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Quench-induced entanglement and relaxation dynamics in Luttinger liquids
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We investigate the time evolution towards the asymptotic steady state of a one-dimensional interacting system
after a quantum quench. We show that at finite times the latter induces entanglement between right- and left-
moving density excitations, encoded in their cross-correlators, which vanishes in the long-time limit. This behavior
results in a universal time decay ∝ t−2 of the system spectral properties, in addition to nonuniversal power-law
contributions typical of Luttinger liquids. Importantly, we argue that the presence of quench-induced entanglement
clearly emerges in transport properties, such as charge and energy currents injected in the system from a biased
probe and determines their long-time dynamics. In particular, the energy fractionalization phenomenon turns
out to be a promising platform to observe the universal power-law decay ∝ t−2 induced by entanglement and
represents a novel way to study the corresponding relaxation mechanism.
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I. INTRODUCTION

The study of nonequilibrium dynamics of many-body
quantum systems is one of the most challenging and long-
standing problems in various fields of physics. Here, very
different fundamental aspects can be mentioned, includ-
ing photo-induced biological processes [1,2], formation
of strongly correlated bound states [3,4], quantum phase
transitions [5–7], and relaxation and equilibration dynamics
[8–10]. Among all, the recent technological developments in
atomic and condensed matter physics offer a very promising
platform to investigate these important issues. Nowadays, it
is indeed possible to prepare a quantum system in a given
nonequilibrium state and to study its evolution in real time, for
instance, by using cold atoms [11–15], trapped ions [16–18],
or even quantum conductors in solid-state devices [19,20].
An intriguing possibility to drive a quantum system out of
equilibrium is to perform a quantum quench, i.e., a sudden
change in time of some of its parameters [21–23]. Such a
procedure is available in state-of-the-art systems of cold atoms
[11], in which transport and real-time control experiments
have been recently reported [13–15,24–26]. The possibilities
offered by the latter setups have given a significant boost
to theoretical research, especially in the case of isolated
one-dimensional (1D) integrable systems. Due to the presence
of an infinite number of locally conserved quantities and
the unitary time evolution, a fundamental question is if this
kind of systems does relax to a steady state and, if so, how.
In the seminal paper by Rigol et al. and subsequent works
[27,28] it was shown that this is the case if one focuses on
local observables. Moreover, it was conjectured that the state
reached by the system after the quench is locally described
by a nonthermal density matrix. The latter can be obtained
within the generalized Gibbs ensemble (GGE), which takes
into account the presence of the local conserved quantities.
Different experimental results and theoretical works have
demonstrated the existence of this prethermalization regime
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for various models [4,29], although a general proof is still
lacking. In the context of interacting 1D systems, it is well
established that their low-energy equilibrium properties are
described by the Luttinger liquid (LL) model [30–32]. They
exhibit peculiar effects stemming from their non-Fermi liquid
nature due to interparticle interactions, such as charge and
spin fractionalization [19,20,32,33–42]. In recent years the
LL model has also been proven to be a very powerful tool for
studying the dynamics of 1D systems after a quench of the
interaction strength. In particular, the subsequent relaxation
towards a steady state and the characterization of the latter has
been the focus of many recent works [22,23,43–49].

In this paper we will concentrate on the transient regime
following an interaction quench in a LL. We demonstrate
the presence of entanglement between right- and left-moving
density excitations, encoded in their cross-correlators, as
argued in similar contexts [21,23,50]. We will show that this
quench-induced entanglement vanishes in the steady state,
inducing a universal power-law decay in the cross-correlators,
i.e., independent of any of the quench parameters. In order
to highlight the presence of entanglement and its subsequent
relaxation, we study its effects on observable properties of
a 1D fermionic system. Specifically, we focus on the time
evolution of the nonequilibrium spectral function (NESF) and
identify in its long-time behavior a universal contribution
∝ t−2, precisely due to the entanglement dynamics via
cross-correlators. However, the latter is in strong competition
with noninteger power-law decays typical of LLs. Since
the universal power law ∝ t−2 originates directly from the
evolution of entanglement, one would expect signatures of
the latter in the long-time behavior of the system observable
properties. On the other hand, exponents of LL-like noninteger
power laws usually strongly depend on the specific quantity
under examination [30–32]. We therefore explore the transient
dynamics of transport properties, which are strictly related
to the NESF. In particular, we consider the injection process
from an external probe and the subsequent dynamics of
the LL after the quench, studying the injected charge and
energy currents as a function of time. We demonstrate that
for these quantities the universal character clearly emerges as
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the dominant contribution to the long-time behavior. Indeed,
while the universal term ∝ t−2 is present in both NESF and
currents, noninteger LL-like power-law contributions feature
greater exponents with respect to the NESF, leading to a clearer
emergence of the universal character in transport properties.
Finally, we find that the latter is even more evident in the energy
fractionalization ratio, which thus represents a very promising
tool to probe the relaxation effects of entanglement.

The paper is organized as follows. In Sec. II we analyze
the time evolution of two-point correlators after an interaction
quench in a generic 1D system with short-range interparticle
interactions. In Sec. III we specialize to the case of the
dynamics of spectral properties of a fermionic spinless LL
after a quantum quench. In Sec. IV we consider the behavior of
the charge and energy currents injected from an external probe
into the LL. Finally, Sec. V summarizes our conclusions.

