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Measuring Majorana nonlocality and spin structure with a quantum dot
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Robust zero-bias transport anomalies in semiconducting nanowires with proximity-induced superconductivity
have been convincingly demonstrated in various experiments. While these are compatible with the existence of
Majorana zero modes at the ends of the nanowire, a direct proof of their nonlocality and topological protection is
now needed. Here we show that a quantum dot at the end of the nanowire may be used as a powerful spectroscopic
tool to quantify the degree of Majorana nonlocality through a local transport measurement. Moreover, the spin
polarization of dot subgap states at singlet-doublet transitions in the Coulomb blockade regime allows the dot to
directly probe the spin structure of the Majorana wave function and indirectly measure the spin-orbit coupling of
the nanowire.
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I. INTRODUCTION

Majorana zero modes, peculiar self-conjugate Bogoliubov
quasiparticles that emerge at zero energy in topological
superconductors, may one day constitute the building blocks of
topologically protected quantum computation [1,2]. Arguably
the simplest way to obtain such exotic quasiparticles is to
artificially engineer topological superconductivity by means
of the superconducting proximity effect [3]. One of the most
promising routes using this idea is based on proximitized semi-
conducting nanowires with strong spin-orbit coupling and in
the presence of an external magnetic field [4,5]. Indeed, several
experiments have reported zero-bias transport anomalies in
such proximitized nanowires [6–12]. The observed anomalies
are in some cases remarkably robust [11,12], as expected
of zero modes of topological origin, and are interpreted as
evidence of Majorana zero modes and induced topological
superconductivity in the nanowires. While these results are
highly promising, it is now necessary to obtain direct evidence
of the crucial property of Majoranas that underlies their
protection: spatial nonlocality.

A direct demonstration of Majorana nonlocality would
immediately rule out nontopological origins of the observed
zero-bias anomalies, such as disorder [13,14], or various
effects related to unintentional quantum dot formation in the
nanowire such as the Kondo effect [15,16] or Zeeman-induced
subgap states [10]. The challenge seems daunting, however.
A great variety of sophisticated schemes have been devised
for probing nonlocality of Majoranas and their non-Abelian
braiding properties [17–35]. Here we show that the problem
of quantifying Majorana nonlocality might have a simpler
solution than anticipated, requiring only a local probe. By
measuring transport into the Majorana nanowire across an
intervening quantum dot, as those that often form when
gating the nanowires (Fig. 1), Majorana nonlocality may be
unambiguously demonstrated. A related idea was explored in
Ref. [36] in terms of Fano resonances. These results suggest
that quantum dots are unexpectedly powerful spectroscopic
tools to fully characterize essential Majorana properties. In

our case, the measurable properties extend beyond spatial
nonlocality and include the spin structure of the Majorana
wave function at the end of the nanowire, which can be
accessed rather simply by virtue of the spin polarization
of the dot states due to Coulomb blockade. Measuring the
Majorana spin structure using such a spin-selective probe also
allows one to indirectly extract the spin-orbit coupling in the
nanowire, providing a complementary measurement to more
conventional techniques [12,37].

The structure of the paper is the following. We first study
a microscopic tight-biding model, Sec. II, for a dot in the
Coulomb blockade regime coupled to a finite-length topologi-
cal superconductor nanowire, and characterize numerically its
spectral phenomenology in Sec. II A. To connect the numerical
results of the anticrossings to the physical quantities of interest,
we develop a simple low-energy effective model in Sec. III
with which we interpret the dot-Majorana anticrossings in
Sec. III A. In Sec. IV we derive an estimator that can quantify
the degree of Majorana nonlocality by local measurements and
analyze its behavior under generalizations of the nanowire
model in Sec. IV A. Finally, we derive analytical formulas
relating the microscopic parameters to the effective model
parameters in Appendix. The main results of our analysis,
discussed in the concluding Sec. V, can be condensed as
follows:

(1) Majorana nonlocality, and hence topological protec-
tion, is revealed as a zero-energy mode that does not shift as
the two dot levels cross zero energy [Figs. 2(d) and 4(a)].

