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Three-quarter Dirac points, Landau levels, and magnetization in α-(BEDT-TTF)2I3
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The energies as a function of the magnetic field (H ) and the pressure are studied theoretically in the tight-binding
model for the two-dimensional organic conductor α-(BEDT-TTF)2I3, in which massless Dirac fermions are
realized. The effects of the uniaxial pressure (P ) are studied by using the pressure-dependent hopping parameters.
The system is semimetallic with the same area of an electron pocket and a hole pocket at P < 3.0 kbar, where the
energies (ε0

D) at the Dirac points locate below the Fermi energy (ε0
F) when H = 0. We find that at P = 2.3 kbar

the Dirac cones are critically tilted. In that case a type of band crossing occurs at “three-quarter” Dirac points;
i.e., the dispersion is quadratic in one direction and linear in the other three directions. We obtain magnetic
field dependencies of the Landau levels (εn): εn − ε0

D ∝ (nH )4/5 at P = 2.3 kbar (three-quarter Dirac points)
and |εn − ε0

F| ∝ (nH )2 at P = 3.0 kbar (the critical pressure for the semimetallic state). We also study the
magnetization as a function of the inverse magnetic field. We obtain two types of quantum oscillations. One is
the usual de Haas–van Alphen (dHvA) oscillation, and the other is the unusual dHvA-like oscillation which is
seen even in the system without the Fermi surface.

DOI: 10.1103/PhysRevB.96.085430

I. INTRODUCTION

α-(BEDT-TTF)2I3 is a two-dimensional organic conductor
[1,2] that has attracted interest recently due to the realization
of massless Dirac fermions [3–8]. There are four BEDT-TTF
molecules in the unit cell, as shown in Fig. 1, and four energy
bands are constructed by the highest occupied molecular orbits
(HOMOs) of BEDT-TTF molecules. The electron bands are
3/4 filled, since one electron is removed from two BEDT-TTF
molecules. Therefore, the system is semimetallic when the
third and the fourth bands overlap, and it is an insulator when
there is a gap between two bands.

Katayama, Kobayashi, and Suzumura [3] have theoreti-
cally shown the realization of massless Dirac fermions in
α-(BEDT-TTF)2I3, where the third and the fourth bands touch
at two Dirac points. Two bands near the Fermi energy can be
approximately described by the tilted Weyl equation [4]. The
existence of massless Dirac fermions in α-(BEDT-TTF)2I3 has
been confirmed experimentally [5–8].

The energy dispersion of massless Dirac fermions near the
Dirac points is linear, which is called a Dirac cone. Recently, by
considering the anisotropy of the nearest-neighbor hoppings on
a honeycomb lattice [9,10] it has been found that the dispersion
is quadratic in two directions and linear in the two other
directions when two Dirac points merge at a time-reversal-
invariant point. That special point was named the semi-Dirac
point in VO2/TiO2 nanostructures [11]. The semi-Dirac point
has been also shown to exist in α-(BEDT-TTF)2I3 at high
pressure theoretically [12,13].

When the magnetic field (H ) is applied to two-dimensional
systems, the energies are quantized. In many papers the effects
of the magnetic field have been studied semiclassically [14]
which is explained in Appendix A. However, a treatment in a
quantum mechanical manner is possible for simple cases. For
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example, the energies are given by

ε(massive)
n ∝ (

n + 1
2

)
H, n = 0,1,2 (1)

for two-dimensional massive free electrons [15] and

ε(Dirac)
n ∝ sgn(n)

√
|n|H, n = 0, ± 1, ± 2, . . . (2)

for massless Dirac fermions [graphene [16,17] and
α-(BEDT-TTF)2I3 [18,19], where the linearization of the
energy dispersion has been done]. Moreover, on the honey-
comb lattice with the semi-Dirac point, Dietl, Piechon, and
Montambaux [10] have found magnetic field dependencies
that are given by

ε(semi-Dirac)
n ∝ sgn(n)g(n)

(∣∣∣∣n + 1

2

∣∣∣∣H
) 2

3

,

n = 0, ± 1, ± 2, . . . , (3)

where g(0) � 0.808, g(±1) � 0.994, and g(n) � 1 for
|n| � 2.

In this study, we show the existence of a type of band
crossing that we denote “three-quarter” Dirac points because
the dispersion relation is quadratic in one direction and linear
in the other three directions. Furthermore, we study the
magnetic field dependencies of the energy in various cases
of semimetallic state, critically tilted Dirac cones, massless
Dirac fermions, and massive Dirac fermions.

In the tight-binding electrons, rich structures such as the
broadening of the Landau levels (Harper broadening [20]) and
recursive gap structures are seen on the square lattice [21–23]
and on the honeycomb lattice [24–26]. These characteristic
graphs are called the Hofstadter butterfly diagrams. Recently,
we have studied the de Haas–van Alphen (dHvA) oscillation
[15] in the tight-binding model for (TMTSF)2NO3 where elec-
tron and hole pockets coexist [27–29]. In that system the dHvA
oscillation has been usually studied in the phenomenological
theory of magnetic breakdown [30,31] and the Lifshitz and
Kosevich (LK) formula [32,33]. The dHvA oscillation and the
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FIG. 1. The schematic figure of the tight-binding model for
α-(BEDT-TTF)2I3. The unit cell is the rectangle in (a) and (b). The
transfer integrals (ta1, ta2, ta3, tb1, tb2, tb3, and tb4) are shown as ovals.

LK formula [34–37] are explained in Appendix B. We have
shown that the magnetic field dependence of the amplitude of
the dHvA oscillation at zero temperature is different from that
of the LK formula due to the Harper broadening [38]. We have
also obtained the dHvA-like oscillation on the honeycomb
lattice even if the system is an insulator [26]. We investigate
the oscillation of the magnetization in the Hofstadter butterfly
diagrams for α-(BEDT-TTF)2I3 in this paper.

In α-(BEDT-TTF)2I3, the metal-insulator transition is
observed at T = 135 K, which is thought to be caused by
the charge ordering [39–42]. The metal-insulator transition is
suppressed by pressure. Tajima et al. have observed from the
conductivity that the charge ordering disappears at a uniaxial
pressure, P � 10 kbar [43]. In the hydrostatic pressure, the
charge ordering has not been observed above 17 kbar from
the magnetoconductivity [44] and above 11–12 kbar from the
optical investigations [45] and conductivity [46]. In this paper
we do not study the interaction between electrons, so we are
not concerned with the metal-insulator transition caused by
the charge ordering.

II. ENERGY BAND AND UNIAXIAL PRESSURE EFFECT

The energies of α-(BEDT-TTF)2I3 are described by the
two-dimensional tight-binding model. The transfer integrals
are taken between neighboring sites as shown in Fig. 1 and they
are given as functions of pressure as the interpolation formulas
[3,13,47–50]. In this study, we use the following interpolation
formula [13,47,48] (hereafter, we employ eV and kbar as the
units of transfer integrals and the pressure, respectively):

ta1 = −0.028(1.0 + 0.089P ),

ta2 = −0.048(1.0 + 0.167P ),

(a)

(b)

(c)

FIG. 2. (a) The third and fourth energy bands (ε0
3 and ε0

4) at P = 0,
where ε0

3t � 0.17805, ε0
D � 0.16094, and ε0

4b � 0.16011. (b) is a view
of (a) from a distant viewpoint along the ky axis. (c) is an enlarged
view of (a) near the Dirac point, kD.

ta3 = 0.020(1.0 − 0.025P ),

tb1 = 0.123,

tb2 = 0.140(1.0 + 0.011P ),

tb3 = 0.062(1.0 + 0.032P ),

tb4 = 0.025, (4)

where P is the uniaxial strain along the y axis. The Hamilto-
nian in this tight-binding model is explained in Appendix C
for h = 0 and in Appendix D for h �= 0.

