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Perfect reflection control for impenetrable surfaces using surface waves of orthogonal polarization
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For impenetrable electromagnetic surfaces, a metasurface design approach for perfect control of the reflection
phenomena using gradient anisotropic tensor surface impedance is presented. It utilizes a set of orthogonally
polarized auxiliary surface waves to create pointwise reactive impedance characteristics by channeling power
along the tangential direction of the surface in the near zone in a carefully designed manner. The propagating
incident and reflected fields do not interfere with the surface waves due to the polarization orthogonality. Design
examples of an anomalous reflector and a power splitter for an incident plane wave are presented and numerically
verified. Realization possibilities using an array of rotated metallic resonators on a thin grounded dielectric
substrate are discussed.
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I. INTRODUCTION

As electrically thin engineered composite layers, meta-
surfaces show the promise of overcoming the high level of
loss typically associated with traditional volumetric meta-
materials, which is the main challenge in their adoption in
practical applications. Similar to their volumetric counterparts,
electromagnetic metasurfaces offer a host of novel possibil-
ities of controlling and synthesizing electromagnetic wave
propagation, reflection, and scattering phenomena [1–4].
Spatially uniform metasurfaces are able to perform traditional
functions such as perfect absorption [5,6], reflection with
an arbitrary phase [7], and polarization transformation [8]
with subwavelength-thin layers. Furthermore, gradient meta-
surfaces having spatially inhomogeneous surface parameters
have been recently shown to realize anomalous reflection
and refraction [9–12], near- and far-zone focusing [13–15],
holograms [16–18], etc.

Most gradient metasurface designs are based on the
idea of imparting a position-dependent custom phase to
the transmitted or reflected wave front, which has been
recently formalized as the generalized law of reflection and
refraction [9]. Toward ideal anomalous reflection or refraction
properties, the magnitude of the local reflection or transmission
coefficients is maximized in the design process. One effective
approach in a transmissive application is employing an array
of resonant particles for inducing a balanced combination of
electric and magnetic polarization currents by the incident field
with a linear phase gradient in space, as was demonstrated
in the low-reflection beam refraction using a Huygens meta-
surface [19]. For reflective applications, linear modulation
of the reflection phase for deflecting an incident wave upon
reflection according to the generalized law of reflection has
been widely used in the theory and practice of reflectarray
antennas [20].

Recent theoretical studies have revealed that anomalous re-
flection and refraction of plane waves based on the generalized
Snell’s law [9] can never be perfect in the power-conversion
efficiency and necessarily entail propagating diffraction orders
or Floquet-mode harmonics into undesired directions [21,22].
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For perfect anomalous reflection or refraction, the wave
impedance of the reflected or refracted plane wave is different
from that of the incident plane wave. As a result, the required
magnitude of the reflection or transmission coefficient deviates
from unity, conflicting with the assumption behind the gener-
alized Snell’s law for lossless metasurfaces. By specifying the
incident and scattered (reflected or transmitted) fields under the
power-conservation condition, the required surface parameter
distribution can be derived. For perfect refraction of a plane
wave, it is found that a homogeneous �-type bianisotropic
surface [7,23] can perform the transformation. For perfect
anomalous reflection, the metasurface specification associated
with an incident plane wave and a power-conserved reflected
plane wave turns out to be strongly nonlocal, exhibiting
alternating active and lossy spatial ranges [21,22], while
the metasurface remains lossless over a wavelength scale.
Hence, it is concluded that the metasurface must accept the
incident power over the “lossy” range and channel it along
the surface before releasing it over the “active” range. In
[12], the leaky-wave antenna principle was applied to design
and optimize a supercell comprising an array of conductor
strips to realize the nonlocal reflection properties. In [24], an
auxiliary set of surface waves was introduced in addition to
the incident and scattered plane waves to derive a passive,
lossless �-type bianisotropic metasurface for perfect wave
transformation. Surface waves were added to the illuminated
side in the beam-splitter design; they were added in the shadow
side in the beam-reflector design. In order to obtain perfect
reflection on a shielded surface, a set of propagating waves
was added as the auxiliary fields between an � metasurface
and the perfect electric conductor (PEC) surface [25]. In this
�-metasurface design approach, the side of the metasurface
for surface-wave introduction and the exact surface-wave
specification are available for design choices. The technique
is suitable for penetrable metasurfaces.

In this paper, a design recipe for impenetrable metasurfaces
in terms of the anisotropic tensor surface impedance is
presented for perfect plane-wave reflection transformations.
Building on the approach introduced in [24,25], surface waves
are introduced to avoid a nonlocal, active-lossy profile and
obtain pointwise lossless characteristics. The key difference
is that the surface waves are polarized orthogonal to the

2469-9950/2017/96(8)/085438(10) 085438-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.085438


DO-HOON KWON AND SERGEI A. TRETYAKOV PHYSICAL REVIEW B 96, 085438 (2017)

Impenetrable
surface

Surface 
impedance Zs

(Ei, Hi) (Er, Hr)

(Esw, Hsw)n̂

x

y

z

FIG. 1. General reflection transformation by a planar impenetra-
ble surface modeled with a surface-impedance tensor Zs .

incident and reflected fields so that the two sets of fields do
not interfere. The total fields are confined to the illuminated
side of the metasurface, allowing an ultrathin physical design
for reflective structures, characterized by a surface impedance.
In contrast, a transmissive surface, described by a transition
condition, is needed even for reflection applications with
�-bianisotropic metasurfaces [24,25]. As design examples, a
reflecting surface for perfect 0◦-to-70° anomalous reflection
[12] and a plane-wave splitter with an unequal 1:9 power
division are presented. In the leaky-wave approach [12], the
power-channeling evanescent waves, which are copolarized,
could not be analytically quantified to characterize the reflect-
ing surface. The leaky-wave principle was used as a design
guide, and numerical optimization was used for fine tuning. In
this study, exploiting an orthogonal polarization for the surface
waves allows a closed-form characterization of the surface at
the expense of an increased realization complexity due to the
tensorial nature of the surface impedance. A design specifi-
cation is given in terms of a position-dependent anisotropic
tensor surface impedance. A tensor surface impedance may
be realized using a rotated array of resonant particles over a
conductor surface, such as an array of rectangular patches on
a grounded dielectric substrate. With all the fields limited to
the illuminated side of the metasurface, the proposed approach
gives design recipes for electrically thin designs suitable for
shielded or impenetrable mounting platforms.