(2) In contrast, the dot states avoid the zero mode at
resonance. A comparison of the anticrossing strength of the
two spin-polarized dot levels directly yields the degree of spin
canting of the Majoranas at the end of the nanowire.

(3) In the presence of a finite overlap between the Majo-
ranas, their energy shifts away from zero and follows a bowtie
or diamondlike pattern around the dot-level resonances [e.g.,
Figs. 3(b), 3(c) 4(b), and 4(c)]. The details of this pattern can
be used to obtain an accurate estimator � ≈ √

tR/tL of the
degree of nonlocality of the Majoranas and of their expected
immunity against decoherence from local noise.
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FIG. 1. (a) Sketch of a quantum dot–nanowire junction proposed
to measure the Majorana’s degree of nonlocality and spin structure.
Tunneling differential conductance across the dot provides access to
the coupled dot–nanowire spectrum. As the quantum dot levels (spin
polarized due to Coulomb blockade) are tuned across zero energy
with a local gate, they anticross the Majorana zero modes γL and γR ,
with a strength that depends on the relative spin orientation of the
Majorana and the dot states. [The spin texture of the two Majoranas
and the relevant spin canting angles θL,R are shown in panel (b).]
The anticrossings thus provides direct access to the Majorana spin
structure at the contact. In contrast, the energy of the two Majorana
bound states stays pinned at zero at the crossings if they do not
overlap, i.e., if their hybridization δ is zero and the dot is only coupled
to γL (hopping tL is finite but tR is zero). Deviations from such a
nonlocality condition manifest as particular ε0-dependent energies of
the hybridized Majoranas (see Fig. 4) that may be used to quantify
the amount of Majorana overlap as � ≈ √

tR/tL.

(4) The dependence of the spin canting angle with Zeeman
field can be used to indirectly measure the spin-orbit coupling
in the nanowire.

II. TIGHT-BINDING DOT-NANOWIRE MODEL

An interacting quantum dot coupled to a superconducting
contact is an artificial analog of a quantum impurity in a super-
conductor. The physics of such a hybrid device is governed by
the fermionic parity and spin of the two possible ground states,
doublet or singlet, and their corresponding subgap excitations
(which are sometimes called Shiba states when they are spin
polarized). Here we study in detail a generalization of this
paradigmatic model where the superconductor is replaced by a
proximitized semiconducting nanowire which becomes a topo-
logical superconductor for large enough Zeeman fields [4,5].
Such a quantum dot–topological superconductor junction can
be experimentally realized by creating quantum dots at the end
of the nanowire using, e.g., depleting gates. In this section we
study numerically, using a microscopic tight-binding model,
the hybridization between the Shiba subgap states in the
quantum dot and the Majorana zero modes that appear in the
nanowire in the topological phase.

Consider a quantum dot with a single spinful level coupled
to the left end (x = 0) of a proximitized Rashba nanowire of
length Lw under a Zeeman field B, see sketch in Fig. 1. A rather
general model for the system (see Sec. IV A for extensions)

reads [4,5]

H = Hd + Hw + Hhop,

Hd = d
†
σ ′ (ε0σ0 + Bσz)dσ + Un↑n↓,

Hw =
∫ Lw

0
dx c

†
xσ ′

[(
h̄2k2

x

2m
− μ

)
σ0 + αkxσy + Bσz

]
cxσ

+	(cx↑cx↓ + c
†
x↓c

†
x↑),

Hhop = t(c†0σ dσ + d†
σ c0σ ), (1)

where ε0 is the dot level, U is its charging energy, m is the
nanowire’s effective mass, 	 is the induced superconducting
pairing, α is the spin-orbit coupling, μ is the nanowire’s
chemical potential, and B is a Zeeman splitting. In practical
calculations, the nanowire is discretized into tight-binding sites
at a0 = 10 nm intervals. Operators dσ and cxσ denote electrons
in the dot and (discrete) point x of the nanowire, respectively,
and kx = −i∂x is approximated by finite differences. Sums
over spin indices σ are implicit throughout this work. For
B > Bc ≡

√
μ2 + 	2 the nanowire enters a topological phase,

with one Majorana state at each end, which we denote by γL

(inner or leftmost Majorana, close to the dot) and γR (outer or
rightmost Majorana, further from the dot), see Fig. 1.

