 22 using PW91. Impurity elements are arranged by
row and column of the periodic system: row 3 of the periodic system
(purple triangles), row 4 of the periodic system (red squares), row 5 of
the periodic system (green triangles), and row 6 of the periodic system
(blue diamonds). Dashed lines, between neighboring impurities, are
guides to the eyes only.

reported in the literature and it agrees nicely also with results
published for the PBE GGA [93]. PBEsol rather consistently
gives values almost half an eV higher than PW91 and PBE.

The vacancy formation vibrational entropy [see Eq. (9)] in
bcc iron is computed to be about 4.14kB for PW91 in a 4 ×
4 × 4 supercell. This value is in good agreement with the value
obtained by Lucas and Schäublin [94], ��Svib,� = 4.08kB ,
and a little less close agreement with the value by Messina et al.
[61], ��Svib,� = 4.6kB . The vacancy formation vibrational
entropy obtained in a 3 × 3 × 3 supercell is 3.79kB , quite close
to our 4 × 4 × 4 result. In view of the computational resources
needed, and the relatively small effect on the diffusivity, we
use the 4 × 4 × 4 result for the vacancy formation vibrational
entropy, and the 3 × 3 × 3 supercell results for the vacancy-
impurity binding entropy. The vacancy formation vibrational
entropy is quite large in comparison to other single site
excess entropies: the configurational entropy in real alloys
and entropy differences between allotropes are usually in the
neighborhood of 1kB or less [95].

The impurity-vacancy binding enthalpies, computed with
Eq. (22), are plotted in Fig. 2. These enthalpies correlate well
with the columnar position in the periodic table of the elements
of the impurity atom. The row position of the impurity atom
is less discriminating; for elements in the same column, row 5
and row 6, differ little from one another. There is a minimum
at the edges of the periodic system of the transition metals in
each row of the periodic table. Of course, atoms at the middle
of the transition-metal series are usually smallest confirming a
well-documented relation to atomic sizes [50,51]. There have
been several studies of vacancy-impurity binding in bcc iron
[57–59,61,96,97] and our results mostly agree with previous
calculations with a few notable exceptions: For cobalt our
results, and those of Olsson et al. [97] and Messina et al. [61],
are in marked contrast to those of Ohnuma et al. [96]. For
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FIG. 3. Vacancy-impurity enthalpy for impurities in the fourth
row of the periodic table as computed with Eq. (22) using PW91.
Nearest neighbors: purple triangles; second neighbors: burgundy
squares; third neighbors: green triangles; fourth neighbors: blue
diamonds; fifth neighbors: black circles.

nickel we agree with Refs. [61,97], but disagree with those of
Vincent et al. [58]. For copper our results are closest to those
of Ohnuma et al. [96], and close to those of Refs. [61,97],
but differ significantly from others [58,59]. For Mo we agree
with Huang et al. [57] and Refs. [61,97], but not with Ohnuma
et al. [96]. For some elements we did not find literature values
to compare with Bi, Ca, Ge, Mg, Pb, and Sn. Details for the
impurity-vacancy binding up to the fifth shell for all impurities
can be found in the Supplemental Material [91].

The vacancy-impurity binding enthalpy varies rather sys-
tematically with distance as can be seen in Fig. 3 and was also
reported by others [61,97]: relative to the binding at the first
nearest neighbor, the second neighbor binding is a bit weaker,
at the third and fourth neighbors the binding is much weaker,
while at the fifth neighbor, it is again stronger, but weaker than
at the first and second neighbors. This can be rationalized by
the strong transmission of strain effects along a dense packed
direction, such as applies to the first and fifth neighbors.

B. Migration barriers

The migration enthalpies of various impurity elements in
iron and the barriers of the iron atoms in the vicinity of
the impurity were computed with Eq. (15). Large impurity
atoms, such as toward the left and right extremities of the
periodic table, have low values for �Hmig,2 (see Fig. 4).
Impurities close to Fe in the middle of the periodic table have
�Hmig,2 of similar magnitude as �Hmig for iron self-diffusion
with the exception of Mn, which has a much lower barrier.
This trend was reported by Ding et al. [60] and Messina
et al. [61] also. It has been found for transition-metal (TM)
impurities diffusion in fcc Ni as well [53]. The inverse relation
between the magnitude of �Hmig,2 and atomic size has been
rationalized through the displacement of the large impurity
atom toward the vacancy. This results in short jump distances
and correspondingly low barriers [50]. Very large impurity
atoms such as Sr, Ba, Ce, and La take an intermediary
position between the original position and the neighboring
vacancy, forming a vacancy-impurity atom complex. Such

FIG. 4. Effective enthalpy of correlation calculated with Eq. (20)
derived from the temperature relation of correlation factors of
impurity elements, arranged by row and column of the periodic
system: row 3 of the periodic system (purple triangles), row 4 of the
periodic system (red squares), row 5 of the periodic system (green
triangles), and row 6 of the periodic system (blue diamonds). Dashed
lines, between neighboring impurities, are guides to the eyes only.

complexes can probably only migrate when an additional
vacancy approaches. Such double-vacancy-assisted diffusion
processes have not been explored in the current work. For
calcium a nearest-neighbor jump, although shortened, still can
be defined, but the associated migration enthalpy is 19 meV
only. In such a case the Ca atom frequently jumps back
and forth without any net displacement, and diffusion of the
calcium atom is going to be determined by how the vacancy
migrates through the neighboring bulk, that is, it will be
determined by the correlation factor, as will be discussed
below.

Large impurity atoms, at the left and right sides of the
periodic table, generally have strong vacancy binding (see
Fig. 2). As a result their migration barriers for dissociative
jumps �Hmig,3, �Hmig,3′ , and �Hmig,3′′ tend to be much larger
than the corresponding barriers for associative jumps �Hmig,4,
�Hmig,4′ , and �Hmig,4′′ . For many larger atoms �Hmig,4′′ is the
lowest barrier (Ca, Zr, S, Hf, Pb, Bi, Ge, P, Sn, Mn, Sb, Si, Cu,
Cr, Au, and W), whereas for others (Mg, Nb, Ti, Zn, Ag, Al, Ta,
V, and Mo) it is �Hmig,4′ . For Co and Ni only, we find �Hmig,3

to be the lowest barrier. Not surprisingly Ni has almost no
vacancy binding, and Co is the only element (in our analysis)
that we found that repels a vacancy at the nearest-neighbor
shell in bcc Fe.