By using the pressure-dependent hoppings [Eq. (4)] we
show the third band and the fourth band at P = 0, 3.0, 5.0, 39.2,
and 50 in Figs. 2–6. These contour plots except for the case of
P = 50 are shown in Figs. 7–10. Katayama, Kobayashi, and
Suzumura [3] have shown that at P � 3.0 the third band and
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(a)

(b)

(c)

FIG. 3. The same as Fig. 2 except for P = 3.0, where ε0
3t = ε0

4b =
ε0

D = ε0
F � 0.16887.

the fourth band touch each other at two Dirac points (±kD)
with the energy (ε0

D) which are the same as the tops of the third
band (ε0

3t) at k = ±k3t and the bottoms of the fourth band (ε0
4b)

at k = ±k4b. The Fermi energy for the 3/4-filled (ε0
F) is equal

to ε0
D, as shown in Fig. 11(a). This is supported from the first-

principles band calculations by Kino and Miyazaki [51] and
Alemany, Pouget, and Canadell [52]. It has been also known
that the system is semimetallic at P < 3.0, where the Fermi
surfaces are shown in Fig. 12. There are a hole pocket centered
at k3t = (0,π/b) and an electron pocket enclosing two Dirac
points at k = (π/a,0). An electron pocket separates into two
small electron pockets with the same area at 0.2 � P < 3.0,
as shown in Fig. 12.

We find interesting features of the third and fourth bands
near the Fermi energy at P � 3.0. When P < 2.3, the Dirac
cones are overtilted (for example, see Fig. 2 at P = 0), where
ε0

D at kD is larger than ε0
4b at k4b, which can be also seen in

(a)

(b)

(c)

FIG. 4. The same as Fig. 2 except for P = 5.0, where ε0
3t = ε0

4b =
ε0

D = ε0
F � 0.17479.

Fig. 11(a). As p increases, k4b and kD move on the kx-ky plane
and these wave numbers coincide at P = 2.3, as shown in
Fig. 11(b). In this case we have to take into account higher order
terms in energy dispersion at Dirac points, and the quadratic
term in one direction makes ε0

D at the Dirac points to be the
global minima of the fourth band [i.e., ε0

D = ε0
4b; see Figs. 11(a)

and 13]. On the other hand, ε0
D is not the local maximum of the

third band, as shown in Fig. 13. At P = 2.3 the Dirac cones
are critically tilted, which have a quadratic dispersion in one
direction and linear dispersions in the other three directions. In
this sense, we name the Dirac cones at P = 2.3 “three-quarter”
Dirac cones and these touching points “three-quarter” Dirac
points [±ktq = ±kD � ±(0.6270π/a,0.4058π/b)]. At 2.3 <

P < 3.0, ε0
D is the global minimum of the fourth band and

the local maximum of the third band, as shown in Fig. 14(a)
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FIG. 5. The third and fourth energy bands at P = 39.2. Two Dirac
points merge at the � point.

at P = 2.75. At P = 3.0 the Dirac cone of the third band is
almost laid, as shown in Figs. 3 and 14(b). Since the density of
states near the Dirac points is proportional to |ε0 − ε0

D| and the
density of states near the global maximum of the third band is
constant, we obtain at 2.3 < P < Pc = 3.0 (see Appendix E)

ε0
3t − ε0

F ∝ (Pc − P )2, (5)

which can be seen in Fig. 11(a).
At 3.0 < P < 39.2, ε0

D is the global minimum of the fourth
band and the global maximum of the third band; i.e., massless
Dirac fermions are realized [3], as shown in Fig. 14(c) at
P = 3.5 and Fig. 4 at P = 5.0. Three bands from the bottom
are fully occupied and the fourth band is completely empty at
T = 0.

Two Dirac points move and merge [13] at a semi-Dirac
point (� point) at P = 39.2, as shown in Fig. 5. At P > 39.2,
the energy gap becomes finite [13]. The top of the third band
and the bottom of the fourth band are approximately given by
the anisotropic parabolic bands [12,53], where massive Dirac
fermions are realized, as shown in Fig. 6 at P = 50.

FIG. 6. The third and fourth energy bands at P = 50. The top
of the third band and the bottom of the fourth band are obtained as
ε0

3t � 0.41471 and ε0
4b � 0.45378, respectively.

(a)

(b)

FIG. 7. Contour plots of the fourth band (a) and the third band
(b) at P = 0. The electron and hole pockets depicted by dotted black
lines are the Fermi surface at ε = ε0

F � 0.16925. The areas of these
electron and hole pockets (Ae and Ah) are about 0.0715 of the area of
the first Brillouin zone (ABZ). The third and the fourth bands touch at
two Dirac points (orange points), ±kD � ±(0.6600π/a,0.4854π/b).
The third band has a top energy (ε0

3t) at a black point, k3t = (0,π/b).
The fourth band has the bottom energy (ε0

4b) at two blue points,
±k4b = ±(0.7455π/a,0.4530π/b).

Based on these results, we give a schematic phase diagram
as a function of P in Fig. 15. The semimetallic state is divided
to two phases (I and II) at P < 2.3 and at 2.3 < P < 3.0.

III. ENERGY IN MAGNETIC FIELD

We obtain the energy in the magnetic field as eigenvalues
of a 4q × 4q matrix, when the magnetic flux in the unit cell
(�) is a rational number in the unit of the flux quantum (φ0 =
2πh̄c/e � 4.14 × 10−15 T m2), i.e.,

h = �

φ0
= p

q
, (6)

where p and q are integers. This is explained in Appendix D.
Hereafter, we represent the magnetic field by h. Since
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(a)

(b)

FIG. 8. Contour plots of the fourth band (a) and the third band
(b) at P = 3.0. The third band and fourth band touch at two orange
points, ±kD � ±(0.6169π/a,0.3835π/b).

a � 9.211 Å and b � 10.85 Å in α-(BEDT-TTF)2I3 [1], h = 1
corresponds to H � 4.14 × 103 T. The lowest magnetic field
studied in this paper is h = 2/1901, i.e., H � 4.36 T.

We show the energies as a function of h (the Hofstadter
butterfly diagrams) at P = 0, 5.0, and 39.2 in Fig. 16. The
energies near the Fermi energy at P = 0, 3.0, 5.0, and 39.2 are
shown in Fig. 17. If q is small, each band may be broadened,
and we have to consider the k dependence of the energy. If
q is large, the widths of 4q bands become narrow, and the
k dependencies of each band can be neglected, as long as the
contour line of the energy in the wave-number space is closed at
h = 0. When the contour line of the energy in the wave-number
space is open, which is the case for ε0 � 0.175 at P = 0
[Fig. 7(a)], we have to consider the k dependencies in each
band. In fact, the energies are broadening above ε � 0.175,
as shown in Figs. 17(a) and 18. There are 4q bands, some of
which may overlap each other.

When the chemical potential is in the energy gap in the
magnetic field, Hall conductance is quantized. The quantized
value is obtained as a first Chern number [54–56]. It is also
given as a solution of the Diophantine equation [55,56],

r = qsr + ptr , (7)

where p and q are given in Eq. (6), r is the number of energy
bands below the chemical potential, and sr and tr are integers

(a)

(b)

FIG. 9. Contour plots of fourth band (a) and the third band (b) at
P = 5.0.

obtained in this Diophantine equation. Although sr and tr
are not given uniquely from Eq. (7), we can uniquely assign
integers (sr and tr ) in the energy gaps in the Hofstadter butterfly
diagrams. In this system, sr and tr are shown in Fig. 17.