II. MODEL AND QUENCH-INDUCED ENTANGLEMENT

Let us consider an interacting 1D system with short-range
interactions. Assume that this is initially prepared in the ground
state |0i〉 of the initial Hamiltonian Hi . At t = 0, the system is
brought out of equilibrium by suddenly changing the strength
of interparticle interactions. The subsequent dynamics is thus
governed by the final Hamiltonian Hf [22,23]. In particular,
the two Hamiltonians involved in the quench can be written as
(hereafter h̄ = 1) [30–32]

Hμ = uμ

2

∑
η=±

∫ ∞

−∞
[∂xφμ,η(x)]2 dx, (1)

with μ = i,f . Here uμ = v/Kμ are the mode velocities,
v is the bare velocity, and Kμ = [1 + gμ/(πv)]−1/2 is the
dimensionless Luttinger parameter describing the strength of
interparticle interactions [51,52] (with Kμ = 1 representing
the noninteracting case). The bosonic fields φμ,η(x) diago-
nalize Hμ and are chiral and evolve, with respect to Hμ, as
φμ,η(x) = φμ,η(x − ηuμt). They thus describe right- (η = +)
and left- (η = −) moving excitations. Chiral fields before and
after the quench are related to each other by the canonical
transformation [48,49]

φf,η(x) =
∑
�=±

θ(�η)φi,�(x), (2)

with 2θ± = √
Ki/Kf ± √

Kf /Ki . To investigate the dynam-
ics induced by the quench, it is useful to express the initial
state |0i〉 in terms of the final chiral fields φf,η(x). One obtains
[53,54]

|0i〉 ∝ exp

{
σ

∫ ∞

−∞
[∂xφf,+(x)]φf,−(x) dx

}
|0f 〉, (3)

with σ = θ−/θ+ and |0f 〉 the ground state of Hf . This implies
that bosonic chiral fields φf,+(x) and φf,−(x) are strongly
entangled. It is thus interesting to inspect how the evolution
of this entanglement affects the dynamics of the system itself.
To this end, since |0i〉 is a Gaussian state, we can focus on the
two-point correlators

Dα,β(ξ ; t,τ ) ≡ 2〈φf,α(x − ξ,t − τ )φf,β (x,t)〉i
− 〈φf,α(x − ξ,t − τ )φf,β(x − ξ,t − τ )〉i
− 〈φf,α(x,t)φf,β (x,t)〉i , (4)

which fully characterize the system. Here 〈. . . 〉i denotes the
quantum average on |0i〉, the initial ground state before the
quench. Note that space-translational invariance is preserved
by an interaction quench, i.e., the two-point correlators
only depend on the relative coordinate ξ . Importantly, the
time-translational invariance is broken by the quench. In the
absence of the latter, i.e., σ = 0 in Eq. (3), quantum averages
in Eq. (4) would be evaluated on the ground state |0f 〉,
resulting in Dα,β(ξ ; t,τ ) ≡ D

eq
α,α(ξ ; τ )δα,β . In this case, due

to time-translational invariance, two-point correlators would
only depend on the relative temporal coordinate τ and fields
with opposite chirality would not be entangled, as expected in
equilibrium.

To investigate the dynamics induced by entanglement,
we focus on the long-time behavior of two-point correlators
Dα,β(ξ ; t,τ ), defined by t � τ, ξ/uf . In this regime the
evolution of the bosonic fields is governed by the postquench
Hamiltonian Hf and thus φf,η(x,t) = φf,η(x − ηuf t). With
straightforward calculations the two-point correlators of
Eq. (4) evaluate to

Dα,β(ξ ; t,τ )

=
∑
η=±

θ(ηα)θ(ηβ)

2π

× ln

{
[a − iη(β − α)uf t][a − iη(β − α)uf (t − τ )]

[a − iη(−ξ + (β − α)uf t + αuf τ )]2

}
.

(5)

Here the averages are computed by exploiting the canonical
transformation between initial and final chiral fields of Eq. (2)
and the relation [30–32]

〈φi,α(x)φi,β(y)〉i = δα,β

2π
ln

[
L

2π

1

a − iα(x − y)

]
, (6)

with L the length of the system and a a short-length cutoff. In
particular, for α = β one gets [55] Dα,α(ξ ; t,τ ) ≡ Dα,α(ξ ; τ ),
i.e., breaking of time-translational invariance does not affect
autocorrelators, although they are different from their equilib-
rium counterparts. On the other hand, cross-correlators exhibit
an explicit time dependence,

Dα,−α(ξ ; t,τ )

= θ+θ−
2π

ln

{[
a2 + 4u2

f t2
][

a2 + 4u2
f (t − τ )2

]
[a2 + (−ξ − αuf (2t − τ ))2]2

}
, (7)

encoding the entanglement, and its decay in time, be-
tween bosonic fields φf,+(x) and φf,−(x). Note that cross-
correlators are different from zero at any finite time t while
Dα,−α(ξ ; t,τ ) → 0 for t → ∞. By expanding Eq. (7) in Taylor
series in the long-time limit t � τ, ξ/uf one obtains a decay
with integer power laws only, whose exponents are thus
independent of the quench parameters. In particular, in the
local case ξ = 0 on which we will focus in the following, one
has

Dα,−α(0; t,τ ) =
∞∑

n=2

dn(τ )

tn
, (8)
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with coefficients dn(τ ) independent of the chirality. There-
fore, in the long-time limit, cross-correlators decay with a
leading power-law behavior ∝ t−2. Finite cross-correlators
Dα,−α(ξ ; t,τ ) are a hallmark of the quench-induced entangle-
ment between the two counter-propagating bosonic fields and
will determine the long-time relaxation of the system towards
its steady state. Moreover, due to their algebraic long-ranged
behavior, one would expect observable signature of their decay
in the system properties.