The migration enthalpies for all the impurity species
form a large data set. Therefore, all detailed information
concerning migration enthalpies is tabulated in Table III of
the Supplemental Material [91], with a detailed comparison to
literature data.

C. Correlation factor

Using Eq. (18), the correlation factor for each impurity
species has been computed as a function of temperature. As
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FIG. 5. Effective enthalpy associated with correlation as esti-
mated from Eq. (21), �Hc[approx] as a function of the �Hc obtained
from Eq. (20) within the temperature range of 600–1200 K for all
elements considered in this study. The most overestimated value
pertains to sulfur.

the correlation factor is found to be described rather well
by an Arrhenius relation, an effective entropy and effective
enthalpy of correlation has been defined [Eq. (20)]. �Hc is
significant for several impurity species, especially for impurity
species at the far left and far right of the periodic table
(see Fig. 7). This result relates with the finding that large
impurity atoms diffusing in a Mg matrix also feature significant
effective correlation enthalpies [51,52]. However, position in
the periodic table gives a more significant correlation than
atomic size. Tungsten and gold are larger atoms than chromium
and copper, but the latter two have larger effective correlation
enthalpies. Likewise sulfur, phosphorous, and germanium have
much larger effective correlation enthalpies than their atomic
size in the bcc Fe matrix would suggest, but they are clearly
far to the right from Fe in the periodic table. For elements with
large �Hc one cannot neglect the temperature dependence of
the correlation factor, as has been found in Mg also [51,52].

An analysis of the expression for the correlation factor
has revealed that an approximate analytic expression can
be derived [see Eq. (21)]. In Fig. 5 the accuracy of the
approximate expression can be gauged. The approximation
deviates typically by up to about 5% of the value obtained by
fitting according to Eq. (20) with f from Eq. (18). Equation
(21) also suggests a negative correlation between �Hc and
�Hmig,2. This is confirmed by the opposite tendencies in
Figs. 4 and 7. When �Hc is plotted as a function of �Hmig,2,
in Fig. 6, this negative correlation is evident.

Clearly, when the activation energy of diffusion is com-
puted, using Eq. (24), two element-specific terms, �Hc and
�Hmig,2, have the tendency to compensate one another. As
a result, the activation energy of impurity diffusion in bcc Fe
does not vary nearly as much as in some other metallic matrices
(e.g., fcc Al [50]). It is clear that the temperature dependence of
the correlation factor should not be ignored, in contrast to some

FIG. 6. Migration enthalpy �Hmig,2 of impurity elements calcu-
lated with Eq. (15), arranged by row and column of the periodic table:
row 3 of the periodic system (purple triangles), row 4 of the periodic
system (red squares), row 5 of the periodic system (green triangles),
and row 6 of the periodic system (blue diamonds). Dashed lines,
between neighboring impurities, are guides to the eyes only.

previous studies [54,57,60,88]. Fortunately for elements close
to iron in the periodic table �Hc is relatively small (see Fig. 7).
Evaluating the correlation factor at one specific temperature
[98] is thus likely to give a large error in the calculated diffusion
activation energy of yttrium, titanium, and zirconium.

The effective entropy associated with correlation as ob-
tained by fitting to Eq. (20) within T = 600–1200 K is
much less transparent. For Fe self-diffusion, where all �i

take the same value, this gives �Sc = −0.32kB . Likewise,
when min(�Hmig,3,�Hmig,3′ ,�Hmig,3′′ ) < �Hmig,2, such as
for Co, Ni, and W, Eq. (19) yields a temperature-independent
value of f with �Sc ≈ −0.32kB . For the other impurity
elements �Sc/kB generally takes small positive values, in
the neighborhood of unity, except for Ge, Zn, and Ca where
�Sc/kB ≈ 2.

FIG. 7. �Hc from Eq. (20) as a function of �Hmig,2.
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FIG. 8. The attempt frequencies for an impurity jump in iron
calculated with Eq. (13), arranged by row and column of the periodic
system: row 3 of the periodic system (purple triangles), row 4 of the
periodic system (red squares), row 5 of the periodic system (green
triangles), and row 6 of the periodic system (blue diamonds). Dashed
lines, between neighboring impurities, are guides to the eyes only.

Recently, a more accurate expression for the correlation
factor has been derived [61] where the jump rate between the
second and fourth impurity atom neighbors is not equated to
the bulk jump rate. Use of this equation did not yield any
significant changes in our qualitative or quantitative results.

D. Diffusivities

For the calculation of diffusivities of impurities in iron,
we examine first the parameters for the fully FM state as
given by Eqs. (24) and (25). The element-specific terms in
Eq. (25) are ν̃2, �Sc, and ��Sbind,X�(R1), the other factors
being independent of impurity species.

The effective attempt frequency for the diffusing species,
ν̃2, has been computed using Eq. (13) (see Fig. 8, and Table II
of the Supplemental Material [91]). Table II shows a number
of remarkable results: For the 3d TM impurities attempt
frequencies are generally high, with a remarkable dip for
Mn in the middle of the series. The early 4d and 5d TM
impurities are rather similar and have markedly lower attempt
frequencies than the corresponding 3d TM impurities. The
late TMs, Cu, Ag, and Au, all have rather similar attempt
frequencies, in spite of their significant differences in atomic
mass. Both the described tendencies and numerical values
agree well with those found by Messina et al. [61]. Our
frequencies are typically about 10% higher than those reported
previously [61], which may be related to our somewhat smaller
bcc lattice parameter. Given a typical temperature of 1000 K, a
10% error in the attempt frequency gives the same deviation in
the computed diffusivity as an error in the diffusion activation
energy of 8 meV. Concerning tendencies for frequencies of
non-TM impurities, the rather low values stand out. These
elements, such as Ca, Mg, Zn, Al, Si, Ge, Sn, Pb, P, Sb, and
Bi all fall in the range of 1–5 THz, except S at 0.44 THz.
Non-TM elements have lower frequencies as further down in