II. SURFACE-IMPEDANCE CHARACTERIZATION OF
GENERAL REFLECTION TRANSFORMATION

A general reflection transformation by an impenetrable
surface is illustrated in Fig. 1. At an angular frequency ω,
let the time-harmonic incident electric and magnetic fields
characterized by phasors (Ei ,Hi) illuminate an electromag-
netically impenetrable surface at y = 0. It is desired that the
surface impedance Zs be designed such that the reflected fields
have some predefined, desirable properties characterized by
(Er ,Hr ). In transforming (Ei ,Hi) into (Er ,Hr ) upon reflection,
an auxiliary set of surface-wave fields (Esw,Hsw) may be
introduced to allow flexibility into the properties of Zs and
its potential implementation as a metasurface. Each of the
three field pairs satisfies Maxwell’s equations individually and
exists only in the incident medium, which is assumed to be
free space.

The total fields (E,H) in y � 0 are given by
superposition as

E = Ei + Er + Esw, H = Hi + Hr + Hsw. (1)

On the reflector surface, let the tangential field vectors be
denoted by (Et ,Ht ) and given by

Et = E(y = 0) − n̂[n̂ · E(y = 0)], (2)

Ht = H(y = 0) − n̂[n̂ · H(y = 0)], (3)

where n̂ = ŷ. A general case allows the existence of both a
surface electric current Js = n̂ × Ht and a magnetic current
Ms = Et × n̂. The surface impedance Zs relates the electric
surface current and the tangential electric field via

Et = ZsJs = Zs n̂ × Ht . (4)

Here, Zs can be written as a 2 × 2 matrix in the xz plane with
four independent complex-valued entries in the most general
case, where active and/or nonreciprocal surface properties are
permitted. Since there are only two equations in (4), the surface
impedance Zs that can support the given tangential field pair
(Et ,Ht ) on the reflector surface is not unique.

Let us consider Zs of the form

Zs = jXs = j

[
Xxx Xxz

Xzx Xzz

]
, (5)

where the four reactance elements are real valued. In an
isotropic case, Xs reduces to a scalar, corresponding to a
lossless reactive surface. When Xxz = Xzx , the reactance
tensor represents a reciprocal surface. With four arbitrary
element values, it is noted that (5) still permits active or
nonreciprocal properties. With a decomposition of tangential
fields as Et = x̂Etx + ẑEtz and Ht = x̂Htx + ẑHtz, (4) can be
written in a matrix form as[

Etx

Etz

]
= j

[
Xxx Xxz

Xzx Xzz

][
Htz

−Htx

]
. (6)

Equating both the real and imaginary parts on the two sides of
(6), the reactance tensor is uniquely determined to be

Xs = 1

Im{HtxH
∗
tz}

[
Re{EtxH

∗
tx} Re{EtxH

∗
tz}

Re{EtzH
∗
tx} Re{EtzH

∗
tz}

]
. (7)

The same boundary may be characterized in terms of the
surface admittance tensor Ys = Z−1

s = jBs = −jX−1
s , where

the surface susceptance tensor Bs is expressed as

Bs = 1

Im{EtxE
∗
tz}

[− Re{EtzH
∗
tz} Re{EtxH

∗
tz}

Re{EtzH
∗
tx} − Re{EtxH

∗
tx}

]
. (8)

For the assumed form of Zs in (5), a lossless, reciprocal
surface results when the off-diagonal elements of (7) and (8)
are equal to each other. We recognize that this condition is
equivalent to

Sn = ŷ · 1
2 Re{Et × H∗

t } = 0, (9)

where Sn is the normal component of the time-average
Poynting vector on the reflector surface. At a given point
(x,0,z) on the reflecting surface, the surface is locally lossless
and reciprocal if there is no net power flow through the
boundary at that point. This is analogous to the local power-
conservation condition considered in the �-bianisotropic
metasurface design [23]. For a desired far-zone reflection
transformation specified by (Ei ,Hi) and (Er ,Hr ), one obtains
a lossless, reciprocal, and anisotropic surface-impedance
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specification if (9) can be satisfied globally by introducing
proper surface-wave fields (Esw,Hsw).

Derivation of the surface-impedance parameters indicates
that the total fields (1) must satisfy (7) or (8) on the
impenetrable surface. Conversely, the surface impedance Zs

can be regarded as a generator for the induced surface currents
Js and Ms for creating the proper set of scattered fields,
i.e., (Es ,Hs) = (Er + Esw,Hr + Hsw), when a given set of
incident fields (Ei ,Hi) illuminates the surface. Here, it should
be remembered that this reverse relation holds as long as the
surface parameters are either lossy or lossless, taken as the
limiting case of vanishing loss, according to the uniqueness
theorem [26]. If the reflecting surface includes an active region,
the scattered fields generated by the secondary sources on
the surface may contain additional fields associated with the
excitation-free solutions to the overall configuration, which is
undesirable from a design perspective.

III. THREE-CHANNEL PLANE-WAVE REFLECTION
CONTROLLER USING PERIODIC IMPEDANCE

SURFACES

The design of surface impedance for synthesizing an
envisioned, custom reflection property in Sec. II is applicable
to any combination of propagating and evanescent fields for the
incident and reflected fields. Toward applying the technique to
practical applications, plane-wave reflection control enabled
by periodic impedance surfaces is considered in this section.

Custom plane-wave reflection by a planar surface can be
formulated in the multichannel reflector paradigm [27]. As
an example, a general three-channel plane-wave reflector is
illustrated in Fig. 2(a). For a given angle of incidence θ i and
a period Dx for the surface impedance, the x wave number of
the mth reflected Floquet harmonic is given by

kr
xm = k sin θ i + 2mπ

Dx

, (10)

where k is the free-space wave number. For the three reflected
propagating modes (m = −1,0,1), the angle of reflection θr

m

is found from kr
xm = k sin θr

m [28]. The reflected fields (Er ,Hr )
can be specified by a superposition of plane waves propagating
in these three directions, as desired, under the condition of
power conservation. Then, surface-wave fields are carefully
chosen and added to the incident and reflected fields in order
for the total fields to satisfy (9). Finally, the required surface-
impedance parameters are found from (7) and (8).