III. TIME-DEPENDENT SPECTRAL FUNCTION

We now discuss the influence of quench-induced cross-
correlations on a specific example of fermionic spinless LL
with repulsive interactions (Kμ � 1) and Ki > Kf . Using
bosonization [30–32], the system is described in terms of
bosonic fields by Eq. (1) and the fermionic operator de-
composes into right (R) and left (L) channels as ψ(x) =
eiqF xψR(x) + e−iqF xψL(x). Here qF is the Fermi wave vector
and

ψr (x) = 1√
2πa

exp[−i
√

2π�r (x)], (9)

with r = R,L. The bosonic field �r (x) can be expressed in
terms of final chiral fields as

�r (x) =
∑

η

A(εrη)φf,η(x), (10)

with 2A(εrη) = K
−1/2
f + εrηK

1/2
f and εR/L = ±1. To show

how the decay of entanglement between opposite chiral
excitations affects the dynamics of the system, we focus on
the behavior of the local lesser Green function,

G<(t,t − τ ) ≡ i〈ψ†(x,t − τ )ψ(x,t)〉i , (11)

in the regime t > τ . Since the particle number is conserved,
we can write

G<(t,t − τ ) = G<
R (t,t − τ ) + G<

L (t,t − τ ), (12)

where G<
r (t,t − τ ) denotes the r-channel lesser Green func-

tion. Using the bosonization identity of Eq. (9) and recalling
Eqs. (4) and (5), we obtain

G<
r (t,t − τ ) = G<

r,∞(τ )U(t,τ ). (13)

Here

G<
r,∞(τ ) = i

2πa
eπ[A2

εr
D+,+(0;τ )+A2

−εr
D−,−(0;τ )]

=
[

a

a + iuf τ

]ν+[
a

a − iuf τ

]ν−
(14)

represents the steady-state r-channel lesser Green function
while

U(t,τ ) = eπA+A−[D+,−(0;t,τ )+D−,+(0;t,τ )]

=
{ [

a2 + u2
f (2t − τ )2

]2(
a2 + 4u2

f t2
)[

a2 + 4u2
f (t − τ )2

]}γ

(15)

features the explicit time dependence encoded in the cross-
correlators Dα,−α(0; t,τ ). Note that U(t,τ ) does not depend
on the channel index r and U(t,τ ) → 1 for t → ∞. Here,

ν± = θ2
∓(A2

+ + A2
−) and γ = −A+A−θ+θ−. In particular, one

has γ > 0 for the quench protocols with Ki > Kf we are
considering. Importantly, the presence of cross-correlators
Dα,−α(0; t,τ ) in the function U(t,τ ) leads to a universal
power-law decay of G<

r (t,t − τ ) in the long-time limit. Indeed,
by expanding U(t,τ ) in Taylor series for τ/t � 1, we obtain

G<
r (t,t − τ ) = G<

r,∞(τ )

[
1 +

∞∑
n=2

gn(τ )

tn

]
. (16)

Since in the local case we address here G<
r (t,t − τ ) does not

explicitly depend on the index r , one readily obtains the long-
time limit expansion of the full lesser Green function

G<(t,t − τ ) = G<
∞(τ )

[
1 +

∞∑
n=2

gn(τ )

tn

]

≈ G<
∞(τ )

(
1 + γ τ 2

2t2

)
, (17)

with G<
∞(τ ) = 2G<

r,∞(τ ). Therefore, in the long-time limit,
G<(t,t − τ ) approaches its asymptotic value G<

∞(τ ) with a
power-law decay ∝ t−2, directly induced by the relaxation of
cross-correlators Dα,−α(ξ ; t,τ ) found in Eq. (8) [56].

The long-time behavior of Eq. (17) immediately reflects on
spectral properties, as one can see by inspecting the long-time
limit of the local (lesser) NESF [45,57,58]

A<(ω,t) ≡ 1

2π

∫ ∞

−∞
eiωτ (−i)G<(t,t − τ ) dτ. (18)

Indeed, as shown in Appendix, we find

A<(ω,t) = Ā0

[
Ā<

∞(ω) +
∞∑

n=2

An(ω)

tn
+ MA(ω,t)

tν

]
, (19)

with Ā0 = (2π2v)−1 and all terms inside the square brackets
dimensionless. Here A<

∞(ω) = Ā0Ā
<
∞(ω) is the steady-state

value of the NESF, already discussed in Refs. [45,49]. In
this work, we focus on the time decay of A<(ω,t) towards
this asymptotic value. In particular, two distinct contributions
emerge. The first one contains only integer power laws ∝ t−n

(with n � 2) and is entirely due to the decay of G<(t,t − τ )
found in Eq. (17). Here, the coefficients present in the sum
are given by An(ω) = 2π2v

∫ ∞
−∞ G<

∞(τ )gn(τ ) dτ , with gn(τ )
defined in Eq. (17). We therefore obtain that the leading
contribution of this term is a universal power-law decay ∝ t−2,
regardless of, e.g., quench parameters. On the other hand, the
second contribution contains the function MA(ω,t) which, to
the leading order in 1/t , is an oscillating function with constant
amplitude (see Appendix for details). Thus, in the long-time
limit, it decays with a LL-like nonuniversal power law ∝ t−ν ,
with