FIG. 9. The impurity-vacancy binding entropy in units of kB ,
arranged by row and column of the periodic system: row 3 of the
periodic system (purple triangles), row 4 of the periodic system (red
squares), row 5 of the periodic system (green triangles), and row
6 of the periodic system (blue diamonds). Dashed lines, between
neighboring impurities, are guides to the eyes only.

the same column of the periodic system, as is seen in the
comparison Mg-Ca, Si-Ge-Sn-Pb, and Sb-Bi. The 3p series
Al-S also shows a marked decrease of frequencies as the
number of p electrons increases, with a value of about 5 THz
for Al and a very low value of 0.44 THz for S. We also applied
a Meyer-Neldel fit to attempt frequency �Hmig,2. As before
[61], the fit to the 3d TMs is very poor, but the fit to 3p

elements [Al-S] also does not yield a physically significant
result [99]. For the 3p elements an exponent of 0.507 and
a Meyer-Neldel energy of 0.014 eV, as well as a reference
frequency ν0 of 0.01 THz, is found. These parameters differ
strongly from what has been found for the 4d and 5d TM
impurities [61], and appear to be closer to other analyses
[100,101]. However, an alternate Meyer-Neldel analysis of
the computed log(D0) versus �Hmig,2 values does not yield
a significant correlation because the D0 are similar for all
impurity elements considered. Therefore, the Meyer-Neldel
analysis does not appear particularly useful for substitutional
impurity diffusion in bcc iron.

The vibrational impurity-vacancy binding entropy,
��Sbind,X�(R1), ranges from about −0.5 to +1.5kB (Fig. 9).
The largest value is reached for Ca, and the smallest for
Mg. For TM, values of about +0.5kB are common, while
for non-TM, lower values predominate. Our data did not
allow us to recognize any clear trends. Meyer-Neldel type
correlations between ��Sbind,X�(R1) and �Hmig,2 or QFM are
not significant, reinforcing our conclusion that a Meyer-Neldel
analysis is not particularly revealing.

The element-specific terms in Eq. (24), �Hbind,X�(R1),
�Hmig,2, and �Hc have all been discussed above already, so
that here we examine QFM. The activation energy for diffusion
ranges from about 2 to 3 eV (Fig. 10), with most TM impurities
within the range of 2.4–2.8 eV. This is in marked contrast
to activation energies for substitutional impurity diffusion in
metals such as Al [50] or Mg [51,52]. The activation energy
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FIG. 10. PW91 total activation energies in a fully ferromagnetic
state of impurity elements, arranged by row and column of the
periodic system: row 3 of the periodic system (purple triangles), row
4 of the periodic system (red squares), row 5 of the periodic system
(green triangles), and row 6 of the periodic system (blue diamonds).
Dashed lines, between neighboring impurities, are guides to the eyes
only.

for TM impurities in aluminum can be twice that of aluminum
self-diffusion while non-TM impurities often have activation
energies which are very similar to that of the host [50,102].
The activation energies for the p-type elements in bcc iron
show some interesting trends. The 3p impurities, Al-Si-P-S,
display a monotonic decreasing diffusion activation energy in
bcc Fe as the number of p electrons is increased. Along the
columns of the periodic table too, a tendency is apparent where
elements of the lower rows feature lower activation energies
than those of the upper rows; Si-Ge-Sn-Pb and P-Sb-Bi.
This tendency is already recognizable in the vacancy-impurity
binding enthalpy and also in the impurity nearest-neighbor
migration enthalpy. Increasing p-electron count strengthens
the pd hybridization and thereby makes the vacancy-impurity
binding increasingly less favorable. Furthermore, the loss
of a number of nearest neighbors in the transition state
is energetically less costly for a more covalently bonded
element than for a metallically bonded element. Therefore the
migration energy is lowered as the p-electron count increases.
Of course, impurities further down a given column in the
periodic system with their increased atomic size relax more
toward the vacancy position, and have p bands that are wider
and better aligned with the iron d bands to give a further
decrease in migration energies. The element specific diffusion
prefactors D0 (see Fig. 11) are all within an order of magnitude
of one another. There is no discernible trend with element size
or with position in the period system.

A comparison of the computed impurity diffusivities with
experimental data as a function of temperature requires
consideration of the effect of magnetic (dis)ordering. The
paramagnetic activation barrier has been computed in pure
iron by Ding et al. [73] via the spin-wave method [74]. This
provides a description of pure iron paramagnetic diffusion;
however, to apply it for all impurity elements would not be

FIG. 11. Prefactors to diffusion, calculated with Eq. (25) are
arranged by row and column of the periodic system: row 3 of the
periodic system (purple triangles), row 4 of the periodic system (red
squares), row 5 of the periodic system (green triangles), and row
6 of the periodic system (blue diamonds). Dashed lines, between
neighboring impurities, are guides to the eyes only.

trivial. Fortunately, the results [73] strongly resemble that of
the semiempirical Girifalco model [64] so that we will be
using that method here, just as was done in most diffusivity
studies with regard to bcc iron so far. Our detailed review of
experimental impurity diffusivities above and below the Curie
temperature [68] has revealed that the Girifalco α parameter
[see Eq. (2)] for all impurities in the dilute limit can be
reasonably chosen as α = 0.10, with the exception of iron
self-diffusion for which α = 0.16 is in better agreement with
the majority of experimental data.

The diffusivities of impurity elements in bcc iron calculated
with PW91 agree well with the experimental results. The
diffusivities of impurities in bcc iron are close together
experimentally, which is reflected in the calculated results. The
greatest deviation from between calculated and experimental
results are in overestimating the diffusivities of Mn, Zn, Nb,
Ta, and Au in bcc iron (see Fig. 12). For those elements that are
not compared to experiments the diffusivities are presented in
Fig. 13. Notably high diffusivities are found for Pb and Ca in
bcc iron; this coincides with a very low solubility. The reason
for this seems to be underestimated activation barriers, which
is especially seen in the low-temperature deviation between
the PW91 line and experimentally measured points. In other
cases there is an overestimation of diffusivity as calculated by
PW91. The reason for this seems similar, but opposite, in the
way that there is discrepancy in the slope of the diffusivities.