A. Semimetallic state I at P < 2.3

The energy near the Fermi energy at P = 0 at the relatively
low magnetic field is shown in Fig. 18. We fit the energy levels
for the fourth band starting from h = 0 and ε = ε0

4b as

εn − ε0
4b ∝ hδn, (8)

where δn = 0.9, 0.89, and 0.86, as shown in Fig. 18. Those
Landau levels are not linear in h. If a fitting could be performed
at very low magnetic fields, δn = 1 would be obtained due
to the parabolic dispersion of the fourth band around ε0

4b
[see Fig. 2(c)]. However, h is not sufficiently low in Fig. 18.
Therefore, the deviation from the parabolic dispersion around
ε0

4b makes the fitting parameter δn to be smaller than 1.
Two upward-sloping Landau levels starting from ε0

4b in
Fig. 18 are almost degenerate at low h and below ε0

F. They are
smoothly separated near ε0

F. The lift of the degeneracy of the
Landau levels around ε0

F (Fig. 12) is understood semiclassically
as follows. The fourth band has minima ε0

4b at ±k4b [see Fig. 2
and Fig. 7(a)]. When the energy is located between ε0

4b and the
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(a)

(b)

FIG. 10. Contour plots of the fourth band (a) and the third band
(b) at P = 39.2, where ε0

F � 0.36165. Two Dirac points merge at a
� point [orange point, (akx/π,bky/π ) = (0,0)].

energy at the saddle point [k = (π/a,0)] of the fourth band,
as seen in Fig. 7(a), the contour line of energy in the fourth
band consists of two closed regions (two electron pockets).
Two minima are considered to be independent, resulting in
the degenerated Landau levels. When the energy is larger than
that at the saddle point, the contour line of energy in the fourth
band is one closed loop, making no degeneracy of Landau
levels. The energy at the saddle point is close to ε0

F. A similar
situation has been studied by Montambaux, Piechon, Fuchs,
and Goerbig [12,53].

The Landau levels for the third band are fitted by

εn = −0.12
(
n + 1

2

)
h + ε0

3t, n = 0,1,2, . . . , (9)

which are depicted by black broken lines in Fig. 18. These
Landau levels are understood as the Landau quantization for a
free hole pocket centered at k = k3t.

B. Three-quarter Dirac points at P = 2.3

In order to write the energy near three-quarter Dirac points
at P = 2.3 we take a model (see Appendix F) as

H0
tqD =

( −wxqx + α′
2q

2
x wxqx + α′′

2q2
x − iwyqy

wxqx + α′′
2q2

x + iwyqy −wxqx + α′
2q

2
x

)
,

(10)

(a)

(b)

FIG. 11. (a) Pressure dependencies of the energies at the Dirac
point (ε0

D, orange open squares), the top of the third band (ε0
3t, black

filled triangles), the bottom of the fourth band (ε0
4b, blue filled circles),

and the Fermi energy for the 3/4 filled (ε0
F, green filled inverse

triangles). All of the energies ε0
3t, ε0

4b, ε0
D, and ε0

F become the same
values at P � 3.0. At P = 2.3 the Dirac points become three-quarter
Dirac points (TQ-D). (b) Pressure dependencies of the wave numbers
of the Dirac point (kD, orange open squares) and the bottom of the
fourth band (k4b, blue filled circles).

where q = 0 corresponds to ktq. The eigenvalues are obtained
as

ε0
tqD±(q) = −wxqx + α′

2q
2
x ±

√(
wxqx + α′′

2q2
x

)2 + (wyqy)2.

(11)

The fourth band and the third band correspond to ε0
tqD+(q) and

ε0
tqD−(q), respectively. The energy ε0

tqD+(q) around q = (0,0)
is linear in three directions q = ±(0,|qy |) and q = (−|qx |,0)
but quadratic in one direction q = (|qx |,0), when wx > 0.
Therefore this model represents the dispersion near a three-
quarter Dirac point, as shown in Fig. 13. We obtain the area
enclosed by the constant energy line at ε0

tqD+(q) = ε to be

A(ε) �
√

2wxπ

4wy

α
− 3

4
2 ε

5
4 , (12)

where α2 = α′
2 + α′′

2 , in the limit of ε → +0. Equation
(12) is derived in Appendix F. By using Eq. (12) and the
semiclassical quantization rule of Eq. (A1) with γ = 0, we
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(a)

(b)

(c)

FIG. 12. Fermi surfaces at P = −1.0 (a) and P = 0 (b) in the
extended zone, where arrows indicate the direction of the orbital
motion for electrons in the magnetic field (clockwise for hole pockets
and counterclockwise for electron pockets). In (b), a green area is
half of Ae. In (c), the Fermi surfaces for P = 0.2,1.0,2.0,2.5, and
2.75 in the first Brillouin zone are shown, where orange points are for
kD at P = −1.0,0, and 3.0 and black points are for k3t at P = −1.0
and 0. The wave number, k3t , stays at (0,π/b) at P < 3.0. We obtain
Ae = Ah � 0.0903 at P = −1.0, Ae = Ah � 0.0715 at P = 0, and
Ah � 0.0479 at P = 1.0 in the unit of the area of the Brillouin zone,
where Ae and Ah are the areas of an electron pocket and a hole pocket,
respectively. The ratio of cyclotron masses for an electron pocket and
a hole pocket (me/mh) are about 0.71, 0.63, and 0.61 at P = −1.0,
0, and 1.0.

obtain semiclassically the Landau levels for three-quarter
Dirac cones in the fourth band as

ε(three-quarter Dirac)
n − ε0

D ∝ (nh)
4
5 . (13)

(c)

(b)

(a)

FIG. 13. Energy dispersion near the Dirac point (three-quarter
Dirac point) at P = 2.3 from three different viewpoints [(a), (b), and
(c)]. In (c), 0.35π/b � ky < 0.45π/b.

The Landau levels starting from ε = ε0
D at h = 0 are fitted

as

ε0 = ε0
D, (14)

ε1 = 0.158h0.8 + ε0
D, (15)

ε2 = 0.158(2h)0.8 + ε0
D, (16)

ε3 = 0.158(3h)0.8 + ε0
D, (17)

as shown in Fig. 19(a), which are consistent with the
semiclassical quantization of the energy [Eq. (13)]. The level
ε0 is not as clearly seen as ε1, ε2, and ε3. The reason for
the ambiguous energy levels of n = 0 in Fig. 19(a) might
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(a)

(b)

(c)

FIG. 14. Energy dispersion near the Dirac point from a viewpoint
along the ky axis at P = 2.75 (a) and P = 3.0 (b), where 0.3π/b �
ky < π/b, and at P = 3.5 (c), where 0.25π/b � ky < π/b.

be the mixing of the n = 0 Landau level for the fourth band
and the Landau levels for the third band with a negligible
tunneling barrier at three-quarter Dirac points.

0        2.3  3      5               39.2 P (kbar)

TQ-D Semi-D

Massless Dirac 
fermions

Insulator
(Finite gap)

0
b4

0
D = εε

0
F

0
D

0
b4

0
t3 === εεεε0

4b
0
D > εε

Semimetallic
state I

Semimetallic
state II

FIG. 15. A schematic phase diagram as a function of P . In
semimetallic phase I (P < 2.3), ε0

D > ε0
4b. In semimetallic phase II

(2.3 < P < 3.0), ε0
D = ε0

4b.

(a)

(b)

(c)

FIG. 16. Energies as a function of h for P = 0 (a), P = 5.0 (b),
and P = 39.2 (c). We take h = p/q with q = 79 and p = 2m, where
m = 1,2,3, . . . ,4q.

When the magnetic field is low, the Landau levels for the
third band are approximately written by

εn = −0.054
(
n + 1

2

)
h + ε0

3t, n = 0,1,2, (18)

which comes from a hole pocket centered at k = k3t.

C. Semimetallic state II at 2.3 < P < 3.0

At 2.3 < P < 3.0, ε0
D is the global minimum of the fourth

band but only the local maximum of the third band. The global
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(a)

(b)

(c)

(d)

FIG. 17. Energies as a function of h for P = 0 (a), P =
3.0 (b), P = 5.0 (c), and P = 39.2 (d). We take h = 2m

499 (m =
1,2,3, . . . ,99) and h = 2(2m−1)

998 (m = 1,2,3, . . . ,100), namely, where
p/q = 2/998,2/499,6/998,4/499, . . . ,198/499,398/998.

maximum of the third band, ε0
3t, is obtained at k3t = (0,π/a).

The Fermi energy, ε0
F, is between ε0

D and ε0
3t. We defined this

state as semimetallic state II (see Fig. 15).

FIG. 18. Energies near the Fermi energy as a function of
h at P = 0, where ε0

F � 0.16925. We take h = 2/q (q =
200,201, . . . ,799,800).