As a concrete design example of a three-channel reflection
controller, an anomalous reflection-controller surface design
exhibiting lossless, reciprocal surface parameters is presented.
Figure 2(b) illustrates a TE-polarized plane wave (to the
surface normal ŷ direction) illuminating a reflecting surface
in the xz plane at normal incidence. It is desired that the
incident power is split between two propagating reflected
plane waves making angles ±θr with the +y axis (measured
in the clockwise direction), without any back-reflected plane
wave propagating in the +ŷ direction. Three port numbers
according to the multichannel functional metasurface [27] are
also indicated in Fig. 2(b).

Hi

Hsw

x

y

z

Ei

ki

Er1

Hr1

Er2

Hr2

kr1
kr2

θr−θr

Port 2Port 1
Port 3

Zs
Dx

θi

n = 0

n = -1

n = 1

(a)

(b)

y

Hsw

θr0
θrθr 1
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FIG. 2. Three-channel flat plane-wave reflection controller using
a periodic impedance surface. (a) Three propagating channels defined
by the angle of incidence and the propagating Floquet mode index n.
The period of the surface-impedance parameters is Dx . (b) A three-
channel reflecting surface illuminated by a normally incident plane
wave of TE polarization. A set of TM-polarized surface waves are
introduced to obtain pointwise lossless, reactive surface-impedance
characteristics. Three plane-wave port designations are also shown.

Using an ejωt time convention assumed and suppressed, let
the electric fields of the incident and reflected plane waves be
written as

Ei = ẑEi
0e

jky, (11)

Er1 = ẑEr1
0 e−j (−kr

xx+kr
yy), (12)

Er2 = ẑEr2
0 e−j (kr

xx+kr
yy), (13)

where Ei
0, Er1

0 , Er2
0 are E-field amplitudes, kr

x = k sin θr , and
kr
y = k cos θr . The associated H fields, Hi , Hr1, and Hr2, are

found from the standard plane-wave relationship with the E

fields. For a power-conserving split, the three field amplitudes
are related by ∣∣Ei

0

∣∣2

Zi

=
∣∣Er1

0

∣∣2 + ∣∣Er2
0

∣∣2

Zr

, (14)

where Zi = η and Zr = η/ cos θr (η ≈ 377� is the free-space
intrinsic impedance) are the wave impedances in the xz plane
for the incident and two reflected plane waves, respectively.
The superposition of the incident and reflected fields is periodic
in x with a period given by

Dx = 2π

kr
x

= λ

sin θr
, (15)

where λ is the free-space wavelength.

085438-3



DO-HOON KWON AND SERGEI A. TRETYAKOV PHYSICAL REVIEW B 96, 085438 (2017)

Let the reflected E-field amplitudes be defined relative to
the incident E-field amplitude as

Er1
0 = a1e

jδ1Ei
0, Er2

0 = a2e
jδ2Ei

0, (16)

where a1, a2 and δ1, δ2 are relative magnitudes and phases of
Er1

0 , Er2
0 with respect to those of Ei

0. For this TE-mode set
of fields, the normal component of the Poynting vector on the
surface is expressed as

STE
n = −|Ei

0|2
2

(
1

Zi

− 1

Zr

)
a cos(kr

xx + δ)

+ a1a2|Ei
0|2

Zr

cos(2kr
xx − δ2 + δ1), (17)

where a and δ are the magnitude and phase of the complex
number

aejδ = (a1 cos δ1 + a2 cos δ2) + j (a1 sin δ1 − a2 sin δ2).
(18)

We find that (17) is a periodic function with a period
of π/k sin θr , created by interference between the three
propagating waves in (11)–(13). The first term in (17) vanishes
for an equal-power split (a1 = a2) combined with a specific
phase relation between the two reflected fields (δ1 + δ2 = π ).
The second term vanishes if one of the two reflected plane
waves is not present, i.e., when all the incident power is
reflected into one off-normal direction. With respect to x,
Sn alternates between positive and negative values. Hence,
if the set of three plane waves in (11)–(13) were the total
fields, the reflecting surface would exhibit locally active-lossy
behavior, as was observed in a perfect reflecting metasurface
characterization [21].

In this study, we demonstrate lossless surface designs
for polarization-preserving reflections. For the surface waves
introduced on the same side of the reflecting surface as the
incident and reflected waves, an orthogonal polarization is
adopted. Additional fields of the same polarization will create
complex interference patterns for the total field and power
profiles. For example, STE

n in (17) is a result of interference
between the incident and desired reflected waves. If the same
TE polarization is chosen for the surface waves to be added,
a more complex interference pattern for the Poynting vector
on the reflecting surface will result, making satisfaction of
(9) at all x a challenging design problem, if not impossible.
Exploiting the degree of design freedom provided by an
orthogonal polarization for the surface waves helps reduce
design complexity.

Hence, towards arriving at (9), we introduce a set of three
TM-polarized surface waves, as illustrated in Fig. 2(b). For the
ith (i = 1,2,3) surface wave, let the E and H fields be written
as

Esi = (x̂jαi + ŷβi)
ηHsi

0

k
e−αiye−jβix, (19)

Hsi = ẑH si
0 e−αiye−jβix, (20)

where αi (>0) and βi (>k) are the attenuation and propa-
gation constants that satisfy αi =

√
β2

i − k2 and Hsi
0 is the

complex amplitude of the ith ẑ-polarized magnetic field.
The total surface-wave fields are given by superposition as

(Esw,Hsw) = (Es1 + Es2 + Es3,Hs1 + Hs2 + Hs3). Here, let
the three propagation constants be equally spaced in wave
number by �β, so that β2 = β1 + �β and β3 = β2 + �β.
Also, let the amplitudes of the surface waves be written
in terms of relative magnitudes b2, b3 and relative phases
γ2, γ3 as

Hs2
0 = b2e

jγ2Hs1
0 , H s3

0 = b3e
jγ3Hs1

0 . (21)

Then, the normal component of the Poynting vector for the
TM-polarized fields is given by

STM
n = η|Hs1

0 |2
2k

b cos(�βx + γ )

− η|Hs1
0 |2

2k
b3(α3 − α1) sin(2�βx − γ3), (22)

where b and γ are the magnitude and phase of the complex
number

bejγ = b2{[(α2 − α1) sin γ2 − b3(α3 − α2) sin(γ2 − γ3)]

+ j [(α2 − α1) cos γ2 + b3(α3 − α2) cos(γ2 − γ3)]}.
(23)

Since TE- and TM-polarized fields are orthogonal, their power
densities add algebraically, giving the normal component of
the Poynting vector of the total fields as Sn = STE

n + STM
n .