The agreement with measured diffusivities is most cases
very good, especially considering the discrepancy between
various experimental data sets of dilute impurity diffusion.
The methodology presented here provides reliable results for
the determination of diffusivity in bcc iron.

The results for the vacancy binding energies, mi-
gration barriers, and diffusivities are compared (in the
Supplemental Material [91]) to the calculated results of
[54,56,57,60,61,88,90,98,103,104] for which migration bar-
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FIG. 12. The diffusivity as calculated with the PW91 xc functional (red lines), compared to experimental data of Fe [3–7] self-diffusion and
dilute impurity diffusion of Al [8,9], Si [10], P [11–16], S [17], Ti [18], V [19,20], Cr [21–23], Mn [24], Co [2,6,25,26], Ni [2,27], Cu [28–31],
Zn [32], Nb [33], Mo [34,35], Ag [36], Sn [37,38], Sb [39–42], Ta [43], W [44,45], and Au [2]. The Curie temperature (TC) is indicated by a
vertical black line in all panels.
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FIG. 13. The impurity diffusion of elements Mg, Ca, Ge, Zr, Hf, Pb, and Bi in bcc iron. Diffusivities as calculated with the PW91 xc
functional (red lines). The Curie temperature (TC) is indicated by a vertical black line in all panels.

riers were found to be very similar in all cases. Differences are
found in vacancy formation energies, which is very sensitive
to the type of exchange-correlation functional.

One general trend captured very well in the calculations
is that all diffusivities are very close together for impurities
in bcc iron. This indicates a similar mechanism and as well
a rate of diffusion which is determined by the self-diffusion
of vacancies in the iron matrix. The trend that the activation
energy for diffusion is dependent on the column of the periodic
system is captured both by the diffusivity calculations and the
comparison to experiments. This makes the trends captured
by these calculations very useful to predict the diffusivities
of those elements whose diffusivities have not yet been
determined experimentally.

V. CONCLUSIONS

Diffusivities of a large number of impurities in bcc iron
have been calculated by means of first-principle methods.
The selection of the elements of the periodic table gives
a good overview of all single-vacancy diffusing elements.
The magnitude of the vacancy formation energies is highly
dependent on the chosen exchange-correlation functional,
unlike the magnitude of migration barriers.

The magnitudes of the nearest-neighbor barriers, vacancy
formation, and binding energies are correlated to the position
of the element in the periodic system, with low values on
each end of the columns of the periodic system. This is

compensated by the effective enthalpy barrier caused by
the temperature dependence of the correlation factor. The
diffusivity of any single-vacancy diffusing element in bcc
iron is dominated by the diffusivity of a vacancy through the
host. All single-vacancy diffusing elements are expected to
follow the same trends that the calculated elements do. The
activation energies for diffusion are presented in Fig. 10. The
nearest-neighbor barrier for the elements strontium, barium,
lanthanum, and cerium is so low, that it likely does not diffuse
through the single-vacancy mechanism. It is more plausible
that they form an impurity-vacancy complex which requires
another vacancy to diffuse.

All elements except Co, Mn, and Ta show greater dif-
fusivity than iron self-diffusion, which is confirmed by the
experimental data. The other elements show good agreement
with experiments. In bcc iron most substitutional elements
diffuse within one order of magnitude faster than bcc iron
self-diffusion. Some faster diffusing elements are Au, Pb, and
Ca, with Pb diffusing two orders of magnitude faster than Fe.
For the other diffusivities, each impurity element in bcc iron
seems to be limited by the self-diffusivity of vacancies in iron.

When considering the position of the element in the periodic
table, trends in the the rates of diffusivities of impurity
elements in bcc iron can be observed, with fast diffusing
elements at the columns furthest away from Fe and elements
in columns close to Fe with diffusivities similar to Fe self-
diffusivity. Less important seems to be the row of the periodic
system.
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[53] M. Krčmar, C. L. Fu, A. Janotti, and R. C. Reed, Acta Mater.

53, 2369 (2005).
[54] S. Choudhury, L. Barnard, J. D. Tucker, T. R. Allen, B.

D. Wirth, M. Asta, and D. Morgan, J. Nucl. Mater. 411, 1
(2011).

[55] J. D. Tucker, R. Najafabadi, T. R. Allen, and D. Morgan, J.
Nucl. Mater. 405, 216 (2010).

[56] C. Domain, J. Nucl. Mater. 351, 1 (2006).
[57] S. Huang, D. L. Worthington, M. Asta, V. Ozolins, G. Ghosh,

and P. K. Liaw, Acta Mater. 58, 1982 (2010).

