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Spoof surface plasmons guided by narrow grooves
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An approximate description of surface waves propagating along periodically grooved surfaces is intuitively
developed in the limit where the grooves are narrow relative to the period. Considering acoustic and
electromagnetic waves guided by rigid and perfectly conducting gratings, respectively, the wave field is obtained
by interrelating elementary approximations obtained in three overlapping spatial domains. Specifically, above the
grating and on the scale of the period the grooves are effectively reduced to point resonators characterized by their
dimensions as well as the geometry of their apertures. Along with this descriptive physical picture emerges an
analytical dispersion relation, which agrees remarkably well with exact calculations and improves on preceding
approximations. Scalings and explicit formulas are obtained by simplifying the theory in three distinguished
propagation regimes, namely where the Bloch wave number is respectively smaller than, close to, or larger than
that corresponding to a groove resonance. Of particular interest is the latter regime where the field within the
grooves is resonantly enhanced and the field above the grating is maximally localized, attenuating on a length
scale comparable with the period.
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I. INTRODUCTION

There are several scenarios where flat interfaces support
localized surface waves, e.g., Rayleigh waves guided along an
interface of an elastic solid, water waves at fluidic interfaces,
and surface-plasmon polaritons at metal-dielectric interfaces
(within a frequency interval lying below the surface plasma
frequency of the metal). In contrast, a flat boundary of
a rigid solid does not normally support surface acoustic
waves, nor does a flat boundary of a perfectly conducting
metal support surface electromagnetic waves. In such cases,
however, surface modes may nevertheless exist if the interface
features transverse stratification or a periodic microstructure.
In particular, localized modes propagating along a periodic
microstructure, traditionally termed Rayleigh-Bloch waves,
have been studied extensively [1,2] with applications in
electromagnetism [3,4], acoustics [5], and hydrodynamics [6].
Ever since a highly influential paper by Pendry et al. [7], there
has been a remarkable resurgence of interest in Rayleigh-Bloch
waves [8–14]. Their paper drew attention to the similarity
between electromagnetic surface waves propagating along a
periodically microstuctured boundary of a perfect conductor
and surface plasmon polaritons. This linkage has enhanced
the impact of ideas originally thought pertinent solely to
plasmonic materials. Rayleigh-Bloch waves guided by a
periodic microstructure are nowadays often referred to (even
in acoustics!) as spoof, or designer, surface plasmons.

It is useful to distinguish between two types of spoof
plasmons [15]. The first, described by Pendry et al. [7] and
later more generally [8,10–12], is an electromagnetic surface
wave guided by a perfectly conducting surface with holes in
it. Typical dispersion surfaces bifurcate with increasing Bloch
wave number from the light cone to lower frequencies, partic-
ularly below the cut-off frequency of the hole waveguides.
Since the latter frequency scales inversely with the linear
dimensions of the holes’ cross section, which are bounded
by the periodicity, the wavelength cannot be large compared
to the periodicity unless the holes are filled with a high-index
material. The present paper is concerned with a second class

of spoof plasmons, where the microstructure consists of holes
or grooves functioning as waveguidelike elements that do
not have a cut-off frequency. This is generally the case for
acoustic waves in rigid waveguides [5,15], electromagnetic
waves penetrating into perfectly conducting grooves (magnetic
field parallel to the grooves) [2,8], as well as for some thin
grating structures [16,17]. In these cases the wave field is
free to propagate up and down the holes or grooves; the
resonance frequencies of these waveguides scale inversely
with their length and set upper bounds on spoof-plasmon
frequencies of respective order. Such spoof plasmons can
accordingly be tuned to low frequencies by simply lengthening
the holes/grooves (spiral geometries allow a compact design
[14,16]).