It is desired that the TM-mode surface waves be designed to
produce a globally lossless and reciprocal surface by enforcing
(9) for all x. Three complex amplitudes Hsi

0 (i = 1,2,3) and
two real-valued parameters β1, �β uniquely determine the
surface waves. First, the wave numbers along the x-axis
direction for two sets of spatial sinusoidal functions in STE

n

and STM
n must match, so we require

�β = kr
x. (24)

The remaining conditions on the sinusoidal functions with
wave numbers kr

x and 2kr
x in (17) and (22) for canceling each

other and giving Sn = 0 are

η|Hs1
0 |2

2k
b = a|Ei

0|2
2

(
1

Zi

− 1

Zr

)
, (25)

γ = δ, (26)

η|Hs1
0 |2

2k
b3(α3 − α1) = a1a2|Ei

0|2
Zr

, (27)

γ3 = δ2 − δ1 − π

2
. (28)

The solution for three surface waves that satisfy these
conditions is not unique. Here, we present one set of solutions.
The phase of Hs1

0 does not enter into (9), so it can be assigned
an arbitrary value. Next, we choose to set the propagation
constant β1 of Hs1 to a value in the allowed range β1 > k.
The remaining propagation constants β2, β3 and all three
attenuation constants αi (i = 1,2,3) are now determined.
At this point, there are four equations [(25)–(28)] for five
unknowns (|Hs1

0 |, b2, b3, γ2, and γ3). Out of these five, let us
pick |Hs1

0 | to some value. Then, the values of b3 and γ3 are
determined from (27) and (28), respectively. In terms of b and
γ obtained using (25) and (26), the relation between b2 and γ2
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can be found from (23) in a matrix form as[
sin γ2

cos γ2

]
= b

b2
[
(α2 − α1)2 − b2

3(α3 − α2)2
][

α2 − α1 + b3(α3 − α2) cos γ3 −b3(α3 − α2) sin γ3

−b3(α3 − α2) sin γ3 α2 − α1 − b3(α3 − α2) cos γ3

][
cos γ

sin γ

]
. (29)

The value of b2 is determined by enforcing sin2 γ2 + cos2 γ2 =
1. The phase angle γ2 is subsequently found from (29).

IV. DESIGN EXAMPLES

A. Perfect anomalous reflector

Reflecting metasurfaces for achieving high power-
conversion efficiencies for anomalous reflection beyond the
theoretical limits associated with the generalized law of
reflection are being actively investigated. Using a strongly
nonlocal metasurface based on the leaky-wave radiation
principle, a 94% reflection power-conversion efficiency was
experimentally achieved for 0◦-to-70° reflection [12]. In [24],
the theoretical design for a free-standing �-bianisotropic
metasurface was reported. Here, a perfect anomalous reflection
is designed for an impenetrable surface in terms of the
anisotropic surface impedance and is numerically validated.

An anomalous reflection with angles from 0 to +θr

measured from the +y axis can be treated as a special case of
Fig. 2(b) with a1 = 0. The power-conservation condition (14)
gives

a2 =
√

Zr

Zi

=
√

1

cos θr
, (30)

which is larger than unity. Hence, the reflected E field has a
larger magnitude than the incident E field. This occurs when
the angle of incidence is smaller than the angle of reflection.
The values of a and δ are found from (18) to be

a = a2, δ = −δ2. (31)

Only two surface waves are needed for the total fields to satisfy
(9). As was the case for the three-channel controller design in
Sec. III, the design for the surface waves Hs1 and Hs2 is not
unique. Specifically, only two equations, (25) and (26), need
to be enforced for four real-valued parameters: the magnitude
and phase of Hs1

0 , b2, and γ2. Let us set the magnitude and
phase of Hs1

0 to some chosen values. Then, the parameter b is
found from (25). Finally, the remaining two design parameters
are found from (29) to be

b2 = b

α2 − α1
, γ2 = π

2
− γ. (32)

As an example, let us consider a perfect in-phase reflection
(δ2 = 0) to θr = 70◦ for normal incidence with an electric field
of unit amplitude (Ei

0 = 1 V/m). This reflection angle gives the
tangential wave number for the reflected plane wave to be kr

x =
k sin 70◦ = 0.940k. While β1 can be chosen to be an arbitrary
value in the invisible region (β1 > k), let us choose the
minimum integer multiple of kr

x so that the surface waves and,
as a consequence, the surface-impedance parameters become
periodic in x with a period Dx = 1.064λ for demonstration
purposes, as are the TE-mode propagating fields (11)–(13).
Hence, we have β1 = 2kr

x = 1.879k and �β = kr
x = 0.940k.

Next, we select Hs1
0 = |Ei

0|
√

ka(1/Zi − 1/Zr )/(α2 − α1)η =
2.753 mA/m. This value was chosen to give b2 = 1, i.e., to set
the H -field magnitudes of the two surface waves equal to each
other. Finally, the phase angle of Hs2

0 is found to be γ2 = π/2
from (26), (31), and (32).

Figure 3(a) shows the normal component of the time-
average Poynting vector for the TE-polarized propagating
and TM-polarized evanescent waves, STE

n (x) and STM
n (x).

Each is a single sinusoidal function with a period of Dx

having a net value of zero over the period. The two surface
waves were designed such that STM

n has the same magnitude
but is 180° out of phase with STE

n , so that the two add to
nullify each other. As indicated in Fig. 3(a), the net negative
power associated with STE

n (x) < 0 is converted into the TM
mode in |x| < Dx/4 = 0.266λ. The surface waves carry this
power along the surface, which remains closely bound to
the interface. In the range where STM

n (x) < 0, this TM-mode
power is converted back into the TE mode and launched into

(a)
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FIG. 3. Characteristics of a 0◦-to-70° perfect anomalous reflect-
ing surface. (a) The normal component of the Poynting vector of
TE-mode propagating and TM-mode surface waves. (b) The elements
of the surface reactance tensor Xs .
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FIG. 4. Simulated performance of the 0◦-to-70° perfect anoma-
lous reflector. (a) Snapshot of the scattered TE-mode electric field
Es

z . (b) Snapshot of the scattered TM-mode magnetic field Hs
z .