ν = K4
f + K2

i + 3K2
f

(
1 + K2

i

)
8K2

f Ki

� 1 (20)

strongly dependent on quench parameters Ki and Kf . It turns
out that the universal power-law behavior, which directly
derives from the decay of entanglement between bosonic
excitations φf,+(x) and φf,−(x), is hardly visible in the
transient of the NESF. Indeed, for any reasonable quench
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FIG. 1. Plot of |Re[�A<(ω,t)]| [units Ā0 = (2π 2v)−1] as a
function of time t [units (vqF )−1] with ω = −0.1 vqF for the quenches
Ki = 0.9 → Kf = 0.7 (blue, dashed) and Ki = 0.8 → Kf = 0.4
(red, solid). Here, solid black lines represent the power-law behavior
∝ t−ν for the two different cases.

one finds 1 � ν < 2. Thus, the long-time decay of A<(ω,t)
is governed by the nonuniversal contribution ∝ t−ν , with the
universal one being a subleading term. This is illustrated in
Fig. 1, which shows the deviation of the lesser NESF from its
steady-state value, �A<(ω,t) = A<(ω,t) − A<

∞(ω), at large
times and for two different interaction quenches [59]. Here, the
oscillating behavior due toMA(ω,t) decays with nonuniversal
power law ∝ t−ν (see solid black lines) while no evidence of
the universal behavior ∝ t−2 is present. Despite the subleading
character of the universal contribution to the behavior of the
NESF in Eq. (19), in the next section we will demonstrate
that it controls the long-time behavior of charge and energy
currents in a transport setup.

IV. TRANSIENT DYNAMICS OF TRANSPORT
PROPERTIES

Assume now that immediately after the quench, the LL
(hereafter dubbed the system) is locally tunnel coupled to a
noninteracting 1D probe, as sketched in Fig. 2, described by
the Hamiltonian

Hp = −iv

∫ ∞

−∞
χ †(x)∂xχ (x) dx, (21)

with χ (x) its fermionic field. The probe is subject to a bias
voltage V measured with respect to the Fermi level of the
system. We assume a local tunneling at x0 which breaks
inversion parity, focusing, e.g., on the injection in the system
R-channel only [49,60–62],

Ht (t) = ϑ(t)λ ψ
†
R(x0)χ (x0) + H.c., (22)

FIG. 2. Scheme of the system, modeled as a pair of counter-
propagating channels, and the probe, biased with a dc voltage V . At
x = x0, the probe injects R-moving particles only.

where λ is the tunneling amplitude and ϑ(t) is the Heaviside
step function. The whole setup is assumed to be in thermal
equilibrium before the quench, with ρ(0) the associated zero-
temperature density matrix. We concentrate on chiral charge
and energy currents, defined as

Iη(V,t) = e∂t

∫ ∞

−∞
〈δnη(x,t)〉 dx, (23)

Pη(V,t) = ∂t

∫ ∞

−∞
〈δHη(x,t)〉 dx. (24)

Here

nη(x,t) = −η

√
Kf

2π
∂xφf,η(x − ηuf t), (25)

Hη(x,t) = uf

2
[∂xφf,η(x − ηuf t)]2 (26)

are the chiral particle and Hamiltonian densities, respectively,
while

〈δO(x,t)〉 = Tr{O(x,t)[ρ(t) − ρ(0)]} (27)

represents the average variation, induced by the tunneling, of a
given operator O(x,t). The time-dependent full density matrix
ρ(t) is evaluated in the interaction picture with respect to Ht (t)
[40,49]. The explicit expressions for the chiral charge and
energy currents are computed, to the lowest order in tunneling
amplitude and in the long-time limit, in Appendix. These two
quantities are directly related to the NESF in Eq. (19) and, not
surprisingly, share with the latter an analogous structure

Iη(V,t) = Ī0

[
Ī∞
η (V ) +

∞∑
n=2

Iη,n(V )

tn
+ MI

η(V,t)

tν+1

]
, (28)

Pη(V,t) = P̄0

[
P̄ ∞

η (V ) +
∞∑

n=2

Pη,n(V )

tn
+ MP

η (V,t)

tν+2

]
, (29)

with Ī0 = e|λ|2qF (2π2v)−1, P̄0 = |λ|2q2
F (π2Kf )−1 and all the

terms in square brackets dimensionless [59]. In particular,
Eqs. (28) and (29) consist of three contributions: a steady-state
value [48,49], I∞

η (V ) = Ī0Ī
∞
η (V ), and P ∞

η (V ) = P̄0P̄
∞
η (V ),

respectively; one transient contribution that contains only inte-
ger power laws of time, stemming from the time dependence of
G<(t,t − τ ) in Eq. (17); another transient contribution which
is related to the quenched LL nonuniversal behavior. As well
as MA(ω,t) in Eq. (19), both MI

η(V,t) and MP
η (V,t) are

functions whose leading term is an oscillating factor with
constant amplitude. However, in sharp contrast with the NESF,
here the nonuniversal transient contributions decay as t−ν−1

and t−ν−2 for the charge and energy currents, respectively, with
ν � 1 given in Eq. (20). This behavior of the nonuniversal
contribution is not surprising since, in essence, A<(V,t) ∝
∂V