In the absence of a cut-off frequency, the holes/grooves
can in principle be made arbitrarily narrow compared to the
periodicity, promoting the excitation of waveguide modes and
hence the field enhancement within them. Specifically, as the
waveguide width decreases the nth spoof-plasmon eigenfre-
quency approaches (for fixed Bloch wave number) the lower
between the light-line frequency and the respective waveguide-
resonance frequency; a naive leading-order approximation of
the dispersion curves in this limit is simply the piecewise-linear
functions thus formed. It is clear, however, that the limit of
narrow waveguides is singular. Namely, these piecewise-linear
curves can never be realized; their linear segments respectively
correspond to the modes of the waveguides and bulk, rather
than true surface modes. Accordingly, in order to characterize
the surface modes in the limit of narrow holes/grooves it is
necessary to determine the leading deviations of the dispersion
curves from the singular ones.

In this paper we address this challenge by developing a
consistent and physically intuitive theory of Rayleigh-Bloch
waves guided by a periodically grooved surface, in the limit
where the grooves are narrow compared to the period. We
formulate the eigenvalue problem in Sec. II, in the case
where the waves are acoustic or electromagnetic and the
grating is respectively rigid or perfectly conducting. Rather
than attempting to reduce an exact formulation, the theory is
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developed in Sec. III directly from the governing equations,
which are separately simplified in three overlapping spatial
domains. In each of these domains we obtain an elementary
approximation, closed by requiring consistency where any two
of these regions overlap. Of course this is found to be possible
only for certain combinations of frequency and Bloch wave
number, thus giving rise to a dispersion relation which we show
to be in excellent agreement with exact numerical solutions. In
Sec. IV we further simplify the theory in three distinguished
propagation regimes corresponding to overlapping asymptotic
intervals of the Bloch wave number. We thereby derive scalings
and explicit asymptotic formulas for eigenfrequencies, local-
ization length scales, and enhancement factors. We conclude
in Sec. V by discussing the relation between our work and
existing approximate theories.

II. FORMULATION

Consider a surface patterned with a 2l-periodic array of
rectangular grooves of width 2a and height h, as shown in
Fig. 1. Let ϕ(x,y) exp(−iωt) be the velocity potential in
the acoustic case and the out-of-plane magnetic field in the
electromagnetic case, where ω denotes angular frequency, t is
time, and (x,y) are the in-plane Cartesian coordinates (x,y)
defined in Fig. 1. Outside the surface the wave field ϕ obeys
the reduced wave equation

∇2ϕ + k2ϕ = 0, (1)

where k = ω/c is the wave number, and c being the speed
of sound or light in the acoustic and electromagnetic cases,
respectively. At the surface, which is assumed to be rigid in the
acoustic case and perfectly conducting in the electromagnetic
case, ϕ satisfies a Neumann boundary condition

∂ϕ

∂n
= 0, (2)

where ∂/∂n denotes differentiation normal to the surface.
To constitute a surface mode, the field ϕ, defined up to a
multiplicative constant, must attenuate at large distances from

the surface,

ϕ → 0 as y → ∞, (3)

and be Bloch periodic, i.e.,

e−iβxϕ(x,y) is 2l periodic in x, (4)

where the Bloch wave number β is real valued. Accordingly,
attention is restricted to a single unit cell, say x ∈ [−l,l),
placing the origin (x,y) = (0,0) at the center of the interface
of an arbitrarily chosen groove.

The above formulation defines an eigenvalue problem for
the wave numbers k(β) and corresponding eigenfunctions
ϕ. Given the periodicity of the grating and time-reversal
symmetry it is sufficient to consider Bloch wave numbers in the
reduced Brillouin zone 0 < β < π/(2l). With β in that range,
a Fourier-series representation of ϕ suggests the asymptotic
behavior

ϕ ∼ const × e−y
√

β2−k2
as y → ∞, (5)

which is consistent with (3) if |β| > k. It is therefore sufficient
to consider Bloch wave numbers in the range k < β < π/(2l).

III. NARROW GROOVES

In what follows we assume a � l and ka � 1, namely
that the groove width is small compared to both the period
and the wavelength. The range of frequencies in which we
expect to find surface waves, kh = O(1), is determined by the
height of the grooves. While in general we assume that h ∼ l,
implying kl = O(1), we shall point out wherever our theory
simplifies for long grooves, h 	 l, in which case the period is
subwavelength, kl � 1.