094105-12

https://doi.org/10.1016/0001-6160(63)90055-5
https://doi.org/10.1016/0001-6160(63)90055-5
https://doi.org/10.1016/0001-6160(63)90055-5
https://doi.org/10.1016/0001-6160(63)90055-5
https://doi.org/10.1016/0956-7151(90)90058-O
https://doi.org/10.1016/0956-7151(90)90058-O
https://doi.org/10.1016/0956-7151(90)90058-O
https://doi.org/10.1016/0956-7151(90)90058-O
https://doi.org/10.1016/0001-6160(88)90127-7
https://doi.org/10.1016/0001-6160(88)90127-7
https://doi.org/10.1016/0001-6160(88)90127-7
https://doi.org/10.1016/0001-6160(88)90127-7
https://doi.org/10.1016/0036-9748(77)90078-3
https://doi.org/10.1016/0036-9748(77)90078-3
https://doi.org/10.1016/0036-9748(77)90078-3
https://doi.org/10.1016/0036-9748(77)90078-3
https://doi.org/10.1080/14786436608211966
https://doi.org/10.1080/14786436608211966
https://doi.org/10.1080/14786436608211966
https://doi.org/10.1080/14786436608211966
https://doi.org/10.1016/0001-6160(61)90137-7
https://doi.org/10.1016/0001-6160(61)90137-7
https://doi.org/10.1016/0001-6160(61)90137-7
https://doi.org/10.1016/0001-6160(61)90137-7
https://doi.org/10.4028/www.scientific.net/DDF.95-98.709
https://doi.org/10.4028/www.scientific.net/DDF.95-98.709
https://doi.org/10.4028/www.scientific.net/DDF.95-98.709
https://doi.org/10.4028/www.scientific.net/DDF.95-98.709
https://doi.org/10.1063/1.330990
https://doi.org/10.1063/1.330990
https://doi.org/10.1063/1.330990
https://doi.org/10.1063/1.330990
https://doi.org/10.4028/www.scientific.net/DDF.66-69.1407
https://doi.org/10.4028/www.scientific.net/DDF.66-69.1407
https://doi.org/10.4028/www.scientific.net/DDF.66-69.1407
https://doi.org/10.4028/www.scientific.net/DDF.66-69.1407
https://doi.org/10.2320/matertrans1960.24.589
https://doi.org/10.2320/matertrans1960.24.589
https://doi.org/10.2320/matertrans1960.24.589
https://doi.org/10.2320/matertrans1960.24.589
https://doi.org/10.1007/BF02669372
https://doi.org/10.1007/BF02669372
https://doi.org/10.1007/BF02669372
https://doi.org/10.1007/BF02669372
https://doi.org/10.1039/tf9353100707
https://doi.org/10.1039/tf9353100707
https://doi.org/10.1039/tf9353100707
https://doi.org/10.1039/tf9353100707
https://doi.org/10.1007/BF02647167
https://doi.org/10.1007/BF02647167
https://doi.org/10.1007/BF02647167
https://doi.org/10.1007/BF02647167
https://doi.org/10.1016/0036-9748(86)90393-5
https://doi.org/10.1016/0036-9748(86)90393-5
https://doi.org/10.1016/0036-9748(86)90393-5
https://doi.org/10.1016/0036-9748(86)90393-5
https://doi.org/10.1002/pssa.2211480209
https://doi.org/10.1002/pssa.2211480209
https://doi.org/10.1002/pssa.2211480209
https://doi.org/10.1002/pssa.2211480209
https://doi.org/10.1002/pssa.2210530223
https://doi.org/10.1002/pssa.2210530223
https://doi.org/10.1002/pssa.2210530223
https://doi.org/10.1002/pssa.2210530223
https://doi.org/10.2320/matertrans1989.31.255
https://doi.org/10.2320/matertrans1989.31.255
https://doi.org/10.2320/matertrans1989.31.255
https://doi.org/10.2320/matertrans1989.31.255
https://doi.org/10.1179/msc.1974.8.1.407
https://doi.org/10.1179/msc.1974.8.1.407
https://doi.org/10.1179/msc.1974.8.1.407
https://doi.org/10.1179/msc.1974.8.1.407
https://doi.org/10.1016/S0022-3697(72)80244-0
https://doi.org/10.1016/S0022-3697(72)80244-0
https://doi.org/10.1016/S0022-3697(72)80244-0
https://doi.org/10.1016/S0022-3697(72)80244-0
https://doi.org/10.2320/matertrans1989.34.20
https://doi.org/10.2320/matertrans1989.34.20
https://doi.org/10.2320/matertrans1989.34.20
https://doi.org/10.2320/matertrans1989.34.20
https://doi.org/10.2320/matertrans1960.5.91
https://doi.org/10.2320/matertrans1960.5.91
https://doi.org/10.2320/matertrans1960.5.91
https://doi.org/10.2320/matertrans1960.5.91
https://doi.org/10.1016/0001-6160(61)90138-9
https://doi.org/10.1016/0001-6160(61)90138-9
https://doi.org/10.1016/0001-6160(61)90138-9
https://doi.org/10.1016/0001-6160(61)90138-9
https://doi.org/10.1063/1.1655922
https://doi.org/10.1063/1.1655922
https://doi.org/10.1063/1.1655922
https://doi.org/10.1063/1.1655922
https://doi.org/10.1063/1.1708006
https://doi.org/10.1063/1.1708006
https://doi.org/10.1063/1.1708006
https://doi.org/10.1063/1.1708006
https://doi.org/10.1063/1.323934
https://doi.org/10.1063/1.323934
https://doi.org/10.1063/1.323934
https://doi.org/10.1063/1.323934
https://doi.org/10.1002/pssa.2210680138
https://doi.org/10.1002/pssa.2210680138
https://doi.org/10.1002/pssa.2210680138
https://doi.org/10.1002/pssa.2210680138
https://doi.org/10.2320/matertrans.44.2078
https://doi.org/10.2320/matertrans.44.2078
https://doi.org/10.2320/matertrans.44.2078
https://doi.org/10.2320/matertrans.44.2078
https://doi.org/10.1016/S1359-6454(02)00229-X
https://doi.org/10.1016/S1359-6454(02)00229-X
https://doi.org/10.1016/S1359-6454(02)00229-X
https://doi.org/10.1016/S1359-6454(02)00229-X
https://doi.org/10.2320/jinstmet1952.40.101053
https://doi.org/10.2320/jinstmet1952.40.101053
https://doi.org/10.2320/jinstmet1952.40.101053
https://doi.org/10.2320/jinstmet1952.40.101053
https://doi.org/10.1016/S1359-6454(00)00074-4
https://doi.org/10.1016/S1359-6454(00)00074-4
https://doi.org/10.1016/S1359-6454(00)00074-4
https://doi.org/10.1016/S1359-6454(00)00074-4
https://doi.org/10.1007/s00339-004-2771-2
https://doi.org/10.1007/s00339-004-2771-2
https://doi.org/10.1007/s00339-004-2771-2
https://doi.org/10.1007/s00339-004-2771-2
https://doi.org/10.1007/BF02672296
https://doi.org/10.1007/BF02672296
https://doi.org/10.1007/BF02672296
https://doi.org/10.1007/BF02672296
https://doi.org/10.1002/pssa.2211100111
https://doi.org/10.1002/pssa.2211100111
https://doi.org/10.1002/pssa.2211100111
https://doi.org/10.1002/pssa.2211100111
https://doi.org/10.1179/mst.1990.6.12.1177
https://doi.org/10.1179/mst.1990.6.12.1177
https://doi.org/10.1179/mst.1990.6.12.1177
https://doi.org/10.1179/mst.1990.6.12.1177
https://doi.org/10.1080/14786430600732093
https://doi.org/10.1080/14786430600732093
https://doi.org/10.1080/14786430600732093
https://doi.org/10.1080/14786430600732093
https://doi.org/10.1007/s00339-010-6142-x
https://doi.org/10.1007/s00339-010-6142-x
https://doi.org/10.1007/s00339-010-6142-x
https://doi.org/10.1007/s00339-010-6142-x
https://doi.org/10.1016/j.commatsci.2015.01.018
https://doi.org/10.1016/j.commatsci.2015.01.018
https://doi.org/10.1016/j.commatsci.2015.01.018
https://doi.org/10.1016/j.commatsci.2015.01.018
https://doi.org/10.1088/0953-8984/24/5/053202
https://doi.org/10.1088/0953-8984/24/5/053202
https://doi.org/10.1088/0953-8984/24/5/053202
https://doi.org/10.1088/0953-8984/24/5/053202
https://doi.org/10.1080/14786435.2016.1170224
https://doi.org/10.1080/14786435.2016.1170224
https://doi.org/10.1080/14786435.2016.1170224
https://doi.org/10.1080/14786435.2016.1170224
https://doi.org/10.1103/PhysRevB.60.791
https://doi.org/10.1103/PhysRevB.60.791
https://doi.org/10.1103/PhysRevB.60.791
https://doi.org/10.1103/PhysRevB.60.791
https://doi.org/10.1103/PhysRevB.79.054304
https://doi.org/10.1103/PhysRevB.79.054304
https://doi.org/10.1103/PhysRevB.79.054304
https://doi.org/10.1103/PhysRevB.79.054304
https://doi.org/10.1103/PhysRevB.85.144301
https://doi.org/10.1103/PhysRevB.85.144301
https://doi.org/10.1103/PhysRevB.85.144301
https://doi.org/10.1103/PhysRevB.85.144301
https://doi.org/10.1016/j.dib.2015.10.024
https://doi.org/10.1016/j.dib.2015.10.024
https://doi.org/10.1016/j.dib.2015.10.024
https://doi.org/10.1016/j.dib.2015.10.024
https://doi.org/10.1016/j.actamat.2005.01.044
https://doi.org/10.1016/j.actamat.2005.01.044
https://doi.org/10.1016/j.actamat.2005.01.044
https://doi.org/10.1016/j.actamat.2005.01.044
https://doi.org/10.1016/j.jnucmat.2010.12.231
https://doi.org/10.1016/j.jnucmat.2010.12.231
https://doi.org/10.1016/j.jnucmat.2010.12.231
https://doi.org/10.1016/j.jnucmat.2010.12.231
https://doi.org/10.1016/j.jnucmat.2010.08.003
https://doi.org/10.1016/j.jnucmat.2010.08.003
https://doi.org/10.1016/j.jnucmat.2010.08.003
https://doi.org/10.1016/j.jnucmat.2010.08.003
https://doi.org/10.1016/j.jnucmat.2006.02.025
https://doi.org/10.1016/j.jnucmat.2006.02.025
https://doi.org/10.1016/j.jnucmat.2006.02.025
https://doi.org/10.1016/j.jnucmat.2006.02.025
https://doi.org/10.1016/j.actamat.2009.11.041
https://doi.org/10.1016/j.actamat.2009.11.041
https://doi.org/10.1016/j.actamat.2009.11.041
https://doi.org/10.1016/j.actamat.2009.11.041