∑
η Iη(V,t) and A<(V,t) ∝ ∂2

V

∑
η Pη(V,t). Furthermore,

since both quantities contain oscillating factors ∼eiV t in
the functions MI,P

η (V,t) [see Eqs. (A15) and (A29) in
Appendix], the exponents of the nonuniversal power laws will
be modified according to the derivative over V . On the other
hand, coefficients of the universal contributions Iη,n(V ) and
Pη,n(V ) are independent of t , and derivation with respect to
V does not affect the universal power-law decay in time. The
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FIG. 3. Panel (a): Plot of |�P+(V,t)| (red, solid), |�P−(V,t)|
(green, dash-dotted), and |�P (V,t)| = |∑η �Pη(V,t)| (blue,
dashed) [units P̄0 = |λ|2q2

F (π 2Kf )−1] as function of time t [units
(vqF )−1] for the quench Ki = 0.9 → Kf = 0.6. Panel (b): Plot
of |�Rη(V,t)| = |Rη(V,t) − R∞

η |, as a function of time t [units
(vqF )−1] for the quenches Ki = 0.9 → Kf = 0.6 (blue, dashed) and
Ki = 0.8 → Kf = 0.4 (red, solid). Note that |�Rη(V,t)| does not
depend on the chirality (see text). In both panels solid black lines
indicate the power law ∝ t−2 and V = 0.1 vqF /e.

relaxation dynamics of Iη(V,t) and Pη(V,t) are thus governed
by the universal decay ∝ t−2, which does not depend on
the quench parameters and traces back to the behavior of
cross-correlators Dα,−α(0; t,τ ) and thus of entanglement. The
long-time dynamics of chiral charge and energy currents can
thus directly reveal the entanglement between chiral bosonic
fields φf,+(x) and φf,−(x) and its relaxation.

In particular, the chiral energy current represents a promis-
ing tool to elucidate the universal dynamics of the system.
In fact, its nonuniversal transient contribution decays faster,
leading to an earlier emergence of the t−2 relaxation with
respect to the charge current. In addition, the excess chi-
ral energy current �Pη(V,t) = Pη(V,t) − P ∞

η (V ) displays a
striking dependence on the chirality η, which turns out to
help even more in detecting the universal behavior ∝ t−2.
Indeed, as shown in Fig. 3(a), the nonuniversal decay mostly
affects �P+(V,t) while �P−(V,t) exhibits an almost perfect
decay ∝ t−2, which emerges clearly even at short times.
Moreover, within the time range we are interested in, one has
|�P−(V,t)| � |�P+(V,t)|: The relaxation of the total energy
current P (V,t) = ∑

η Pη(V,t) is thus essentially controlled by
the dominant universal decay ∝ t−2 of P−(V,t). It is worth not-
ing that this leads to an intriguing effect: During the transient,
the majority of the excess energy current injected from the
probe flows in the η = − direction. This is in sharp contrast
with the steady-state contribution, which is always dominated

by the η = + chirality, and with the nonquenched case, where
one finds P+(V,t) ∝ P−(V,t) with |P+(V,t)| � |P−(V,t)|.
Moreover, we underline that this effect does not exist for
the chiral charge currents, which always satisfy I+(V,t) ∝
I−(V,t) with I+(V,t) > I−(V,t) [see Eq. (A7) in Appendix].
To further exploit this peculiar chirality dependence of the
excess energy current, we inspect the energy fractionalization
ratio

Rη(V,t) = Pη(V,t)∑
η Pη(V,t)

(30)

in the transient regime [42,49]. Its relaxation towards the
steady-state value R∞

η = A2
η/(A2

+ + A2
−) [42,49] is depicted in

Fig. 3(b), where we show the behavior of the absolute value of
�Rη(V,t) = Rη(V,t) − R∞

η for two different quenches. The
universal decay ∝ t−2 emerges as clearly as in �P−(V,t). Note
that, since Rη(V,t) = 1 − R−η(V,t), one has |�Rη(V,t)| =
|�R−η(V,t)|, i.e., |�Rη(V,t)| does not depend on the chirality.
Moreover, the fractionalization ratio has the key advantage to
be time independent in the nonquenched case, with Rη(V,t) =
R∞

η . Therefore, the presence of a transient in Rη(V,t) is
a direct hallmark of the nonequilibrium dynamics of the
system induced by the quench. Together with �P−(V,t), it
represents a very promising tool for the investigation of the
quench-induced entanglement between counterpropagating
chiral fields φf,±(x) and its relaxation in time.

Before closing, we note that our results hold even for
a nonsudden change of the inter-particle interaction and in
the presence of a finite temperature. In particular, since
the smallest time scale of the system is set by the time
cutoff τ0 = a/v, our discussions remain valid for protocols
faster than τ0. On the other hand, a finite temperature T

induces a characteristic time scale τth = βh̄, with β the inverse
temperature, and thus its effects remain negligible for times
t � τth. In the specific case of a typical fermionic cold
atoms setup one has τ0 ∼ 10−7 s and T ∼ 10−8 K [63]. The
associated time scale is then τth ∼ 10−3 s = 104τ0 and is well
beyond the time region in which the power-law decay ∝ t−2

clearly emerges in the energy current and fractionalization
ratio in Fig. 3.