A. Within the groove

We start by constructing an approximation of the wave
field ϕ that is valid within the groove, at distances 	 a from
its aperture. Owing to the narrowness of the groove, a/h �
1, along with the Neumann conditions (2) on its boundaries

h

2a

x

y

2l

FIG. 1. Schematic of the two-dimensional rectangular grating.
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FIG. 2. An approximate theory in the limit a/l → 0 is sought
by conceptually decomposing a representative unit cell into three
regions.

x = ±a, in this region ϕ is approximately a function of y

alone, i.e., ϕ ≈ u(y). The reduced wave equation (1) becomes
u′′ + k2u = 0, while condition (2), applied to the bottom end
of the groove, implies u′(−h) = 0. Hence

ϕ ≈ C[cos(ky) − tan(kh) sin(ky)], a � −y < h, (6)

where C is a constant. Since ϕ is unique up to a multiplicative
constant, C can be chosen arbitrarily. We shall require (6) to be
consistent with complementary approximations of ϕ outside
the groove and in the vicinity of the aperture (see Fig. 2). This
procedure will give rise to an additional constraint on (6), thus
yielding a dispersion relation for k(β). With anticipation, we
note that close to the groove opening, (6) becomes

ϕ ≈ C + q

2a
y, a � −y � h, (7)

where

q = −2aCk tan(kh) (8)

is, in the acoustics case, the net flux through the groove. In the
electromagnetic case q is proportional to the voltage across
the aperture.

B. Outside the groove

Consider next the region of the unit cell outside the groove.
Since a/l � 1, on the scale of the period the aperture shrinks
to the origin (x,y) = 0. Nevertheless, we expect the finite flux
q to emanate from this point into the external domain (the flux
is conserved while passing through the subwavelength aperture
of the groove). Thus, when resolved on the scale of the period

(or any scale 	 a), ϕ appears to possess the singularity

ϕ ∼ q

π
ln

√
x2 + y2

l
as x2 + y2 → 0, y � 0. (9)

An approximation for the external potential can then be
obtained by solving (1) in conjunction with the Bloch condition
(4), the Neumann condition (2) applied at y = 0 (−l < x < l),
the attenuation condition (3), and the singular asymptotics (9).
Fourier methods readily yield the solution

ϕ ≈ − q

2l
eiβx

∞∑
m=−∞

e−y
√

(β+mπ/l)2−k2+imπx/l√
(β + mπ/l)2 − k2

, (10)

valid for
√

x2 + y2 	 a and y � 0, namely a quasiperiodic
Green function of the two-dimensional Helmholtz equation,
whose magnitude is adjusted to satisfy (9). Our interest is not
in the details of this solution. Rather, we require its behavior
near the origin, so that it could be related to that within the
groove. Setting y = 0 in (10), then taking the limit x → 0, one
finds [18]

ϕ ≈ q

π
ln

√
x2 + y2

l

−q

2

[
1√

β2l2 − k2l2
− 2

π
ln π + S(βl,kl)

]
, (11)

valid for a �
√

x2 + y2 � l, where the sum

S(βl,kl) =
∞∑

m = −∞
m �= 0

(
1√

(βl + mπ )2 − k2l2
− 1

|m|π

)
(12)

is easy to compute. In fact, in the subwavelength limit, kl � 1,
this sum can be evaluated in closed form as

S(βl,0) = −2γ

π
− 1

π

[
ψ

(
1−βl

π

)
+ψ

(
1+βl

π

)]
, (13)

where ψ is the digamma function and γ ≈ 0.5772 is the Euler-
Mascheroni constant.