At P = 2.75 the Landau levels for the fourth band are
fitted by

εn − ε0
D ∝ h0.73, (19)

as shown in Fig. 19(b). The fitting parameter (the power of
h) is obtained to be 0.73, which is different from 0.8 expected
in the case of the three-quarter Dirac point at P = 2.3. The
effect of the finite linear term in one direction, which is zero in
the case of the three-quarter Dirac point, is not large enough
to make the fitting parameter to be 0.5 in the region of the
magnetic field in Fig. 19(b).

The Landau levels for the third band [Fig. 19(b)] are fitted
by

εn = −0.033
(
n + 1

2

)
h + ε0

3t, n = 0,1,2, . . . , (20)

which is understood as the Landau quantization of a free hole
pocket.

The energies as a function of a magnetic field are changed
smoothly as a pressure P is changed in the semimetallic state
II [Figs. 19(a)–19(c)]. The fitting parameters (the power in
h) for the quantized energy in the fourth band are changed
continuously from 4/5 (three-quarter Dirac point) to smaller
values, while the quantized energies in the third band are well
fitted by the Landau levels for a free hole band, as long as the
quantized energy is larger than the energy at the Dirac point.
The quantization of the energy of the third band at P = 3.0 is
discussed in the following subsection.

D. At the critical pressure Pc = 3.0

The energy ε0
3t at k3t = (0,π/a) is the same as ε0

D at P = 3.0
[see Figs. 11(a) and 14(b)]. Then the third band is almost
constant at the line connecting ε0

3t and ε0
D. We calculate the

magnetic field dependence of the energy [Fig. 19(c)]. The
log-log plot near the Fermi energy is shown in Fig. 20.
The energies for the fourth band are fitted by

εn − ε0
F ∝ h0.7. (21)
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(a)

(b)

(c)

FIG. 19. Energies near the Fermi energy as a function of h

for P = 2.3 (a), P = 2.75 (b), and P = 3 (c). We choose p = 2
and 200 � q � 1000 (q = 200,201, . . . ,999,1000) for (a) and (b)
and p = 2 and 100 � q � 800 (q = 100,101, . . . ,799,800) for (c),
respectively.

Equation (21) is obtained from a fitting at the intermediate
magnetic field. If we could perform a fitting at the low magnetic
field limit, we could obtain ∝ √

h.

(a)

(b)

FIG. 20. The log-log plot of Fig. 19(c) at P = 3.0 at 0.025 �
h � 0.04 (10.4 T � H � 166 T). (a) The energy larger than ε0

F,
which corresponds to the fourth band at h = 0 and (b) the energy
smaller than ε0

F, which corresponds to the third band at h = 0.

For the third band, the quantized energies below ε0
F are fitted

by

εn = −0.0196
(
n + 1

2

)
h + ε0

F, n = 0,1,2 (22)

for h � 0.005 and

ε0
F − εn ∝ h2 (23)

for h � 0.01 as shown in Fig. 20(b).
The magnetic field dependencies of Eqs. (22) and (23) can

be understood as follows. When the magnetic field is weak
(h � 0.005), the energy is quantized as the Landau levels for a
free hole pocket around k3t. On the other hand, when h � 0.01,
we can neglect the small curvature around k3t and very small
regions of local maxima around ±kD. Then, an almost flat ridge
from kD to −kD via k3t is quantized in the intermediate value
of the magnetic field. We consider a model for this situation as

H0,ridge = 1

2m
p2

x + V (py), (24)
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where

V (py) =
{

0, if |py | < p0,

∞, otherwise, (25)

where p0 is the length of the ridge, i.e., p0 � 2h̄|kD − k3t|. In
the presence of the magnetic field, p is replaced by

−ih̄∇ − e

c
A, (26)

where A is vector potential, and we take

A = (0,Hx,0). (27)

Then the eigenvalue εridge is obtained by the equation,{−h̄2

2m

∂2

∂x2
+ V

(
−ih̄

∂

∂y
− e

c
Hx

)}
�(x,y) = εridge�(x,y).

(28)
The eigenstates are obtained as

�(x,y) = eikyyψ(x), (29)

where ψ(x) is a solution of{−h̄2

2m

d2

dx2
+ V

(
h̄ky − e

c
Hx

)}
ψ(x) = εridgeψ(x). (30)

Since Eq. (30) is the Schrödinger equation for the one-
dimensional quantum well with width 2c/(eHp0), the eigen-
value is quantized as

εridge
n = h̄π2p2

0e
2

8mc2
(nH )2, (31)

where n = 1,2,3, . . .. In spite of the simple approximation
[Eqs. (24) and (25)], we can explain the h2 dependence seen
in Fig. 20(b).

E. Dirac fermions system at 3.0 � P < 39.2, semi-Dirac
fermions at P = 39.2, and massive Dirac fermions system

at P > 39.2

We show the energies near the Fermi energy as a function of
h at P = 5.0, 39.2, and 50 in Fig. 21 at the low magnetic field.
The magnetic field dependencies of the energies at P = 5.0
are fitted by

εn =
{

0.064
√

nh + ε0
F, n = 0,1,2,3,4,

−0.066
√|n|h + ε0

F, n = 0, − 1, − 2, − 3, − 4,

(32)

which is expected in the system with massless Dirac fermions
[Eq. (2)].

At P = 39.2 the dispersion is parabolic in two directions
and linear in the other two directions at the semi-Dirac point,
as shown in Fig. 5. The magnetic field dependencies of the
energies near ε0

F at the low magnetic field are fitted by

εn =
⎧⎨
⎩0.39g+(n)

[(
n + 1

2

)
h
] 2

3 + ε0
F, n = 0,1,2,

−0.58g−(n)
[∣∣n + 1

2

∣∣h] 2
3 + ε0

F, n = 0, − 1, − 2,

(33)

where g+(0) � 0.769, g−(0) � 0.897, and g(n) = 1 for |n| =
1,2, as shown in Fig. 21(b). This magnetic field dependence is
expected in the system with the semi-Dirac point [Eq. (3)].

(a)

(b)

(c)

FIG. 21. Energies as a function of h for P = 5.0 (a),
P = 39.2 (b), and P = 50 (c). We choose p = 2 and q =
1901,1851,1801, . . . ,451,401.

At P = 50, where massive Dirac fermions are realized, the
Landau levels are fitted by

εn = −2.5
(
n + 1

2

)
h + ε0

3t, (34)
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εn = 1.4
(
n + 1

2

)
h + ε0

4b, (35)

where n = 0,1,2. Equations (34) and (35) are due to the
anisotropic parabolic bands.

IV. TOTAL ENERGY, MAGNETIZATION, AND DE
HAAS–VAN ALPHEN OSCILLATION

In this section we study the total energy and the magneti-
zation. It has been known [15] that the total energy and the
magnetization as a function of the magnetic field depend on
whether we fix the chemical potential (μ, i.e., grand canonical
ensemble) or the electron number (N , or equivalently electron
filling ν = N/Ns , where Ns is the site number, i.e., canonical
ensemble).

In the case of fixed μ, the thermodynamic potential (�) per
sites at the temperature T is calculated as

� = − kBT

4qNk

4q∑
i=1

∑
k

ln

{
exp

(
μ − ε(i,k)

kBT

)
+ 1

}
, (36)

where kB is the Boltzmann constant, Nk is the number of k
points taken in the magnetic Brillouin zone, 4q is the number
of bands in the presence of the magnetic field, and ε(i,k) are
the eigenvalues of the 4q × 4q matrix in Eq. (D11). The site
number, Ns , is given by Ns = 4qNk . At T = 0, � becomes
the total energy for the fixed μ,

Eμ = 1

4qNk

∑
ε(i,k)�μ

[ε(i,k) − μ]. (37)

If the system is isolated from the reservoir of electrons,
electron number (or electron filling ν) is conserved and
the chemical potential changes depending on the magnetic
field. Although it has been known that the magnetic field
dependence of μ is negligibly small if we consider the effects
of the three-dimensionality, thermal broadening, compensated
metals, electron or hole reservoirs, etc. [30,31,57–64], the
magnetic field dependence of μ cannot be neglected in
two-dimensional systems in general. The chemical potential
μ as a function of the magnetic field with fixed ν should be
obtained by the solution of the equation,

ν = 1

4qNk

4q∑
i=1

∑
k

1

exp
(

ε(i,k)−μ

kBT

) + 1
, (38)

where we take ν = 3/4 in this study. Using the magnetic-field-
dependent μ, the Helmholtz free energy (F ) per sites at T is
calculated as

F = − kBT

4qNk

4q∑
i=1

∑
k

ln

{
exp

(
μ − ε(i,k)

kBT

)
+ 1

}
+ μν.