V. CONCLUSIONS

In summary, the nonequilibrium dynamics of a 1D inter-
acting system after a quantum quench has been discussed.
It has been shown that an interaction quench results in an
initial entanglement between right- and left-moving density
excitations, which is encoded in the time evolution of their
cross-correlators. This represents a direct fingerprint of the
quantum quench and deeply affects the relaxation towards
the steady state of the system. We have shown this in the
specific case of spectral and transport properties of a fermionic
1D system subject to an interaction quench. In particular,
we demonstrated that the entanglement dynamics induces a
universal long-time decay ∝ t−2 in the nonequilibrium spectral
function, whose time evolution is also affected by other
nonuniversal power laws, with quench-dependent exponents.
Interestingly, the universal character clearly emerges by
considering charge and energy currents in a transport setup.
In particular, fractionalization phenomena, peculiar of 1D
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interacting systems, can be envisioned to probe the presence
of quench-induced entanglement and its relaxation. Among
all, the transient dynamics of the energy fractionalization ratio
represents a promising tool to observe these universal features.

We expect our discussions to be independent of the precise
form of the quench protocol, of the tunneling Hamiltonian, or
of the presence of a finite temperature. Moreover, our results
can elucidate fundamental aspects of nonequilibrium physics
settled by a quantum quench and can be tested with state-of-
the-art implementation of cold atomic systems or solid state
devices.

APPENDIX: TRANSPORT PROPERTIES
AND SPECTRAL FUNCTION

In this Appendix we derive the chiral charge and energy
currents and study their long-time behavior (Sec. A 1). We
then connect them with the NESF and inspect the asymptotic
behavior of the latter (Sec. A 2).

1. Chiral charge and energy currents

We start from the evaluation of transport properties for
the setup introduced in Sec. IV. We begin by quoting the
expression for the average variation 〈δO(x,t)〉i of a generic
Hermitian and particle-number conserving operator O(x,t) of
the system, induced by the switching on of the tunnel-coupling
for t > 0 (see Refs. [40,49] for further details). We assume
the system and the probe to be in thermal equilibrium for
t < 0, with ρ(0) the associated global density matrix at t = 0.
Working in the interaction picture with respect to the tunneling
Hamiltonian Ht (t) [see Eq. (22)], to the lowest order in the
tunneling amplitude λ one has

〈δO(x,t)〉i = Tr{O(x,t)[ρ(t) − ρ(0)]}

= 2Re
∫ t

0
dτ1

∫ τ1

0
dτ2 Tr{ρ(0)H+

t (τ2)

× [O(x,t),H−
t (τ1)] + ρ(0)H−

t (τ2)

× [O(x,t),H+
t (τ1)]}, (A1)

with Ht (τ ) = H+
t (τ ) + H−

t (τ ) = ϑ(τ )λψ
†
R(x0)χ (x0) + H.c.

Note that sinceO(x,t) is an operator acting only on the system,
it commutes with the probe Fermi field χ (x).

In order to evaluate the chiral charge current of Eq. (23),

Iη(V,t) = e∂t

∫ ∞

−∞
〈δnη(x,t)〉i dx, (A2)

we substitute O(x,t) = nη(x,t) in Eq. (A1) with nη(x,t) given
in Eq. (25). As a first step, we evaluate the correlators of the
noninteracting probe, modeled as a noninteracting one-channel
LL. Note that its corresponding chemical potential is shifted
by the bias energy eV with respect to the Fermi level of the
system. In the zero-temperature case we obtain

〈χ †(x0,τ2)χ (x0,τ1)〉 = iG>
p (τ1 − τ2)eieV (τ2−τ1), (A3)

〈χ (x0,τ2)χ †(x0,τ1)〉 = iG>
p (τ1 − τ2)e−ieV (τ2−τ1), (A4)

where the greater Green function of the local probe is

G>
p (τ ) = − i

2πa

a

a − ivτ
. (A5)

Then we focus on the commutator present in Eq. (A1), which
gives

[nη(x,t),ψ†
R(x0,τ )]

=
√

Kf Aη

π

[
a

a2 + (zf,η − z̄f,η)2

]
ψ

†
R(x0,τ ), (A6)

with generalized coordinates zf,η = x − ηuf t and z̄f,η =
x0 − ηuf τ . Finally, noting that 〈ψ†

R(x0,τ2)ψR(x0,τ1)〉i =
〈ψR(x0,τ2)ψ†

R(x0,τ1)〉i = −iG<
R (τ1,τ2), with G<

R (τ1,τ2) given
in Eq. (13), we obtain

Iη(V,t) = I 0
η Re

[ ∫ t

0
G<(t,t − τ )G>

p (τ )i sin(eV τ ) dτ

]
,

(A7)

where I 0
η = e|λ|2(1 + ηKf ). Note that in the above equation

G<(t,t − τ ) is always in the regime with t > τ .
We now turn to the long-time behavior of Eq. (A7). We

observe that the main features of the integrand are located in
two well-separated regions near the boundary of the integration
domain. Indeed, G>

p (τ ) presents a pole in τ = −ia/v,G<
∞(τ )

has branch points in τ = ±ia/uf , and U(t,τ ) has two further
branch points at τ = t ± ia/(2uf ). Moreover, we note that in
the region 0 < τ < t both G<(t,t − τ ) and G>

p (τ ) are smooth
and slowly varying functions. Therefore, due to the presence
of the oscillating term, the main contribution to the integral
arises from the singular parts of the integrand only. We thus
have