C. Transition region

Approximations (7) and (11) hold, respectively, within and
outside the groove, at distances from the origin that are much
larger than a and at the same time much smaller than l (and
h). As these regions do not overlap, it is unsurprising that
in general it is impossible to make (7) and (11) coincide.
As schematically shown in Fig. 2, to smoothly join these
approximations it is necessary to consider a transition region
in the vicinity of the aperture. On this subwavelength scale (1)
reduces to Laplace’s equation

∇2ϕ ≈ 0,
√

x2 + y2 � l, (14)

and the boundary, where Neumann condition (2) applies, is
effectively that of an infinite groove interfacing an unbounded
half-space (see Fig. 2). We seek a solution of (14) in the latter
geometry which for large negative y coincides with (7) and for
large x2 + y2 (y > 0) coincides with (11).

Up to an additive constant, the requisite potential is
determined by the net flux q, which corresponds to the
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FIG. 3. The left half (x < 0) of the transition region (see Fig. 2) is conformally mapped to the upper half-plane of an auxiliary ζ plane.

nonconstant terms in (7) and (11). Thus, obtaining this solution
would in turn determine the difference between the constant
terms in (7) and (11) (when normalized by q this is a purely
geometric parameter [19]). To this end, let z = x + iy and
consider the conformal mapping [20]

z/a = 2i

π
(1 + ζ )1/2 + i

π
log

(1 + ζ )1/2 − 1

(1 + ζ )1/2 + 1
(15)

from the upper half-plane of an auxiliary complex plane
ζ = ξ + iη to the left half (x < 0) of the solution domain, in
the manner shown in Fig. 3. (The logarithm is the continuation
of the natural logarithm with a branch cut along the negative
imaginary axis.) In terms of the auxiliary variable ζ , the
potential in the transition region is determined as

ϕ/q ≈ 1

2π
ln |ζ | + α, (16)

up to the multiplicative constant q [which follows from (8)
and the arbitrary choice of the constant C], and the real
constant α, which we shall determine by relating (16) to the
solutions inside and outside the groove. To this end, we note
the following asymptotic limits of the mapping (15),

z/a ∼ i

π
log ζ + 2i

π
(1 − ln 2) + o(1) as ζ → 0, (17)

z/a ∼ 2i

π
ζ 1/2 as ζ → ∞. (18)

Then, from (16), we find the “overlap” approximations

ϕ/q ≈ y

2a
− 1

π
(1 − ln 2) + α, a � −y � h (19)

and

ϕ/q ≈ 1

π
ln

√
x2 + y2

l
+ 1

π
ln

πl

2a
+ α, (20)

valid for a �
√

x2 + y2 � l.

D. Dispersion relation

Comparing (19) with (7), and (20) with (11), and using (8),
we find

1

ka tan(kh)
≈ 1√

(βl)2 − (kl)2
+ 2

π

(
1 + ln

l

4a

)
+ S(βl,kl)

(21)

and α = (1 − ln 2)/π − 1/[2ka tan(kh)]. The dispersion re-
lation (21) constitutes a key result of this paper, as do the
corresponding approximations found for the eigenmode ϕ in
the different regions. In the next section we shall show how
(21) and the latter approximations of ϕ simplify in different
asymptotic intervals of the Bloch wave number β.

In Figs. 4 and 5, dispersion curves k(β) found by solving
(21) are depicted by the black solid lines, for various values of
the geometric parameters h/l and a/l. The diagonal dashed
line depicts the “light line” k = β, and the horizontal dash-
dotted lines mark the groove resonances,

kn =
(

1

2
+ n

)
π

h
, n = 0,1,2, . . . , (22)

which are discussed in the next section. The fundamental
resonance k0 corresponds to a wavelength four times the
groove height h. In Fig. 4, where h/l = 1.5, only the funda-
mental k0 lies below k = π/(2l), at which frequency the light
line intersects the zone boundary. There is just one surface
mode, with k bounded from above by the minimum of β and
k0. With increasing h, additional resonant wave numbers (22)
drop below π/(2l). For each of these (n = 0,1,2, . . .) there
is one surface mode for which k approaches the smaller of
β and kn as a/l → 0. This is demonstrated in Fig. 5, where
h/l = 5.5 and there are three branches. [There may also be
“weakly guided” modes which as a/l → 0 approach the light
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0 π/6 π/3 π/2
βl

0

π/6

π/3

π/2

kl

k0 = π/(2h)

a/l = 0.1

a/l = 0.5

FIG. 4. Dispersion curves for h/l = 1.5, for the two indicated
values of a/l. Solid lines: Solutions of the dispersion relation (21);
symbols: “exact” numerical solutions. The diagonal dashed line and
horizontal dash-dotted line, respectively, indicate the light line and
the fundamental groove resonance.

line for all β. This is certainly the case when h/l < 1 and there
are zero groove resonances below k = π/(2l).]