(c) Poynting vector and its magnitude of the TE-mode fields.
(d) Poynting vector and its magnitude of the TM-mode fields. The
Poynting vector magnitudes are normalized by the power density
of the incident plane wave. The incident E-field amplitude is
Ei

0 = 1 V/m.

free space as a propagating plane wave in the anomalous
direction. The four elements of the surface reactance tensor
Xs in (5) are plotted in Fig. 3(b). They are evaluated using
(7) from the complete field description. Each element is a
periodic function with the same period Dx . The off-diagonal
elements are equal to each other (Xxz = Xzx) as designed,
making the reflecting surface pointwise lossless and reciprocal
everywhere. It is noted that all four reactance element values
range from −∞ to +∞. The rapid spatial variation over the
period of Dx = 1.064λ (e.g., Xxx diverges to −∞ six times) is
related to the choice of β1 = 1.879k. It will become less rapid
when β1 is set closer to k.

The performance of the reflecting surface design is nu-
merically analyzed using COMSOL MULTIPHYSICS, and the
results are shown in Fig. 4. The E-field amplitude of the
normally incident plane wave is Ei

0 = 1 V/m. Figure 4(a)
shows a snapshot of the z component of the scattered E field
Re{Es

z} over the range −Dx/2 < x < Dx/2 and 0 < y < 2λ.

A pure plane wave propagating in θr = 70◦ is observed with a
correctly amplified E-field magnitude of 1.71 (note that power
is conserved, not amplified). The reflected TE-mode field is
an unperturbed reflected plane-wave field all the way down
to the reflector surface. This contrasts with the presence of
surface waves of the same polarization near the surface in the
perfect reflector design based on the leaky-wave principle [12].
A snapshot of the z component of the TM-mode surface wave
Re{Hs

z } is plotted in Fig. 4(b). As designed, the TM-mode
fields are tightly bound to the surface and as a result do
not affect the specified far-field reflection characteristics.
The vector and magnitude of the Poynting vectors for the
TE- and TM-mode fields are shown in Figs. 4(c) and 4(d),
respectively. The magnitude is normalized by the power
density of the incident field Si = |Ei

0|2/2η. An interference
pattern between the incident and reflected plane waves is
evident in Fig. 4(c). At y = 0, the arrows representing the
time-average Poynting vector penetrate the reflecting plane,
but its normal component is canceled by that of the TM-mode
fields shown in Fig. 4(d) along the x axis. The TM-mode
Poynting vector shows an interference pattern between two
surface waves, with the power density quickly reducing toward
zero away from the surface. The maximum relative magnitude
of the TM-mode Poynting vector is found to be 10.1, while that
of the TE-mode fields is 4.50. The direction of TM-mode
power flow is along the +x axis because of the positive sign
choices for β1 and β2. The simulated S-parameter results
show perfect performance of anomalous reflection with zero
back-reflection, S13 = S33 = 0 and S23 = 1∠0, as designed,
where the phase is referenced at y = 0.

B. Power splitter with 1:9 power division

Next, an example design of a plane-wave power splitter in
the ±70◦ directions with an unequal power division ratio of
1:9 with zero back-reflection is considered. To illustrate the
robustness of the design, let us make arbitrary choices of 20°
and 50° for the two reflection phases such that

a1e
jδ1 = 0.541ej0.349, a2e

jδ2 = 1.622ej0.873, (33)

where the values of a1, a2 are found using the power-
conservation relation (14) for a lossless surface. The associated
values of a and δ are found from (18) to be a = 1.877 and
δ = −0.599 rad. As explained in Sec. III, both the magnitude
and phase of Hs1

0 can be set to arbitrary values. We choose to
pick

Hs1
0 = |Ei

0|
η

√
k

β1
. (34)

This is based on the condition that the tangential component
of the Poynting vector associated with Hs1 on the surface is
equal to the power density of the illuminating plane wave,
i.e., ηβ1|Hs1

0 |2/2k = Si . In addition, a zero phase angle is
selected. For a unit-amplitude incident E field (Ei

0 = 1V/m),
this amounts to Hs1

0 = 1.935 mA/m. Here, the propagation
constants of the surface waves are selected to be the same
as those in Sec. IV A, β1 = 2kr

x = 1.879k and �β = kr
x =

0.940k. From (27) and (28), it is found that b3 = 0.555 and
γ3 = −1.047 rad. Using bejγ = 14.59e−j0.599 given by (23),
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FIG. 5. Properties of a 1:9 power splitter of a normally incident
plane wave into θr = ±70◦. (a) The normal component of the
Poynting vector for the TE-polarized propagating and TM-polarized
surface waves. (b) The four elements of a reactance tensor Xs

normalized by the free-space intrinsic impedance η.

the remaining two parameters for complete specification of the
surface waves are found to be b2 = 2.415 and γ2 = 1.622 rad.

Over a single period of Dx = 1.064λ, the normal com-
ponents of the Poynting vector for the TE- and TM-mode
fields are plotted in Fig. 5(a). Each is a superposition of two
sinusoidal functions with periods Dx/2 and Dx . As intended,
the two Poynting vector components cancel each other, and
(9) is satisfied as a result, producing a lossless and reciprocal
tensor surface impedance. This is confirmed in Fig. 5(b), where
the four reactance tensor elements calculated using (7) are
shown. The off-diagonal terms Xxz and Xzx are identical to
each other. All four tensor elements are highly inhomogeneous.