Iη(V,t) ≈ Iη,0(V,t) + Iη,t (V,t), (A8)

with Iη,0(V,t) and Iη,t (V,t) the contributions due to regions
near τ ∼ 0 and τ ∼ t , respectively. At first, let us focus on
Iη,0(V,t). To this end, we can exploit the long-time limit
expansion of G<(t,t − τ ) of Eq. (17), retaining only the lowest
order in τ/t . Since we are interested in the region near τ ∼ 0
and thanks to the oscillating term, we can set t → ∞ in the
integration domain, obtaining the leading contribution

Iη,0(V,t) ≈ I 0
η Re

[∫ ∞

0
G<

∞(τ )

(
1 + γ τ 2

2t2

)
G>

p (τ )eieV τ dτ

]
= I∞

η (V ) − γ

2e2t2

d2

dV 2
I∞
η (V ), (A9)

with

I∞
η (V ) = I 0

η Re

[∫ ∞

0
G<

∞(τ )G>
p (τ )i sin(eV τ ) dτ

]
(A10)

the asymptotic value of Iη(V,t). Therefore, the universal
power-law decay of the system Green function found in
Eq. (17) results in an analogous behavior in the contribution
Iη,0(V,t).
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Let us now discuss the region around τ ∼ t . After the
change of variable y = t − τ , the main contribution to
Iη,t (V,t) is given by the term (a2 + 4u2

f y2)−γ present in
U(t,t − y). To get the long-time behavior, we thus expand
all other contributions at lowest order in y/t � 1. Again, we
can safely extend the integration domain to t → ∞, obtaining

Iη,t (V,t) ≈ − I 0
η

2π2av

(
a

uf

)ν++ν− cos
[

π
2 (ν+ − ν−)

]
42γ tν++ν−−2γ+1

×
∫ ∞

0

sin [eV (t − y)]

[(a/2uf )2 + y2]γ
dy. (A11)

Therefore, in the long-time limit, Iη,t (V,t) is an oscillating
function decaying with a power law ∝ t−ν−1, with

ν = ν+ + ν− − 2γ = K4
f + K2

i + 3K2
f

(
1 + K2

i

)
8K2

f Ki

� 1.

(A12)

Recalling Eq. (A8), the tunneling current in the long-time limit
thus reads

Iη(V,t) ≈ Ī0

[
Ī∞
η (V ) + Iη,2(V )

t2
+ MI

η (V,t)

tν+1

]
, (A13)

with Ī0 = e|λ|2(2π2av)−1, Ī∞
η (V ) = I∞

η (V )/Ī0, and

Iη,2(V ) = − γ

2e2

d2

dV 2
Ī∞
η (V ), (A14)

MI
η (V,t) = −1 + ηKf

2

(
a

uf

)ν++ν− cos
[

π
2 (ν+ − ν−)

]
42γ

×
∫ ∞

0

sin [eV (t − y)]

[a2/(2uf )2 + y2]γ
dy. (A15)

Since ν � 1, the long-time behavior of the charge current
is controlled by the universal contribution ∝ t−2. Note that,
by substituting the complete series expansion of Eq. (17)
in Eq. (A9), the whole contribution with integer power laws
reported in Eq. (28) is easily recovered

Iη(V,t) = Ī0

[
Ī∞
η (V ) +

∞∑
n=2

Iη,n(V )

tn
+ MI

η(V,t)

tν+1

]
, (A16)

where the function MI
η(V,t) takes into account all higher-

order contributions.
The chiral energy current of Eq. (24),

Pη(V,t) = ∂t

∫ ∞

−∞
〈δHη(x,t)〉 dx, (A17)

can be obtained from Eq. (A1) by substituting O(x,t) =
Hη(x,t), with Hη(x,t) given in Eq. (26). In this case the
commutator in Eq. (A1) gives

[Hη(x,t),ψ†
R(x0,τ )] = −ηuf Aη√

2π

[
a

a2 + (zf,η − z̄f,η)2

]
× ∂x{φη(zf,η),ψ†

R(x0,τ )}, (A18)

with zf,η = x − ηuf t and z̄f,η = x0 − ηuf τ . From the above
equation, it emerges that quantum averages of the form

〈ψ†
R(x0,τ2)φη(zη)ψR(x0,τ1)〉i (A19)

have to be computed. This can be done by using the
bosonization identity of Eq. (9), the relation

φη(zη) = −i∂ye
iyφη(z)|y=0, (A20)

and the well-known properties of Gaussian averages valid for
bosonic fields [30–32]. We obtain

Pη(V,t)=P 0Re

{∫ t

0

[
1

iuf

(∂t̄−ηuf ∂ξ )G<
R (ξ ; t̄ ,t − τ )

]
t̄ = t

ξ = 0

× G>
p (τ ) cos(eV τ ) dτ

}
, (A21)

with P 0 = 2|λ|2uf and G<
R (ξ ; t̄ ,t − τ ) = i〈ψ†

R(0,t − τ )ψR

(ξ,t̄)〉 the nonlocal Green function. Again, the properties of
Pη(V,t) can be expressed in terms of two-point correlators.
Indeed, the term in square brackets evaluates to[

1

iuf

(∂t̄ − ηuf ∂ξ )G<
R (ξ ; t̄ ,t − τ )

]
t̄ = t

ξ = 0

= G<(t,t − τ )Fη(t,τ ), (A22)

where

Fη(t,τ ) = A2
ηF1(τ ) + γF2(t,τ ) (A23)

and

F1(τ ) = θ2
+

a − iuf τ
− θ2

−
a + iuf τ

, (A24)