FIRST-PRINCIPLES ANALYSIS OF SOLUTE DIFFUSION . . . PHYSICAL REVIEW B 96, 094105 (2017)

[58] E. Vincent, C. S. Becquart, and C. Domain, Nucl. Instrum.
Methods Phys. Res., Sect. B 228, 137 (2005).

[59] C. S. Becquart and C. Domain, Nucl. Instrum. Methods Phys.
Res., Sect. B 202, 44 (2003).

[60] H. Ding, S. Huang, G. Ghosh, P. K. Liaw, and M. Asta, Scr.
Mater. 67, 732 (2012).

[61] L. Messina, M. Nastar, N. Sandberg, and P. Olsson, Phys. Rev.
B 93, 184302 (2016).

[62] Y. Iijima, J. Phase Equilibria Diffus. 26, 466 (2005).
[63] L. Girifalco, J. Phys. Chem. Solids 25, 323 (1964).
[64] L. Ruch, D. R. Sain, H. L. Yeh, and L. A. Girifalco, J. Phys.

Chem. Solids 37, 649 (1976).
[65] C. Varvenne, F. Bruneval, M. C. Marinica, and E. Clouet, Phys.

Rev. B 88, 134102 (2013).
[66] D. C. Wallace, Thermodynamics of Crystals, Dover Books on

Physics (Dover, New York, 1998), pp. 180–183.
[67] A. S. Arrott and B. Heinrich, J. Appl. Phys. 52, 2113 (1981).
[68] C. D. Versteylen, N. H. van Dijk, and M. H. F. Sluiter

(unpublished).
[69] G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).
[70] A. D. Le Claire, Philos. Mag. 21, 819 (1970).
[71] M. J. Jones and A. D. Le Claire, Philos. Mag. 26, 1191

(1972).
[72] J. Neuhaus, W. Petry, and A. Krimmel, Phys. B: Condens.

Matter 234-236, 897 (1997).
[73] H. Ding, V. I. Razumovskiy, and M. Asta, Acta Mater. 70, 130

(2014).
[74] A. V. Ruban and V. I. Razumovskiy, Phys. Rev. B 85, 174407

(2012).
[75] F. Körmann, B. Grabowski, B. Dutta, T. Hickel, L. Mauger,

B. Fultz, and J. Neugebauer, Phys. Rev. Lett. 113, 165503
(2014).

[76] S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi,
Rev. Mod. Phys. 73, 515 (2001).