The splitter design was simulated using COMSOL MULTI-
PHYSICS. The predicted performance of the 1:9 power splitter
with an incident E-field amplitude of Ei

0 = 1 V/m is shown
in Fig. 6. A snapshot of the z component of the scattered
TE-mode E field Es

z is plotted in Fig. 6(a). Unlike in the perfect
reflector design, the presence of more than one plane wave is
evident. Figure 6(b) shows a snapshot of the z component of
the scattered magnetic field Hs

z . The TM-mode surface-wave
fields are tightly bound to the surface and do not reach the far
zone. The time-average Poynting vector for the TE-mode fields

FIG. 6. Simulated performance of the 1:9 power splitter. (a) A
snapshot of the scattered TE-mode electric field component Es

z .
(b) A snapshot of the scattered TM-mode surface-wave field com-
ponent Hs

z . (c) The vector and magnitude of the TE-mode Poynting
vector. (d) The vector and magnitude of the TM-mode Poynting
vector. The amplitude of the incident E field is Ei

0 = 1 V/m.

is plotted in Fig. 6(c). On the reflecting surface at y = 0, the
profile of the normal Poynting vector component of the total
TE-mode fields agrees with the designed variation in Fig. 5(a).
It is canceled by the normal component of the TM-mode
Poynting vector along y = 0, shown in Fig. 6(d). The highest
value of the normalized magnitude of the TM-mode Poynting
vector in Fig. 6(d) is found to be 17.9, while the highest value
for the TE mode is 4.43. The surface waves carry power in the
+x-axis direction from the x range where STE

n (x) < 0 to where
STE

n (x) > 0. Unlike in the perfect reflector design in Sec. IV A,
some of the power channeled by the surface waves is launched
backward, in the direction of θr = −70◦. The simulated S-
parameter results are S13 = 0.316∠20.0◦, S23 = 0.949∠50.0◦,
and S33 = 0. They agree with the desired characteristics in both
magnitude (|S13|2 : |S23|2 : |S33|2 = 0.1 : 0.9 : 0) and phase.

V. REALIZATION PROSPECTS

A lossless and reciprocal surface impedance allows an
accurate realization as a passive metasurface using the standard

085438-7



DO-HOON KWON AND SERGEI A. TRETYAKOV PHYSICAL REVIEW B 96, 085438 (2017)

FIG. 7. Illustration of different conductor patch shapes on a
grounded dielectric substrate for realizing an anisotropic tensor
surface reactance. The solid gray square indicates the unit cell and
the dielectric substrate. The conductor patch is shown in brown.

printed-circuit technologies. A symmetric reactance tensor
Xs in (7) is diagonalized using two real-valued eigenvalues
and two orthogonal eigenvectors in the xz plane, which are
the principal values and directions associated with surface
reactance synthesis. For an impenetrable surface, one or more
layers of planar arrays of conductor patches on a grounded
dielectric substrate are a candidate physical configuration. A
variety of conductor patch unit cells for realizing tensor or
anisotropic surface reactance parameters has been reported in
the literature [29–31]. Examples of potential conductor patch
resonator geometry are illustrated in Fig. 7.

In Sec. IV, the wave number β1 of Hs1 was chosen to
be β1 = 2kr

x = 1.879k in order to make the total fields, and
as a result the surface parameters have a period of Dx . This
rather large value of β1 contributes to the highly spatially
inhomogeneous reactance parameters in Figs. 3(b) and 5(b).
As previously mentioned, a smaller value of β1 that is closer
to k helps alleviate the resulting spatial inhomogeneity. To
illustrate this point, a propagation constant of β1 = 1.034k

is considered here for the 0◦-to-70° design presented in
Sec. IV A. Here, β1 is determined from the chosen relation
β1 = (11/10)kr

x , and this makes the surface waves (Es1,Hs1)
and (Es2,Hs2) periodic with a period of 10Dx = 10.64λ. For
the associated lossless, reciprocal anomalous reflector design,
the two principal values of the reactance tensor Xs obtained
through diagonalization are plotted in Fig. 8(a) as solid curves.
They are associated with two orthogonal principal directions,
which are given by the eigenvectors of Xs (not shown). The
solid blue and green curves indicate the larger and smaller
values of the two principal values, respectively. One of the two
principal reactances becomes infinite in magnitude at three
locations, x/λ ≈ 0.046, 0.382, and 0.802, within the single
wavelength range shown, corresponding to the magnetic-wall
resonance (i.e., an artificial magnetic conductor condition). A
typical metasurface realization samples the required surface
reactances at a fixed subwavelength interval. If we choose to
assign four spatial sampling points to an x interval bounded
by diverging reactances, it is anticipated that an approximate
meta-atom dimension of λ/10 is needed to represent the highly
inhomogeneous tensor reactance profile.

In order to qualitatively assess the effect of the afore-
mentioned discretization or sampling of the ideal surface
parameters in practical realizations, anomalous reflection per-
formance using a piecewise-constant (i.e., staircase) reactance
profile is simulated. The discretized principal reactance values
with a sampling interval of λ/10 are shown in Fig. 8(a) as
dashed curves. Over a supercell period of 10.64λ, Figs. 8(b)
and 8(c) show snapshots of the scattered E- and H -field

0 0.2 0.4 0.6 0.8 1
−9

−6

−3

0

3

6

9

x/λ

X
/η

(a)

(b)

(c)

FIG. 8. Characteristics of an anomalous reflector surface with
piecewise-constant surface-impedance parameters. (a) The two prin-
cipal values of Xs for the perfect anomalous reflector in Sec. IV A
with a choice β1 = 1.034k. The solid blue and green lines indicate
higher and lower values, respectively. For each principal reactance,
the associated discretized values are shown as dashed lines. (b) A
snapshot of the scattered TE-mode electric field Es

z . (c) A snapshot
of the scattered TM-mode magnetic field Hs

z .

components. Deterioration of the reflected wave from a
pure +70°-propagating plane wave is visible in Fig. 8(b),
but the degradation is minor. The simulated S-parameter
values are S13 = 0.033∠ − 153.1◦, S23 = 0.995∠1.71◦, and
S33 = 0.019∠ − 56.1◦, which are close to the ideal values.
These correspond to a power reflection efficiency into the
anomalous direction of 99.0% and a back-reflection of 0.04%.
The remaining power is scattered in multiple diffraction
orders associated with the supercell period. An evanescent
TM-polarized wave is visible in Fig. 8(c). Hence, even
with unavoidable discretization of the highly inhomogeneous
tensor surface impedance in practice, the performance of a
metasurface that is properly designed and implemented may
closely approach that of the ideal design.
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VI. CONCLUSION

For an impenetrable reflecting interface, the exact tensor
impedance boundary condition was derived for realizing a de-
sired reflection transformation under a given propagating-wave
illumination. With the total fields specified by a superposition
of the incident fields and the desired reflected fields,
application of the standard impedance boundary condition
typically leads to spatially dispersive active-lossy profiles. By
introducing a set of carefully chosen surface waves of orthogo-
nal polarization, the surface impedance can be made pointwise
lossless and reciprocal by channeling the necessary power
along the surface. The orthogonal polarization for the surface
waves not only avoids interference with the propagating

waves but also allows both the propagating and surface waves
to coexist on the same side of the reflecting surface.