(39)
At T = 0 it becomes the total energy with fixed ν,

Eν = 1

4qNk

∑
ε(i,k)�μ

ε(i,k). (40)

In this paper we study the systems with fixed chemical
potential and fixed electron number at T = 0. We show Eν

(a)

(b)

(c)

(d)

FIG. 22. Total energies as a function of h at P = −1.0 (a), P = 0
(b), P = 1.0 (c), and P = 3.0 (d) with the fixed μ = ε0

F. The same
values of h = p/q are used as those in Fig. 29.

and Eμ at P = −1.0,0,1.0, and 3.0 for the low magnetic field
in Figs. 22 and 23 and those for the high magnetic field at
P = −1.0,0,1.0,3.0,4.0,5.0, and 39.2 in Figs. 24 and 25. We
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(a)

(b)

(c)

(d)

FIG. 23. Total energies as a function of h at P = −1.0 (a), P = 0
(b), P = 1.0 (c), and P = 3 (d) with the fixed ν = 3/4. The same
values of h = p/q are used as those in Fig. 29.

have checked that if q is large enough as taken in the present
study, the wave-number dependence of the eigenvalues ε(i,k)
is very small and we can take Nk = 1.

(a)

(b)

(c)

FIG. 24. Total energies as a function of h at P = −1.0 (a), P =
0 (b), and P = 1.0 (c). We take h = 2m

499 (m = 1,2,3, . . . ,99), h =
2(2m−1)

998 (m = 1,2,3, . . . ,100), and h = 32
q

(q = 173,175, . . . ,355).

The magnetizations are obtained for fixed μ and for fixed
ν by

Mν = −∂Eν

∂h
, (41)

Mμ = −∂Eμ

∂h
, (42)

respectively, where the derivative with respect to h is calculated
by the numerical differentiation. The magnetizations (Mν and
Mμ), calculated from Eν and Eμ in Figs. 22–25, are shown in
Figs. 26–28.
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(a)

(b)

(c)

FIG. 25. Total energies as a function of h at P = 3.0 (a), 4.0 and
5.0 (b), and P = 39.2 (c). We take h = 2m

499 (m = 1,2,3, . . . ,99), h =
2(2m−1)

998 (m = 1,2,3, . . . ,100), and h = 32
q

(q = 173,175, . . . ,355).

A. Semimetallic system at P < 3.0

At P = −1.0 there are an electron pocket (its area is
Ae/ABZ = 0.0903, where ABZ is the area of the first Brillouin
zone) and a hole pocket (Ah), as shown in Fig. 12(a).
These areas are the same (Ae = Ah). These areas become
Ae/ABZ = Ah/ABZ = 0.0715 at P = 0 [Fig. 12(b)]. There is
a small neck in an electron pocket around k = (π/a,0) or
k = (−π/a,0), as indicated by black arrows in Figs. 12(a)
and 12(b). At P � 0.2 an electron pocket separates around
the small neck into two small electron pockets with the half
area, Ae/2. At P = 1.0, Ae/ABZ = Ah/ABZ = 0.0479 and
Ae/(2ABZ) = 0.0240, as shown in Fig. 12(c).

(a)

(b)

(c)

(d)

FIG. 26. Magnetizations as a function of 1/h at P = −1.0 (a),
P = 0 (b), P = 1.0 (c), and P = 3.0 (d), calculated by numerical
differentiation of total energies in Fig. 22.

The obtained magnetizations are periodically oscillated as
a function of 1/h, as shown in Figs. 26 and 27, where main
frequencies f are 0.0902 at P = −1.0, 0.0714 at P = 0, and
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(a)

(b)

(c)

(d)

FIG. 27. Magnetizations as a function of 1/h at P = −1.0 (a),
P = 0 (b), P = 1.0 (c), and P = 3.0 (d), calculated by the numerical
differentiation of total energies in Fig. 23.

0.0239 at P = 1.0. These frequencies correspond to the areas
of electron and hole pockets at h = 0, which are considered
as the dHvA oscillation. Actually, the Landau levels for an

(a)

(b)

FIG. 28. Magnetizations with 3/4 filling as a function of h (a)
and as a function of 1/h (b) at P = −1.0,0,1.0,3.0,4.0,5.0, and
39.2. The same values of h = p/q as those in Figs. 24 and 25 are
used.

electron pocket (upward-sloping lines) and for a hole pocket
(downward-sloping lines) are crossing the Fermi energy at
h = 0 (a black dotted line), as shown in Figs. 29(a)–29(c).
There is no dHvA oscillation at P = 3.0 in the region 1/400 �
h � 1/200, which is consistent with the fact that there are no
Fermi surface at P = 3.0 and h = 0.

The Fourier transform intensities (FTIs) of Mν and Mμ

which are defined in Appendix G are plotted in Fig. 30.
The FTIs of Mν and Mμ at P = −1.0 are almost the same
[Fig. 30(a)] because the oscillation of the Fermi energy as a
function of h (a blue thin line) is small, as shown in Fig. 29(a).
There are the peaks of the FTIs at f = fe = Ae/ABZ = fh =
Ah/ABZ, f = 2fe = 2fh, f = 3fe = 3fh, etc., and the height
of the lth harmonics is smaller for larger l. These are the same
as that of the LK formula of a closed Fermi surface.

The FTIs of Mν are different from those of Mμ in the cases
of P = 0 and P = 1.0 [Fig. 30(b)], where the oscillations of
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the Fermi energy are not small, as shown in Figs. 29(b) and
29(c).

We discuss the largest peaks at fe and the second largest
peaks at fe/2 in Mν and Mμ at P = 0, as shown in Fig. 30(b).
The dHvA oscillation with fe is due to the crossing of
nondegenerated Landau levels and ε0

F [see Fig. 29(b)]. These
Landau levels come from an electron pocket with Ae in
Fig. 12(b). On the other hand, the frequency fe/2 corresponds
to the half area of an electron pocket [the green area in
Fig. 12(b)]. The dHvA oscillation with fe/2 is explained by
the magnetic breakdown in the semiclassical theory (i.e., a
realization of an effectively closed electron’s motion by the
tunneling). In our numerical study, the effect of the magnetic
breakdown is taken into account naturally. Therefore, we can
understand the magnetic breakdown as the separations of the
Landau levels around blue circles in Fig. 29(b). When the
magnetic field and the energy are lower than blue circles,
the Landau levels are almost degenerated, which are due to two
small electron pockets with Ae/2. Although these degenerated
Landau levels do not cross ε0

F [see Fig. 29(b)], since the
separations of the Landau levels (blue circles) occur below
and close to ε0

F, the dHvA oscillation with fe/2 becomes finite
in Fig. 30(b). At P = −1.0, the separations are not seen in the
regions of the magnetic field and the energy [Fig. 29(a)]. As a
result, there is no peak at fe/2.

There are the largest peaks at fe/2 in Mν and Mμ at P = 1.0
[Fig. 30(c)], which is consistent with the result expected in the
LK formula because of two electron pockets with Ae/2 [red
circles in Fig. 12(c)]. Since there is a hole pocket with Ae [a
blue circle in Fig. 12(c)], the dHvA oscillations with fe and its
higher harmonics are expected. In fact, ε0

F (a black dotted line)
crosses Landau levels not only for two small electron pockets
(upward-sloping lines) but also for a hole pocket (downward-
sloping lines), as shown in Fig. 29(c). However, peaks at fe

and at 3fe are very small. The anomalous smallness of these
peaks is not expected in the LK formula.