[77] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
[78] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[79] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[80] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[81] G. Henkelman and H. Jonsson, J. Chem. Phys. 113, 9978

(2000).
[82] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
[83] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.

Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671
(1992).

[84] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E.
Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev.
Lett. 100, 136406 (2008).

[85] P. Haas, F. Tran, and P. Blaha, Phys. Rev. B 79, 085104 (2009).
[86] R. Nazarov, T. Hickel, and J. Neugebauer, Phys. Rev. B 85,

144118 (2012).
[87] Y. Jiang, J. R. Smith, and G. R. Odette, Phys. Rev. B 79, 064103

(2009).
[88] C. Zhang, J. Fu, R. Li, P. Zhang, J. Zhao, and C. Dong, J. Nucl.

Mater. 455, 354 (2014).
[89] D. Murali, M. Posselt, and M. Schiwarth, Phys. Rev. B 92,

064103 (2015).
[90] X. Gao, H. Ren, C. Li, H. Wang, Y. Ji, and H. Tan, J. Alloys

Compd. 663, 316 (2016).
[91] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.96.094105 for tables containing the en-
thalpies and entropies of defect formation and the jump
barriers.

[92] A. Glensk, B. Grabowski, T. Hickel, and J. Neugebauer, Phys.
Rev. X 4, 011018 (2014).

[93] T. Tiedje, J. M. Cebulka, D. L. Morel, and B. Abeles, Phys.
Rev. Lett. 46, 1425 (1981).

[94] G. Lucas and R. Schäublin, Nucl. Instrum. Methods Phys. Res.,
Sect. B 267, 3009 (2009).

[95] A. T. Dinsdale, Calphad 15, 317 (1991).
[96] T. Ohnuma, N. Soneda, and M. Iwasawa, Acta Mater. 57, 5947

(2009).
[97] P. Olsson, T. P. C. Klaver, and C. Domain, Phys. Rev. B 81,

054102 (2010).
[98] D. Murali, B. K. Panigrahi, M. C. Valsakumar, and C. S. Sundar,

J. Nucl. Mater. 419, 208 (2011).
[99] A fit of three parameters to just four data points is questionable

in any case.
[100] G. Boisvert and L. J. Lewis, Phys. Rev. B 54, 2880 (1996).
[101] M. C. Marinica, C. Barreteau, D. Spanjaard, and M. C.

Desjonquères, Phys. Rev. B 72, 115402 (2005).
[102] T. Marumo, S. Fujikawa, and K. Hirano, J. Jpn. Inst. Light Met.

23, 17 (1973).
[103] A. Claisse and P. Olsson, Nucl. Instrum. Methods Phys. Res.,

Sect. B 303, 18 (2013).
[104] E. Vincent, C. S. Becquart, and C. Domain, Nucl. Instrum.

Methods Phys. Res., Sect. B 255, 78 (2007).
[105] L. Messina, M. Nastar, T. Garnier, C. Domain, and P. Olsson,

Phys. Rev. B 90, 104203 (2014).