The proposed surface-impedance design allows realization
of a perfect reflecting surface as an impenetrable metasurface
of subwavelength thickness. An array of subwavelength
conductor patches on a grounded dielectric substrate is a
prime candidate configuration for metasurface realization at
microwave frequencies. Since the degree of spatial variation
of reactance parameters depends on the propagation constants
of the surface waves, it is advantageous to select them to be low
at values just outside the visible range. Thin metasurface real-
izations of the proposed reflection transformers are currently
under investigation.

[1] C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara,
J. Booth, and D. R. Smith, An overview of the theory and
applications of metasurfaces: The two-dimensional equiva-
lents of metamaterials, IEEE Antennas Propag. Mag. 54, 10
(2012).

[2] N. Yu and F. Capasso, Flat optics with designer metasurfaces,
Nat. Mater. 13, 139 (2014).

[3] S. A. Tretyakov, Metasurfaces for general transformations of
electromagnetic fields, Philos. Trans. R. Soc. A 373, 20140362
(2015).

[4] S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar,
and C. R. Simovski, Metasurfaces: From microwaves to visible,
Phys. Rep. 634, 1 (2016).

[5] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J.
Padilla, Perfect Metamaterial Absorber, Phys. Rev. Lett. 100,
207402 (2008).

[6] Y. Ra’di, V. S. Asadchy, and S. A. Tretyakov, Total absorption
of electromagnetic waves in ultimately thin layers, IEEE Trans.
Antennas Propag. 61, 4606 (2013).

[7] V. S. Asadchy, Y. Ra’di, J. Vehmas, and S. A. Tretyakov,
Functional Metamirrors Using Bianisotropic Elements, Phys.
Rev. Lett. 114, 095503 (2015).

[8] T. Niemi, A. O. Karilainen, and S. A. Tretyakov, Synthesis of
polarization transformers, IEEE Trans. Antennas Propag. 61,
3102 (2013).

[9] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne,
F. Capasso, and Z. Gaburro, Light propagation with phase
discontinuities: Generalized laws of reflection and refraction,
Science 334, 333 (2011).

[10] S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y.
Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and
D. P. Tsai, High-efficiency broadband anomalous reflection by
gradient metasurfaces, Nano Lett. 12, 6223 (2012).

[11] Z. Li, E. Palacios, S. Butun, and K. Aydin, Visible-frequency
metasurfaces for broadband anomalous reflection and high-
efficiency spectrum splitting, Nano Lett. 15, 1615 (2015).

[12] A. Díaz-Rubio, V. S. Asadchy, A. Elsakka, and S. A. Tretyakov,
From the generalized reflection law to the realization of perfect
anomalous reflectors, Sci. Adv. 3, e1602714 (2017).

[13] D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Dielec-
tric gradient metasurface optical elements, Science 345, 298
(2014).

[14] Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J.
Han, and W. Zhang, A broadband metasurface-based terahertz
flat-lens array, Adv. Opt. Mater. 3, 779 (2015).

[15] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu,
and F. Capasso, Metalenses at visible wavelengths: Diffraction-
limited focusing and subwavelength resolution imaging, Science
362, 1190 (2016).

[16] X. Ni, A. V. Kildishev, and V. M. Shalaev, Metasurface
holograms for visible light, Nat. Commun. 4, 2087 (2013).

[17] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and
S. Zhang, Metasurface holograms reaching 80% efficiency, Nat.
Nanotechnol. 10, 308 (2015).

[18] P. Genevet and F. Capasso, Holographic optical metasurfaces: A
review of current progress, Rep. Prog. Phys. 78, 024401 (2015).

[19] C. Pfeiffer and A. Grbic, Metamaterial Huygens’ Surfaces:
Tailoring Wave Fronts with Reflectionless Sheets, Phys. Rev.
Lett. 110, 197401 (2013).

[20] J. Huang and J. A. Encinar, Reflectarray Antennas (Wiley-IEEE
Press, Hoboken, NJ, 2008).

[21] V. S. Asadchy, M. Albooyeh, S. N. Tcvetkova, A. Díaz-Rubio,
Y. Ra’di, and S. A. Tretyakov, Perfect control of reflection and
refraction using spatially dispersive metasurfaces, Phys. Rev. B
94, 075142 (2016).

[22] N. Mohammadi Estakhri and A. Alù, Wave-Front Transforma-
tion with Gradient Metasurfaces, Phys. Rev. X 6, 041008 (2016).

[23] A. Epstein and G. V. Eleftheriades, Arbitrary power-conserving
field transformations with passive lossless Omega-type bian-
isotropic metasurfaces, IEEE Trans. Antennas Propag. 64, 3880
(2016).

[24] A. Epstein and G. V. Eleftheriades, Synthesis of Passive Lossless
Metasurfaces Using Auxiliary Fields for Reflectionless Beam
Splitting and Perfect Reflection, Phys. Rev. Lett. 117, 256103
(2016).

[25] A. Epstein and G. V. Eleftheriades, Shielded perfect reflec-
tors based on omega-bianisotropic metasurfaces, International
Workshop on Antenna Technology: Small Antennas, Innovative
Structures, and Applications (iWAT) (IEEE, Athens, 2017).

[26] R. F. Harrington, Time-Harmonic Electromagnetic Fields
(Wiley-IEEE Press, Hoboken, NJ, 2001).

[27] V. S. Asadchy, A. Díaz-Rubio, S. N. Tcvetkova, D.-H. Kwon,
A. Elsakka, M. Albooyeh, and S. A. Tretyakov, Flat Engineered
Multi-Channel Reflectors, arXiv:1610.04780.