In order to assess the approximate dispersion relation (21),
we have solved the problem formulated in Sec. II exactly
using a seminumerical mode-matching method. Since the
scheme we use is standard and similar to those discussed
elsewhere [5,10,11,21], we omit details here. In Figs. 4
and 5, the numerical predictions are marked by symbols

0 π/6 π/3 π/2
βl

0

0.5

1

1.5

kl

k0 = π/(2h)

k1 = 3π/(2h)

k2 = 5π/(2h)

FIG. 5. Dispersion curves for h/l = 5.5 and a/l = 0.5. Solid
lines: Solutions of the dispersion relation (21); symbols: “exact”
numerical solutions. The diagonal dashed line and horizontal dash-
dotted lines, respectively, indicate the light line and the first three
groove resonances.

and remarkable agreement with the approximate theory is
observed; surprisingly, the agreement is quite good even
for moderate values of a/l. In Sec. V we shall revisit the
dependence of the error upon a/l in relation to existing
approximations in the literature.

IV. THREE PROPAGATION REGIMES

The approximate theory developed in the preceding section
holds for arbitrary β. To the same order of approximation in the
limit ka → 0, however, further simplifications are permissible
in specified intervals. This is hinted by the survival of the
small parameter ka in the approximate dispersion relation
(21). In what follows we discuss and derive scalings and
explicit formula pertaining to three distinguished limits of
(21), which respectively correspond to three distinct regimes
of surface-wave propagation. In particular, these regimes differ
in terms of localization of the wave field to the grating,
the excitation of groove resonances, and the concomitant
field enhancement within the grooves. As a preliminary step,
we note the following general estimates, which we shall
subsequently sharpen in each of the propagation regimes. First,
it readily follows from (5) that the length scale on which the
wave field attenuates away from the grating is

L = O

(
1√

β2 − k2

)
. (23)

Since k < β < π/(2l), L is at least comparable to the period,
the localization becoming weaker as the wave number k

approaches the light line. Next, we obtain an estimate for
the enhancement of the field in the groove relative to the field
in the outer region. From (6), the field within the groove is
O[C tan(kh)], where the tangent is retained since it becomes
large close to a groove resonance (22). From (10), we estimate
the field in the outer region as O(q/

√
β2l2 − k2l2). Using (8),

we obtain a preliminary estimate of the field enhancement,

A = O

(
l/L

ka

)
, (24)

revealing a linkage between localization and field enhance-
ment.

A. Strongly guided waves

By strongly guided surface waves we mean L = O(l),
namely that k is not close to β. In that case, the right-hand side
of (21) is of order unity, implying that tan(kh) is O[1/(ka)]
large. Noting that [cf. (22)] tan(kh) ∼ h−1(kn − k)−1 as k →
kn, such a balance is possible only for (kn − k)h = O(ka). An
explicit formula is readily extracted from (21)

k

kn

≈ 1−a

h

[
1√

(βl)2 − (knl)2
+ 2

π

(
1+ ln

l

4a

)
+S(βl,knl)

]
.