094105-13

https://doi.org/10.1016/j.nimb.2004.10.035
https://doi.org/10.1016/j.nimb.2004.10.035
https://doi.org/10.1016/j.nimb.2004.10.035
https://doi.org/10.1016/j.nimb.2004.10.035
https://doi.org/10.1016/S0168-583X(02)01828-1
https://doi.org/10.1016/S0168-583X(02)01828-1
https://doi.org/10.1016/S0168-583X(02)01828-1
https://doi.org/10.1016/S0168-583X(02)01828-1
https://doi.org/10.1016/j.scriptamat.2012.06.010
https://doi.org/10.1016/j.scriptamat.2012.06.010
https://doi.org/10.1016/j.scriptamat.2012.06.010
https://doi.org/10.1016/j.scriptamat.2012.06.010
https://doi.org/10.1103/PhysRevB.93.184302
https://doi.org/10.1103/PhysRevB.93.184302
https://doi.org/10.1103/PhysRevB.93.184302
https://doi.org/10.1103/PhysRevB.93.184302
https://doi.org/10.1007/s11669-005-0036-1
https://doi.org/10.1007/s11669-005-0036-1
https://doi.org/10.1007/s11669-005-0036-1
https://doi.org/10.1007/s11669-005-0036-1
https://doi.org/10.1016/0022-3697(64)90111-8
https://doi.org/10.1016/0022-3697(64)90111-8
https://doi.org/10.1016/0022-3697(64)90111-8
https://doi.org/10.1016/0022-3697(64)90111-8
https://doi.org/10.1016/0022-3697(76)90001-9
https://doi.org/10.1016/0022-3697(76)90001-9
https://doi.org/10.1016/0022-3697(76)90001-9
https://doi.org/10.1016/0022-3697(76)90001-9
https://doi.org/10.1103/PhysRevB.88.134102
https://doi.org/10.1103/PhysRevB.88.134102
https://doi.org/10.1103/PhysRevB.88.134102
https://doi.org/10.1103/PhysRevB.88.134102
https://doi.org/10.1063/1.329634
https://doi.org/10.1063/1.329634
https://doi.org/10.1063/1.329634
https://doi.org/10.1063/1.329634
https://doi.org/10.1016/0022-3697(57)90059-8
https://doi.org/10.1016/0022-3697(57)90059-8
https://doi.org/10.1016/0022-3697(57)90059-8
https://doi.org/10.1016/0022-3697(57)90059-8
https://doi.org/10.1080/14786437008238468
https://doi.org/10.1080/14786437008238468
https://doi.org/10.1080/14786437008238468
https://doi.org/10.1080/14786437008238468
https://doi.org/10.1080/14786437208227373
https://doi.org/10.1080/14786437208227373
https://doi.org/10.1080/14786437208227373
https://doi.org/10.1080/14786437208227373
https://doi.org/10.1016/S0921-4526(96)01185-4
https://doi.org/10.1016/S0921-4526(96)01185-4
https://doi.org/10.1016/S0921-4526(96)01185-4
https://doi.org/10.1016/S0921-4526(96)01185-4
https://doi.org/10.1016/j.actamat.2014.01.025
https://doi.org/10.1016/j.actamat.2014.01.025
https://doi.org/10.1016/j.actamat.2014.01.025
https://doi.org/10.1016/j.actamat.2014.01.025
https://doi.org/10.1103/PhysRevB.85.174407
https://doi.org/10.1103/PhysRevB.85.174407
https://doi.org/10.1103/PhysRevB.85.174407
https://doi.org/10.1103/PhysRevB.85.174407
https://doi.org/10.1103/PhysRevLett.113.165503
https://doi.org/10.1103/PhysRevLett.113.165503
https://doi.org/10.1103/PhysRevLett.113.165503
https://doi.org/10.1103/PhysRevLett.113.165503
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1063/1.1323224
https://doi.org/10.1063/1.1323224
https://doi.org/10.1063/1.1323224
https://doi.org/10.1063/1.1323224
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevLett.100.136406
https://doi.org/10.1103/PhysRevLett.100.136406
https://doi.org/10.1103/PhysRevLett.100.136406
https://doi.org/10.1103/PhysRevLett.100.136406
https://doi.org/10.1103/PhysRevB.79.085104
https://doi.org/10.1103/PhysRevB.79.085104
https://doi.org/10.1103/PhysRevB.79.085104
https://doi.org/10.1103/PhysRevB.79.085104
https://doi.org/10.1103/PhysRevB.85.144118
https://doi.org/10.1103/PhysRevB.85.144118
https://doi.org/10.1103/PhysRevB.85.144118
https://doi.org/10.1103/PhysRevB.85.144118
https://doi.org/10.1103/PhysRevB.79.064103
https://doi.org/10.1103/PhysRevB.79.064103
https://doi.org/10.1103/PhysRevB.79.064103
https://doi.org/10.1103/PhysRevB.79.064103
https://doi.org/10.1016/j.jnucmat.2014.07.011
https://doi.org/10.1016/j.jnucmat.2014.07.011
https://doi.org/10.1016/j.jnucmat.2014.07.011
https://doi.org/10.1016/j.jnucmat.2014.07.011
https://doi.org/10.1103/PhysRevB.92.064103
https://doi.org/10.1103/PhysRevB.92.064103
https://doi.org/10.1103/PhysRevB.92.064103
https://doi.org/10.1103/PhysRevB.92.064103
https://doi.org/10.1016/j.jallcom.2015.12.129
https://doi.org/10.1016/j.jallcom.2015.12.129
https://doi.org/10.1016/j.jallcom.2015.12.129
https://doi.org/10.1016/j.jallcom.2015.12.129
http://link.aps.org/supplemental/10.1103/PhysRevB.96.094105
https://doi.org/10.1103/PhysRevX.4.011018
https://doi.org/10.1103/PhysRevX.4.011018
https://doi.org/10.1103/PhysRevX.4.011018
https://doi.org/10.1103/PhysRevX.4.011018
https://doi.org/10.1103/PhysRevLett.46.1425
https://doi.org/10.1103/PhysRevLett.46.1425
https://doi.org/10.1103/PhysRevLett.46.1425
https://doi.org/10.1103/PhysRevLett.46.1425
https://doi.org/10.1016/j.nimb.2009.06.110
https://doi.org/10.1016/j.nimb.2009.06.110
https://doi.org/10.1016/j.nimb.2009.06.110
https://doi.org/10.1016/j.nimb.2009.06.110
https://doi.org/10.1016/0364-5916(91)90030-N
https://doi.org/10.1016/0364-5916(91)90030-N
https://doi.org/10.1016/0364-5916(91)90030-N
https://doi.org/10.1016/0364-5916(91)90030-N
https://doi.org/10.1016/j.actamat.2009.08.020
https://doi.org/10.1016/j.actamat.2009.08.020
https://doi.org/10.1016/j.actamat.2009.08.020
https://doi.org/10.1016/j.actamat.2009.08.020
https://doi.org/10.1103/PhysRevB.81.054102
https://doi.org/10.1103/PhysRevB.81.054102
https://doi.org/10.1103/PhysRevB.81.054102
https://doi.org/10.1103/PhysRevB.81.054102
https://doi.org/10.1016/j.jnucmat.2011.05.018
https://doi.org/10.1016/j.jnucmat.2011.05.018
https://doi.org/10.1016/j.jnucmat.2011.05.018
https://doi.org/10.1016/j.jnucmat.2011.05.018
https://doi.org/10.1103/PhysRevB.54.2880
https://doi.org/10.1103/PhysRevB.54.2880
https://doi.org/10.1103/PhysRevB.54.2880
https://doi.org/10.1103/PhysRevB.54.2880
https://doi.org/10.1103/PhysRevB.72.115402
https://doi.org/10.1103/PhysRevB.72.115402
https://doi.org/10.1103/PhysRevB.72.115402
https://doi.org/10.1103/PhysRevB.72.115402
https://doi.org/10.2464/jilm.23.17
https://doi.org/10.2464/jilm.23.17
https://doi.org/10.2464/jilm.23.17
https://doi.org/10.2464/jilm.23.17
https://doi.org/10.1016/j.nimb.2013.01.016
https://doi.org/10.1016/j.nimb.2013.01.016
https://doi.org/10.1016/j.nimb.2013.01.016
https://doi.org/10.1016/j.nimb.2013.01.016
https://doi.org/10.1016/j.nimb.2006.11.033
https://doi.org/10.1016/j.nimb.2006.11.033
https://doi.org/10.1016/j.nimb.2006.11.033
https://doi.org/10.1016/j.nimb.2006.11.033
https://doi.org/10.1103/PhysRevB.90.104203
https://doi.org/10.1103/PhysRevB.90.104203
https://doi.org/10.1103/PhysRevB.90.104203
https://doi.org/10.1103/PhysRevB.90.104203