B. Dirac fermions system at P � 3.0

The magnetization as a function of 1/h oscillates peri-
odically with the frequency corresponding to the area of the
Brillouin zone (f = 1) at h � 1/10, corresponding to about
414 T in α-(BEDT-TTF)2I3, as shown in Fig. 28(b). This
oscillation appears even in the case in which there is no
Fermi surface (P � 3.0). Although the usual dHvA oscillation
is caused by the crossing of the chemical potential and the
Landau levels, the obtained dHvA-like oscillation is not due
to the crossing. The origin of the oscillation is the Harper
broadening between a blue thick line and a green thin line, as
shown in Fig. 17(c).

The magnitude of this dHvA-like oscillation becomes small
as 1/h increases. The wave form of the oscillation at P � 3.0
is similar to the sawtooth pattern for fixed electron number
rather than the inverse sawtooth pattern in the LK formula for
the fixed chemical potential (see Appendix B). The wave form
at P < 3.0 is not sawtooth but sinusoidal-like, as shown in
Fig. 28.

The dHvA-like oscillation with f = 1 has also been
obtained on the honeycomb lattice [26]. If we use the lattice
constant (� 0.246 nm) of graphene, the oscillation appears

(a)

(b)

(c)

FIG. 29. Energies near the Fermi energy as a function of h at
P = −1.0 (a), P = 0 (b), and P = 1.0 (c). We choose p = 2 and
400 � q � 800 (q = 400,401, . . . ,799,800). The energy gaps are
labeled by tr = ±1, ±2, and ±3 with sr = 3. The Fermi energy
(εF) for 3/4 filling at h �= 0 are shown by the blue thin lines. The
Fermi energies (ε0

F) for 3/4 filling at h = 0 are 0.16794, 0.16925, and
0.17027 for P = −1.0, 0, and 1.0, respectively, which are indicated
by the black broken lines.

at a very high magnetic field (∼ 5000 T) [26]. Since the flux
through the unit cell in α-(BEDT-TTF)2I3 is larger than that
in graphene, it is expected to find the dHvA-like oscillation at
lower magnetic field. Very recently, the dHvA-like oscillation
in the system with no Fermi surface has been observed in
SmB6 [65] and studied theoretically in many models [66–69].
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(a)

(b)

(c)

FIG. 30. The FTIs of Mν and Mμ in Fig. 26 and Fig. 27 for P =
−1.0 (a), P = 0 (b), and P = 1.0 (c). In (a), 2L = 188.5 and 1/hc =
299.5. In (b), 2L = 196 and 1/hc = 300.75 for Mν and 2L = 196.3
and 1/hc = 301.55 for Mμ. In (c), 2L = 167.5 and 1/hc = 297.25
for Mν and 2L = 167.25 and 1/hc = 292.875 for Mμ.

V. CONCLUSIONS

We find a “three-quarter” Dirac point in the tight-binding
model of α-(BEDT-TTF)2I3 at P = 2.3 kbar, although this
point is hidden by the metal-insulator transition at low
temperature in the real system. At that pressure the Dirac cone
is critically tilted and we have to take account of quadratic
terms. Then the dispersion relation is linear in three directions
and parabolic in one direction at three-quarter Dirac points.

We obtain the energy as a function of the magnetic field
by taking the complex hopping integrals. We find the H 4/5

dependence due to three-quarter Dirac points at P = 2.3 kbar.
We also obtain the H 2 dependence at the intermediate
magnetic field strength at P = 3.0 kbar, which is caused by
the laid Dirac cone.

We numerically obtain the magnetic field dependencies of
the total energy and the magnetization [de Haas–van Alphen
(dHvA) oscillation] in both cases of fixed electron number
and fixed chemical potential. At P = 0 kbar we find the FTI
at the frequency corresponding to half the area of an electron
pocket which is not a closed orbit. This oscillation is attributed
to the smooth separations of the Landau levels as a function
of the magnetic field. This is a quantum mechanical picture
of the magnetic breakdown. At P = 1.0 kbar the FTI at the
frequency corresponding to the area of the hole pocket is
shown to be quite small, which cannot be explained by the
semiclassical LK formula.

When the system is considered to be massless Dirac
fermions at P > 3.0 kbar, we find the unusual dHvA-like
oscillation with the period corresponding to the area of the
first Brillouin zone at H � 400 T. This oscillation is thought
to be due to the Harper broadening of the Landau levels, which
is similar to the case on the honeycomb lattice [26].

Recently, the Landau levels in massless Dirac fermions have
been directly observed from the scanning tunneling spectra
[70]. The Landau levels for three-quarter Dirac cones and for
almost laid Dirac cones are expected to be observed if the
charge ordering is removed. Furthermore, the results for the
usual dHvA oscillation and the unusual dHvA-like oscillation
shown in this study will be observed. However, in order to
suppress the charge ordering, high pressures (the uniaxial
pressure of P � 10 kbar [43] and the hydrostatic pressure of
P � 11–12 kbar [46]) are needed. Therefore, the experiments
in the semimetallic state may be difficult to observe at low
temperature. It will be possible to observe the obtained results,
if the critically tilted Dirac cones or overtilted Dirac cones are
realized in other systems such as ultracold atoms [71] and
graphene under uniaxial strain [18].
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APPENDIX A: SEMICLASSICAL LANDAU
QUANTIZATION OF ENERGY

In the semiclassical theory, the energies of two-dimensional
electrons are quantized into the Landau levels (εn with integer
n) when the area of the closed Fermi surface in the wave-
number space A(εn) at H = 0 equals to the quantized value
proportional to the magnetic field, i.e.,

A(εn) = (n + γ )
2πeH

h̄c
, (A1)

where n is an integer, e is the electron charge, c is the speed of
light, h̄ is the Planck constant divided by 2π , and γ is a phase
factor which can be determined from the quantum mechanical
calculation (γ = 1/2 for massive free electrons and γ = 0 for
massless Dirac fermions).
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APPENDIX B: dHvA OSCILLATION AND LIFSHITZ AND
KOSEVICH FORMULA

The magnetization in metals oscillates periodically as a
function of the inverse of the magnetic field at low tempera-
tures, which is called the dHvA oscillation [15]. The period of
the dHvA oscillation is proportional to the extremal area of the
closed Fermi surface in a plane perpendicular to the magnetic
field in the semiclassical theory.

For the dHvA oscillation, the Lifshitz and Kosevich (LK)
formula [15,34] based on the semiclassical theory [14] is
derived in the case of the fixed chemical potential μ (the grand
canonical ensemble). The generalized LK formula at T = 0
for the two-dimensional metals with no impurity is given by

MLK = − e

2π2ch̄

A
∂A
∂μ

∞∑
l=1

1

l
sin

[
2πl

(
F

H
− γ

)]
, (B1)

where its frequency (F ) is given by

F = ch̄A

2πe
, (B2)

where A is the area of the closed Fermi surface at H = 0.
When we use h of Eq. (6) instead of H in Eq. (B1), we get

F

H
= f

h
, (B3)

where

f = A

ABZ
(B4)

and ABZ = 4π2/(ab) is the area of the Brillouin zone. The
amplitude of the oscillation at T = 0 is independent of h in
the LK formula.

In the two-dimensional system with a closed Fermi surface
at h = 0, Eq. (B1) becomes the sawtooth shape. If the electron
number is fixed in that system, the chemical potential jumps
from a Landau level to another Landau level as the magnetic
field increases. As a result, the sawtooth pattern as a function
of 1/h is inverted [15].

APPENDIX C: ENERGY AT H = 0

The Bravais lattice in our model [Fig. 1(a)] is given by

v1 = (a,0) (C1)

and

v2 = (0,b). (C2)

The Hamiltonian with the hoppings between neighboring sites
(ta1, ta2, ta3, tb1, tb2, tb3, and tb4; see Fig. 1) is given by

Ĥ0 =
∑

rj

{
ta1c

†
4,rj

c3,rj
+ ta1c

†
4,rj

c3,rj +v2 + ta2c
†
1,rj

c2,rj

+ ta3c
†
1,rj

c2,rj −v2 + tb1c
†
1,rj

c4,rj
+ tb1c

†
2,rj

c4,rj −v1

+ tb2c
†
1,rj

c3,rj
+ tb2c

†
2,rj

c3,rj −v1+v2 + tb3c
†
1,rj

c3,rj −v1

+ tb3c
†
2,rj

c3,rj +v2 + tb4c
†
1,rj

c4,rj −v1 + tb4c
†
2,rj

c4,rj
+ H.c.