(25)

If n is sufficiently small and h sufficiently large such that
knl � 1, then kl � 1, i.e., the period is subwavelength.
Approximation (25) can then be further simplified:

k

kn

≈ 1 − a

h

[
1

βl
+ 2

π

(
1 + ln

l

4a

)
+ S(βl,0)

]
. (26)

085424-5



ORY SCHNITZER PHYSICAL REVIEW B 96, 085424 (2017)

In particular, at the band edge (26) becomes

k

kn

≈ 1 − 2a

πh

(
ln

l

a
+ 1

)
, βl = π/2, kl � 1, (27)

where we used (13) to show that S(π/2,0) = (2/π )(ln 4 − 1).
The regime of strongly guided waves is associated with

the excitation of a groove resonance. Indeed, we see from (6)
that for k ≈ kn the field within the groove is dominated by a
resonant mode proportional to sin(kny), which vanishes in the
limit y → 0 and satisfies the Neumann condition at y = −h.
Using (24) we find A = O(k−1a−1), namely that the field in
the groove is strongly enhanced.

B. Weakly guided waves

On the other extreme, the interval of Bloch wave numbers
β where the dispersion curve begins to bifurcate from the light
line corresponds to a regime of weakly guided surface waves.
Thus, for k close to β but not to kn, we extract from (21) an
explicit approximation,

k/β ≈ 1 − 1

2

a2

l2
tan2(βh). (28)

In particular we see that
√

β2 − k2 = O(βa/l), and using β =
O(1/l), we find a large attenuation length L/l = O(l/a). The
resonant mode in the groove is not excited in this case, and it
follows from (24) that A = O(k−1l−1).

C. An intermediate regime

The transition between the above two regimes takes place
over an intermediate regime where both β and k are close to kn.
In this case, inspecting (21) suggests the leading-order balance

ka tan(kh) ≈
√

(βl)2 − (kl)2, (29)

which is the same as Eq. (14) in [8] (see Sec. V). The reduced
dispersion relation (29) incorporates approximation (28) for
weakly guided waves. In the intermediate regime, (29) further
simplifies to

(knl − kl)
√

βl − kl ≈ a

h

√
knl

2
, (30)

implying the scaling of the intermediate regime

knl − kl, βl − knl = O

(
a2/3

l2/3

)
. (31)

Then, from (23) and (24) we find L/l = O(l1/3a−1/3) and
A = O(a−2/3l−1/3k−1); using k ≈ kn = O(1/h) this estimate
becomes A = O(a−2/3h2/3). Unsurprisingly, the localization
and enhancement are intermediate between the strong and
weak guiding regimes.

The reduced dispersion relation (29) [or (30)] provides
only a gross leading-order deviation of k from kn. Indeed,
asymptotic analysis of (21) in the intermediate limit (31)
reveals a substantial O(a1/3l−1/3) relative error, which needs to
be resolved in order for the approximation in the intermediate
regime to smoothly connect with that in the strong guiding

0.4 0.6 0.8 1 1.2
βl

0.5

0.6

0.7

0.8

0.9

k
l

O( a2

l2 )

O( a2/3

l2/3 )

O( a
l )

FIG. 6. Dispersion curve for h = 2l and a/l = 0.05, in the vicin-
ity of β = k0 = π/(2h). Black solid line: Solution of the dispersion
relation (21); red solid line: approximation (25) for strongly guided
waves; green solid line: approximation (28) for weakly guided waves;
blue dashed and solid lines: respectively two and three terms of the
intermediate-regime approximation (33); symbols: “exact” numerical
data. The diagonal and horizontal dashed lines, respectively, indicate
the light line and the fundamental groove resonance. The scalings of
the three propagation regimes are schematically depicted.

regime. Thus, writing

β/kn = 1 +
(

a

l

)2/3

δ, δ = O(1), (32)

we find from (21) the improved approximation

k/kn ≈ 1 +
(

a

l

)2/3

ν + a

l
χ, (33)

where

δ = ν + 1

2k2
nh

2ν2
,

χ = − l

h
(
1 + k2

nh
2|ν|3)

[
2

π

(
1 + ln

l

4a

)
+ S(knl,knl)

]
.

(34)

The validity of the approximations found for the different
propagation regimes is demonstrated in Fig. 6, showing,
for h = 2l and a/l = 0.05, the dispersion curve of the
fundamental mode in the vicinity of the intersection of the
light line k = β and the resonant wave number k0 = π/(2h).
In this figure, the different approximations (25), (28), and (33)
are compared with the uniformly valid dispersion relation (21),
along with exact numerical data. Excellent agreement is found
in the respective regimes.