085438-9

https://doi.org/10.1109/MAP.2012.6230714
https://doi.org/10.1109/MAP.2012.6230714
https://doi.org/10.1109/MAP.2012.6230714
https://doi.org/10.1109/MAP.2012.6230714
https://doi.org/10.1038/nmat3839
https://doi.org/10.1038/nmat3839
https://doi.org/10.1038/nmat3839
https://doi.org/10.1038/nmat3839
https://doi.org/10.1098/rsta.2014.0362
https://doi.org/10.1098/rsta.2014.0362
https://doi.org/10.1098/rsta.2014.0362
https://doi.org/10.1098/rsta.2014.0362
https://doi.org/10.1016/j.physrep.2016.04.004
https://doi.org/10.1016/j.physrep.2016.04.004
https://doi.org/10.1016/j.physrep.2016.04.004
https://doi.org/10.1016/j.physrep.2016.04.004
https://doi.org/10.1103/PhysRevLett.100.207402
https://doi.org/10.1103/PhysRevLett.100.207402
https://doi.org/10.1103/PhysRevLett.100.207402
https://doi.org/10.1103/PhysRevLett.100.207402
https://doi.org/10.1109/TAP.2013.2271892
https://doi.org/10.1109/TAP.2013.2271892
https://doi.org/10.1109/TAP.2013.2271892
https://doi.org/10.1109/TAP.2013.2271892
https://doi.org/10.1103/PhysRevLett.114.095503
https://doi.org/10.1103/PhysRevLett.114.095503
https://doi.org/10.1103/PhysRevLett.114.095503
https://doi.org/10.1103/PhysRevLett.114.095503
https://doi.org/10.1109/TAP.2013.2252136
https://doi.org/10.1109/TAP.2013.2252136
https://doi.org/10.1109/TAP.2013.2252136
https://doi.org/10.1109/TAP.2013.2252136
https://doi.org/10.1126/science.1210713
https://doi.org/10.1126/science.1210713
https://doi.org/10.1126/science.1210713
https://doi.org/10.1126/science.1210713
https://doi.org/10.1021/nl3032668
https://doi.org/10.1021/nl3032668
https://doi.org/10.1021/nl3032668
https://doi.org/10.1021/nl3032668
https://doi.org/10.1021/nl5041572
https://doi.org/10.1021/nl5041572
https://doi.org/10.1021/nl5041572
https://doi.org/10.1021/nl5041572
https://doi.org/10.1126/sciadv.1602714
https://doi.org/10.1126/sciadv.1602714
https://doi.org/10.1126/sciadv.1602714
https://doi.org/10.1126/sciadv.1602714
https://doi.org/10.1126/science.1253213
https://doi.org/10.1126/science.1253213
https://doi.org/10.1126/science.1253213
https://doi.org/10.1126/science.1253213
https://doi.org/10.1002/adom.201400557
https://doi.org/10.1002/adom.201400557
https://doi.org/10.1002/adom.201400557
https://doi.org/10.1002/adom.201400557
https://doi.org/10.1126/science.aaf6644
https://doi.org/10.1126/science.aaf6644
https://doi.org/10.1126/science.aaf6644
https://doi.org/10.1126/science.aaf6644
https://doi.org/10.1038/nnano.2015.2
https://doi.org/10.1038/nnano.2015.2
https://doi.org/10.1038/nnano.2015.2
https://doi.org/10.1038/nnano.2015.2
https://doi.org/10.1088/0034-4885/78/2/024401
https://doi.org/10.1088/0034-4885/78/2/024401
https://doi.org/10.1088/0034-4885/78/2/024401
https://doi.org/10.1088/0034-4885/78/2/024401
https://doi.org/10.1103/PhysRevLett.110.197401
https://doi.org/10.1103/PhysRevLett.110.197401
https://doi.org/10.1103/PhysRevLett.110.197401
https://doi.org/10.1103/PhysRevLett.110.197401
https://doi.org/10.1103/PhysRevB.94.075142
https://doi.org/10.1103/PhysRevB.94.075142
https://doi.org/10.1103/PhysRevB.94.075142
https://doi.org/10.1103/PhysRevB.94.075142
https://doi.org/10.1103/PhysRevX.6.041008
https://doi.org/10.1103/PhysRevX.6.041008
https://doi.org/10.1103/PhysRevX.6.041008
https://doi.org/10.1103/PhysRevX.6.041008
https://doi.org/10.1109/TAP.2016.2588495
https://doi.org/10.1109/TAP.2016.2588495
https://doi.org/10.1109/TAP.2016.2588495
https://doi.org/10.1109/TAP.2016.2588495
https://doi.org/10.1103/PhysRevLett.117.256103
https://doi.org/10.1103/PhysRevLett.117.256103
https://doi.org/10.1103/PhysRevLett.117.256103
https://doi.org/10.1103/PhysRevLett.117.256103
http://arxiv.org/abs/arXiv:1610.04780


DO-HOON KWON AND SERGEI A. TRETYAKOV PHYSICAL REVIEW B 96, 085438 (2017)

[28] If a desired set of reflection angles θr
m(m = 0, ± 1, ± 2, . . .) in

the visible region is not related via (10) with some period Dx ,
the surface parameters are not periodic functions.

[29] B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and
D. F. Sievenpiper, Scalar and tensor holographic artificial
impedance surfaces, IEEE Trans. Antennas Propag. 58, 3212
(2010).

[30] G. Minatti, S. Maci, P. D. Vita, A. Freni, and M. Sabbadini,
A circularly-polarized isoflux antenna based on anisotropic
metasurface, IEEE Trans. Antennas Propag. 60, 4998
(2012).

[31] A. M. Patel and A. Grbic, Modeling and analysis of printed-
circuit tensor impedance surfaces, IEEE Trans. Antennas
Propag. 61, 211 (2013).

085438-10

https://doi.org/10.1109/TAP.2010.2055812
https://doi.org/10.1109/TAP.2010.2055812
https://doi.org/10.1109/TAP.2010.2055812
https://doi.org/10.1109/TAP.2010.2055812
https://doi.org/10.1109/TAP.2012.2208614
https://doi.org/10.1109/TAP.2012.2208614
https://doi.org/10.1109/TAP.2012.2208614
https://doi.org/10.1109/TAP.2012.2208614
https://doi.org/10.1109/TAP.2012.2220092
https://doi.org/10.1109/TAP.2012.2220092
https://doi.org/10.1109/TAP.2012.2220092
https://doi.org/10.1109/TAP.2012.2220092