}
,

(C3)

where c
†
1,rj

, c
†
2,rj

, c
†
3,rj

, and c
†
4,rj

(c1,rj
, c2,rj

, c3,rj
, and c4,rj

)
are creation (annihilation) operators for 1, 2, 3, and 4 sites in
the j th unit cell, respectively. By using the following Fourier
transform,

c1,rj
=

∑
k

eik·rj c1,k, (C4)

c2,rj
=

∑
k

eik·(rj +v2/2)c2,k, (C5)

c3,rj
=

∑
k

eik·(rj +v1/2−v2/4)c3,k, (C6)

c4,rj
=

∑
k

eik·(rj +v1/2+v2/4)c4,k, (C7)

we obtain the Hamiltonian as

Ĥ0 =
∑

k

C
†
kε̂kCk, (C8)

where

C
†
k = (c†1,k,c

†
2,k,c

†
3,k,c

†
4,k), (C9)

Ck =

⎛
⎜⎝

c1,k
c2,k
c3,k
c4,k

⎞
⎟⎠, (C10)

and ε̂k is a 4 × 4 matrix as follows:

ε̂k =

⎛
⎜⎝

0 A2 B2 B1

A∗
2 0 B∗

2 B∗
1

B∗
2 B2 0 A1

B∗
1 B1 A1 0

⎞
⎟⎠, (C11)

with

A1 = 2ta1 cos
ky

2
, (C12)

A2 = ta2e
i 1

2 ky + ta3e
−i 1

2 ky , (C13)

B1 = tb1e
i( 1

2 kx+ 1
4 ky ) + tb4e

i(− 1
2 kx+ 1

4 ky ), (C14)

B2 = tb2e
i( 1

2 kx− 1
4 ky ) + tb3e

i(− 1
2 kx− 1

4 ky ). (C15)

If ta1 = ta2 = ta3 = 0 (i.e., A1 = A2 = 0), the eigenvalues of
the matrix in Eq. (C11) are obtained by Mori [48] as

ε0
k = ±

√
|B1|2 + |B2|2 ±

√
(B2

1 + B2
2 )(B∗2

1 + B∗2
2 ). (C16)

When A1 and A2 are not zero, the eigenvalues are not simple,
although the analytical solutions can be obtained because of
the quartic equation. We studied the energy in cases of both
the bulk state and the edge state [72].

APPENDIX D: ENERGY AT H �= 0

The Hamiltonian in the two-dimensional tight-binding
model in the magnetic field becomes

Ĥ =
∑
i,j

tij e
i2πφij c

†
i cj , (D1)
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where the phase factor (φij ) is given by

φij = e

ch

∫ i

j

A · dl. (D2)

In this study, we treat the magnetic field applied perpen-
dicular to the x-y plane by taking the ordinary Landau gauge,

A = (Hy,0,0). (D3)

The flux through the unit cell is

� = abH. (D4)

When the magnetic field is commensurate with the lattice
period, i.e.,

�

φ0
= p

q
, (D5)

where p and q are integers, the magnetic unit cell is a × (qb),
if p is an even integer. Since there are two sites with half of
the lattice constant in the y direction in the unit cell, we have
to take the magnetic unit cell of a × (2qb), if we take the
ordinary Landau gauge and p is an odd integer. We can take a
more suitable gauge (periodic Landau gauge) [73], which is a
powerful tool for the system with a large unit cell such as the
moiré pattern in the twisted bilayer graphene. However, we
take even integers for p by using the ordinary Landau gauge
in this paper, since it is possible to investigate magnetic field
dependencies of energies only by taking even integers for p.

The Hamiltonian in the momentum space becomes

Ĥ =
∑

k

C̃
†
kε̃kC̃k, (D6)

where the summation over k is taken in the magnetic Brillouin
zone,

− π

a
� kx <

π

a
, (D7)

− π

qb
� ky <

π

qb
. (D8)

In Eq. (D6), the creation and annihilation operators have
4q components,

C̃
†
k = (c(0)†

1,k ,c
(0)†
2,k ,c

(0)†
3,k ,c

(0)†
4,k , . . . ,c

(q−1)†
3,k ,c

(q−1)†
4,k ), (D9)

C̃k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
(0)
1,k

c
(0)
2,k

c
(0)
3,k

c
(0)
4,k
·
·
·

c
(q−1)
3,k

c
(q−1)
4,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D10)

and ε̃k is the 4q × 4q matrix which is given by

ε̃k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D
(0)
k F

(1)
k 0 · · · 0 F

(0)†
k

F
(1)†
k D

(1)
k F

(2)
k

. . .
. . . 0

0 F
(2)†
k D

(2)
k F

(3)
k

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . . F
(q−2)†
k D

(q−2)
k F

(q−1)
k

F
(0)
k 0 . . . 0 F

(q−1)†
k D

(q−1)
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(D11)

where

D
(n)
k =

⎛
⎜⎜⎜⎜⎝

0 ε
(n)
k12 ε

(n)
k13 ε

(n)
k14

ε
(n)∗
k12 0 0 ε

(n)
k24

ε
(n)∗
k13 0 0 ε

(n)
k34

ε
(n)∗
k14 ε

(n)∗
k24 ε

(n)∗
k34 0

⎞
⎟⎟⎟⎟⎠, (D12)

F
(n)
k =

⎛
⎜⎜⎜⎝

0 0 0 0

ε
′(n)
k21 0 ε

′(n)
k23 0

0 0 0 0

0 0 ε
′(n)
k43 0

⎞
⎟⎟⎟⎠, (D13)

and

F
(n)†
k =

⎛
⎜⎜⎜⎝

0 ε
′(n)∗
k21 0 0

0 0 0 0

0 ε
′(n)∗
k23 0 ε

′(n)∗
k43

0 0 0 0

⎞
⎟⎟⎟⎠. (D14)

The matrix elements, ε
(n)
kαβ , are the hoppings from the β site

(j ) in the nth unit cell to the α site (i) in the nth unit cell in the
magnetic field [nb � yj < (n + 1)b and nb � yi < (n + 1)b]
given by

ε
(n)
k12 = ta2e

i 1
2 bky , (D15)

ε
(n)
k13 = tb2 exp

[
i

(
1

2
akx − 1

4
bky + 2πφ

(n)
b2,13

)]

+ tb3 exp

[
i

(
−1

2
akx − 1

4
bky + 2πφ

(n)
b3,13

)]
, (D16)

ε
(n)
k14 = tb1 exp

[
i

(
1

2
akx + 1

4
bky + 2πφ

(n)
b1,14

)]

+ tb4 exp

[
i

(
−1

2
akx + 1

4
bky + 2πφ

(n)
b4,14

)]
, (D17)

ε
(n)
k24 = tb1 exp

[
i

(
−1

2
akx − 1

4
bky + 2πφ

(n)
b1,24

)]

+ tb4 exp

[
i

(
1

2
akx − 1

4
bky + 2πφ

(n)
b4,24

)]
, (D18)

ε
(n)
k34 = ta1e

i 1
2 bky , (D19)
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where

φ
(n)
b2,13 = �

φ0

(
n

2
− 1

16

)
, (D20)

φ
(n)
b3,13 = − �

φ0

(
n

2
− 1

16

)
, (D21)

φ
(n)
b1,14 = �

φ0

(
n

2
+ 1

16

)
, (D22)

φ
(n)
b4,14 = − �

φ0

(
n

2
+ 1

16

)
, (D23)

φ
(n)
b1,24 = − �

φ0

(
n

2
+ 3

16

)
, (D24)