V. CONCLUDING REMARKS

Shortly following the influential paper by Pendry et al.
[7], the same authors (in reversed order) published a more
detailed paper [8] which includes an analysis of the grooves
configuration considered herein. The analysis in [8] assumes,
inter alia, that the field within the grooves can be represented
by a single waveguide mode, all the way up to the aperture.
While this assumption is widespread in the literature on
spoof plasmons, it contrasts the present study wherein the
subwavelength details of the field in the close vicinity of the
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10-2 10-1 100

a/l

10-2

10-1

1
−

k
/k

0

Numerical
solution

Subwavelength
approximation Eq. (27)

Garcia-Vidal et al.
2005 [Eq. 14, 8]

Dispersion
relation Eq. (21)

FIG. 7. Relative deviation of the wave number k from the resonant
wave number k0 as a function of a/l (for h/l = 3, at the boundary
of the Brillouin zone, βl = π/2). Thick solid line: Solution of the
dispersion relation (21); thin solid line: subwavelength approximation
(27); symbols: “exact” numerical solution. The dashed line shows
the solution of the reduced dispersion relation (29), which is the
narrow-groove approximation given by Garcia-Vidal et al. [Eqs. (14)
and (8)].

aperture are found to be important. To be specific we note that
Garcia-Vidal et al. [8] provide their Eq. (14)—equivalent to
our Eq. (29)—as a general approximate dispersion relation in
the limit of narrow grooves. We have seen in Sec. IV, however,
that while (29) correctly describes the weakly guiding regime,
it provides only a gross leading-order approximation in the
intermediate regime and does not hold (in any asymptotic
sense) in the strong guiding regime. In fact, extrapolating (29)
into the latter regime suggests a deviation from the groove
resonance scaling like knl − kl = O(a/l), whereas the actual
scaling is (a/l) log(a/l)—in our theory the leading deviation
in the strong guiding regime is given by the explicit formulas

(25)–(27). The asymptotic validity of our theory, in contrast to
that in [8], is clearly demonstrated in Fig. 7.

Recently, Eremntchouk et al. [22] attempted a more system-
atic approximation for narrow grooves by intricately reducing
an exact mode-matching formulation. These authors identify
the strongly guided regime of developed spoof plasmons, and
that the standard approximations employed in the literature
do not hold in this domain. They focus their efforts on
the latter regime and derive an explicit expression for the
leading deviation kl − k0l (they consider only the fundamental
surface mode). Their approximation can be shown to agree
with our Eq. (25) at O[(a/l) ln l/a] but not O(a/l)—these
successive orders are practically inseparable. In particular,
in the limit where the period is subwavelength (kl � 1),
their approximation at the edge of the Brillouin zone reduces
to 1 − k/k0 ≈ 2a

πh
(ln l

a
+ 5

2 − ln 2π ). This differs at O(a/h)
from our (27), which is validated in Fig. 7. Perhaps the
discrepancy can be traced to Eq. (3.11) in [22], where a
sum similar to the one in our Eq. (10) is approximated.
While the authors claim that “the main terms are kept”, their
approximation is actually only logarithmically accurate.

To conclude, the method devised in this paper for studying
spoof plasmons is simple and physically intuitive, and we
anticipate that it can be adopted to study a wide range of prop-
agation and excitation problems in acoustics and photonics
involving small holes or grooves [23]. Our approach, which
can be made rigorous using the method of matched asymptotic
expansions [24,25], follows directly from the governing equa-
tions and accordingly is not limited to configurations where
an exact formulation is available. Indeed, narrow grooves and
holes of arbitrary centerline and (subwavelength) cross section
are generally amenable to a quasi-one-dimensional analysis;
analysis of the vicinity of an arbitrary aperture can typically be
reduced to the calculation, either analytically or numerically,
of a small number of purely geometric parameters; and in
the external regions outside the microstructured surfaces the
holes and grooves can be represented by lumped point-size
resonators.
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