F2(t,τ ) = 2iuf (2t − τ )

a2 + u2
f (2t − τ )2

− 4iuf t

a2 + 4u2
f t2

. (A25)

The long-time behavior of Eq. (A21) can be obtained following
the same lines illustrated in the case of the charge current. We
therefore arrive at

Pη(V,t)= P̄0

[
P̄ ∞

η (V )+
∞∑

n=2

Pη,n(V )

tn
+MP

η (V,t)

tν+2

]
, (A26)

with P̄0 = |λ|2(π2a2Kf )−1 and

P̄ ∞
η = 2π2a2vA2

ηRe
[∫ ∞

0 G<
∞(τ )F1(τ )G>

p (τ ) cos(eV τ ) dτ
]
,

(A27)

Pη,2(V ) = −γ

{
1

2

d2

e2dV 2
P̄ ∞

η (V ) − 2π2a2Kf

× Re

[∫ ∞

0
G<

∞(τ )G>
p (τ ) cos(eV τ )iτ dτ

]}
, (A28)

MP
η (V,t)≈−[

A2
η(θ2

+ + θ2
−) + γ

]( a

uf

)ν++ν−+1

× cos
[

π
2 (ν+ − ν−)

]
42γ

∫ ∞

0

cos[eV (t − y)]

[a2/(2uf )2 + y2]γ
dy,

(A29)
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where in the last line we have retained only the leading order
in the long-time limit expansion.

2. Spectral function

We start this section by pointing out the explicit connection
between the charge and energy currents with the system lesser
NESF of Eq. (18),

A<(ω,t) ≡ 1

2π

∫ ∞

−∞
eiωτ (−i)G<(t,t − τ ) dτ. (A30)

One can rewrite Eqs. (A7) and (A21) as

Iη(V,t) = I 0
η Re

[∫ ∞

−∞
A<(ω,t)BI

V (ω,t) dω

]
, (A31)

Pη(V,t) = P 0Re

[∫ ∞

−∞
A<(ω,t)BP

V,η(ω,t) dω

]
, (A32)

with the functions

BI
V (ω,t) =

∑
η=±

η

∫ ∞

−∞
A>

p (�)SηV (ω,�,t) d�, (A33)

BP
V,η(ω,t) =

∑
�=±

∫∫ ∞

−∞
A>

p (�)F̃η(ω′,t)

× S�V (ω + ω′,�,t) dω′d�. (A34)

Here we have introduced the greater spectral function of
the probe A>

p (�) = (2π )−1
∫ ∞
−∞ ei�τ iG>

p (τ ) dτ as well as
functions

SηV (ω,�,t) = i[1 − ei(ηeV −ω−�)t ]

νeV − ω − �
, (A35)

F̃η(ω′,t) = 1

2π

∫ ∞

−∞
Fη(t,t − τ )eiω′τ dτ. (A36)

We now discuss the asymptotic behavior of the NESF of
Eq. (A30) and derive the expansion of Eq. (19). In this case, in
contrast with the previous section, one should also consider the
region with t < τ . Following the same arguments of Sec. III,
one can demonstrate that in this regime

G<(t,t − τ ) = G (t,τ )U (t), (A37)

with

G (t,τ ) = i

πa

∏
�=±

{
a

a + i[(ui + �uf )t − uiτ ]

}ν�−2γ

,

(A38)

U (t) =
(

a2

a2 + 4u2
f t2

)γ

. (A39)

In order to obtain the long-time behavior of A<(ω,t), we
exploit the same method used for charge and energy currents
in Sec. A 1. Note that the integrand function G<(t,t − τ )
present in Eq. (A30) has singular points in τ = ±ia/uf , τ =
t ± ia/(2uf ) and τ = (1 + uf /ui)t − ia/ui . We thus have

A<(ω,t) ≈ A<
0 (ω,t) + A<

t (ω,t) + A<
(1+uf /ui )t (ω,t). (A40)

In particular, using the long-time expansion of G<(t,t − τ )
in Eq. (17), we obtain that the region near τ ∼ 0 gives, as in
previous cases, the asymptotic contribution and the universal
power-law decaying one. On the other hand, regions near
τ ∼ t and τ ∼ (1 + uf /ui)t result in two slightly different
noninteger power-law decays. Following the same steps
leading to Eq. (A16), we thus obtain

A<(ω,t) = Ā0

[
Ā<

∞(ω) +
∞∑

n=2

An(ω)

tn
+ MA(ω,t)

tν

]
, (A41)

with Ā0 = (2π2v)−1 and

Ā<
∞(ω) = πv

∫ ∞

−∞
eiωτ (−i)G<

∞(τ ) dτ, (A42)

A2(ω) = −γ

2

d2

dω2
Ā<

∞(ω), (A43)

MA(ω,t)

≈ v

a

ei π
2 (ν−−ν+)

42γ

(
a

uf

)ν++ν−
eiωt

×
{∫ ∞

0
e−iωy 1

[a2/(2uf )2 + y2]γ
dy + 22γ

iω

(uf

a

)2γ
}
.

(A44)

We point out that in Eq. (A44) we have retained only the
leading order in the time expansion; the first term in curly
brackets stems from the regime τ < t , while the second one is
due to the regime τ > t . Finally, we note that in Eq. (A40)
all the three contributions inside the square brackets are
dimensionless.
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