φ
(n)
b4,24 = �

φ0

(
n

2
+ 3

16

)
. (D25)

The matrix elements, ε′(n)
kαβ , are the hoppings from the β site (j )

in the (n + 1)th unit cell to the α site (i) in the nth unit cell in
the magnetic field [(n + 1)b � yj < (n + 2)b and nb � yi <

(n + 1)b] given by

ε
′(n)
k21 = ta3e

i 1
2 bky , (D26)

ε
′(n)
k23 = tb2 exp

[
i

(
−1

2
akx + 1

4
bky + 2πφ

′(n)
b2,23

)]

+ tb3 exp

[
i

(
1

2
akx + 1

4
bky + 2πφ

′(n)
b3,23

)]
, (D27)

ε
′(n)
k43 = ta1e

i 1
2 bky , (D28)

where

φ
′(n)
b2,23 = − �

φ0

(
n

2
− 3

16

)
, (D29)

φ
′(n)
b3,23 = �

φ0

(
n

2
− 3

16

)
. (D30)

APPENDIX E: DERIVATION OF EQ. (5)

The critical pressure, Pc = 3.0, is defined by the pressure
at which the global maximum energy of the third band, ε0

3t,
becomes the same as the energy at the Dirac points ε0

D. At
2.3 < P � Pc, ε0

3t and ε0
D depend on pressure as

ε0
3t = a3t(Pc − P ) + ε00

D , (E1)

ε0
D = −aD(Pc − P ) + ε00

D , (E2)

respectively, where a3t and aD are pressure-independent
constant and ε00

D is the energy at the Dirac points at P = Pc.
The densities of states at the third band and the fourth band
are given by

D3(ε0) = d3θ
(
ε0

3t − ε0
)
, (E3)

D4(ε0) = cD
(
ε0 − ε0

D

)
, (E4)

0ε0
Dε 0

Fε 0
t3ε

( )0ε3D

0

( )0ε4D
( )0εD

FIG. 31. A schematic plot of the density of states at P < Pc.

where d3 and cD are constants and θ (ε0
3t − ε0) is the step

function, as shown in Fig. 31.
The Fermi energy ε0

F at P � Pc is obtained by the condition
that the area of a hole pocket equals that of an electron pocket,
i.e., ∫ ε0

3t

ε0
F

D3(ε0)dε0 =
∫ ε0

F

ε0
D

D4(ε0)dε0. (E5)

By putting Eqs. (E3) and (E4) into Eq. (E5), we obtain

d3
(
ε0

3t − ε0
F

) = 1
2cD

(
ε0

F − ε0
D

)2
. (E6)

We study the cases of

Pc − P � Pc (E7)

and

ε0
D < ε0

F < ε0
3t. (E8)

Since

ε0
3t − ε0

D = (a3t + aD)(Pc − P ) (E9)

goes to zero when Pc − P → 0, we obtain that both ε0
3t − ε0

F
and ε0

F − ε0
3t go to zero when Pc − P → 0. By using

ε0
F − ε0

D = (a3t + aD)(Pc − P ) − (
ε0

3t − ε0
F

)
(E10)

and Eq. (E6), we obtain

ε0
F − ε0

D � (a3t + aD)(Pc − P ) + O((Pc − P )2), (E11)

ε0
3t − ε0

F � cD

2d3
(a3t + aD)2(Pc − P )2. (E12)

APPENDIX F: THREE-QUARTER DIRAC POINT
AND DERIVATION OF EQ. (12)

In this appendix we derive the area as a function of
energy around the three-quarter Dirac point, Eq. (12). The
minimal Weyl Hamiltonian studied by Goerbig, Fuchs, and
Montambaux [18] is given by

H0
Weyl = w0 · qσ 0 + wxqxσ

x + wyqyσ
y, (F1)

where σ 0 is a 2 × 2 unit matrix, σx and σy are the Pauli
matrices, and w0 = (w0x,w0y), wx , and wy are constants. The
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energy dispersion is given by

ε0
±(q) = w0 · q ±

√
w2

xq
2
x + w2

yq
2
y . (F2)

The anisotropy and the tilting of the Dirac cone are described
by wx and wy and by w0x and w0y , respectively. For simplicity
we take wx > 0 and wy > 0. The energy of the tilted Dirac
cone has also been studied in the linearized form in the context
of type II Weyl semimetals [74].

When we take

w0y = 0, (F3)

w0x = −wx < 0, (F4)

the Dirac cone is critically tilted. In this case, we have to
introduce quadratic terms along the qx axis as

H0
tqD = ( − wxqx + α′

2q
2
x

)
σ 0 + (

wxqx + α′′
2q2

x

)
σx + wyqyσ

y

(F5)

and obtain

ε0
tqD±(q) = −wxqx + α′

2q
2
x

±
√(

wxqx + α′′
2q2

x

)2 + (wyqy)2. (F6)

The energy dispersions of the upper band [ε0
tqD+(q)] and the

lower band [ε0
tqD−(q)] near q = (0,0) are given by

ε0
tqD+(qx,qy = 0) =

{
α2q

2
x , if qx > 0,

2wx |qx | + α̃2q
2
x , if qx < 0,

(F7)

ε0
tqD+(qx = 0,qy) = wy |qy |, (F8)

ε0
tqD−(qx,qy = 0) =

{−2wxqx + α̃2q
2
x , if qx > 0,

α2q
2
x , if qx < 0,

(F9)

ε0
tqD−(qx = 0,qy) = −wy |qy |, (F10)

where

α2 = α′
2 + α′′

2 (F11)

and

α̃2 = α′
2 − α′′

2 . (F12)

We take α2 > 0 for simplicity. Then q = 0 is a local minimum
of εtqD+(q). From Eqs. (F7) and (F9), it is found that the dis-
persions of εtqD+(q) and εtqD−(q) near q = 0 are linear in three
directions and quadratic in one direction. This can reproduce
the dispersion near the Fermi energy in α-(BEDT-TTF)2I3

at P = 2.3. Therefore, we consider Eq. (F5) at α2 > 0 as a
model of the three-quarter Dirac cone. The point of q = 0 is a
three-quarter Dirac point.

Next, we calculate the area of the closed constant energy
line of the fourth band by using Eq. (F6). We set εtqD+(q) = ε

and ε > 0. The constant energy line is described by

wyqyF(qx)

= ±
√(

ε + wxqx − α′
2q

2
x

)2 − (
wxqx + α′′

2q2
x

)2

=
√

α2α̃2(qx − qx0)(qx − qx1)(qx − qx2)(qx − qx3),

(F13)
where

qx0 = −
√

ε

α2
, (F14)

qx1 = wx − √
w2

x + α̃2ε

α̃2

� − ε

2wx

, (F15)

qx2 =
√

ε

α2
, (F16)

qx3 = wx + √
w2

x + α̃2ε

α̃2

� 2wx

α̃2
. (F17)

Note

qx0 � qx1 < 0 < qx2 � |qx3|. (F18)

The area is calculated by

A(ε) = 2
∫ qx2

qx1

qyF(qx)dqx. (F19)

By taking an approximation that an electron pocket is elliptic,
we obtain from Eq. (F13) and Eq. (F19)

A(ε) � 2

wy

∫ qx2

qx1

√
α2α̃2qx0qx3 (qx − qx1)(qx − qx2)dqx

� 2

wy

√
α2α̃2

√
ε

α2

2wx

α̃2

π

8

(√
ε

α2
+ ε

2wx

)2

�
√

2wxπ

4wy

α
− 3

4
2 ε

5
4 . (F20)

APPENDIX G: FOURIER TRANSFORM INTENSITIES

In order to analyze the oscillations in the magnetization,
we calculate the Fourier transform intensities numerically as
follows. By choosing the center hc and a finite range 2L, we
calculate

FTI(1/h)

(
f,

1

hc

,L

)
=

∣∣∣∣∣ 1

2L

∫ 1
hc

+L

1
hc

−L

M(h)e2πi
f

h d

(
1

h

)∣∣∣∣∣
2

,

(G1)

where we take f = j/(2L) with integer j (j = 512 is used in
this study).
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