We are interested in the Coulomb blockade regime for the
dot, where the relevant physics of a quantum dot coupled
to a superconductor (singlet-doublet parity crossings) is well
described within a self-consistent mean-field approximation
of the interaction term in Hd :

Un↑n↓ ≈ U (n↑〈n↓〉 + 〈n↑〉n↓ − 〈n↑〉〈n↓〉). (2)

In principle, other pairing terms exist in the full mean-field
decoupling due to the proximity of the superconductor. We
have also performed calculations with the full mean-field
theory, including all possible decouplings, but the results in
the low-energy spectrum are almost indistinguishable from
the above approximation using realistic parameters.1

The contact between dot and nanowire is described using
the simplest possible model, Hhop. A more realistic alternative
could be to model a smooth potential barrier between two
segments of the wire created by a pinch-off gate underneath.
In the case of a short dot and short barrier, however, the two
models should be quantitatively similar for a proper choice
of dot-nanowire hopping amplitude t related to the barrier
strength. The most important difference between the two
contact models is that in the results to follow the information
measured by the dot applies to some spatial average of the
Majorana wave function inside the barrier, instead of simply
at the endpoint of the decoupled wire. As an important remark,
the dot-nanowire hopping amplitude t modifies the position of
the dot level ε0. In the following, ε0 will denote the actual

1It is well known that mean-field solutions artificially break time-
reversal symmetry. However, we always focus on the large Zeeman
regime, which is well described by a mean-field approximation.
Furthermore, we note that Kondo physics is only relevant in the
regime TK/	 � 0.6 (see, e.g., [38]), which is far from the parameter
regime we consider (with a doublet ground state for odd occupancy,
i.e., at the center of the Coulomb blockade diamond).
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FIG. 2. Low-energy spectrum of the tight-binding dot-wire model
as a function of B for fixed ε0 = 0.25 meV (a) and 1.0 meV (c), and as
a function of ε0 for fixed B = 0.1 meV (b) and 1.0 meV (d). Blue (red)
lines correspond to spin-up (down) states concentrated on the dot,
with electronlike (holelike) character shown as solid (hollow) curves.
Charge interactions in the dot are U = 3 meV, spin-orbit coupling
is α = 60 meV nm, and nanowire length is Lw = 2 μm. Panel (b)
represents the paradigmatic singlet-doublet-singlet transitions in a
dot-trivial superconductor junction with Zeeman-split dot levels, see
Ref. [10]. Panel (d) is the analog for a topological superconductor.
While the dot states avoid the Majorana zero mode in (c), (d), the
zero Majorana energy is unperturbed by the dot-level crossing. This
is a signature of the Majorana nonlocality.

dot level for a given t , taken in our simulations as 10% of the
hopping amplitude between neighboring sites in the nanowire
(weak-coupling limit).

A. Spectral phenomenology of the tight-binding model

The spectrum of the dot-wire system, treating interactions
within a self-consistent mean-field scheme, exhibits rather
different subgap features depending on whether the nanowire is
topological or not. In the trivial phase B < Bc, only dot levels
may appear below the superconducting gap. As expected, we
recover the physics of singlet-doublet parity crossings: subgap
states, which are sometimes called Shiba states when they are
spin polarized by B, exhibit protected parity crossing at zero
energy either as a function of Zeeman B (for fixed ε0 in the
singlet regime) or as a function of ε0 for fixed B. Figure 2(a)
shows these crossings in a long Lw = 2 μm InAs nanowire
for μ = 0 and 	 = 0.5 meV and fixed ε0 ≈ 0.25 meV as a
function of Zeeman energy B (blue and red denote up and
down spin polarizations along z, solid and hollow denote
particle-hole character). Alternatively, Shiba states may cross
zero energy twice (one per spin in the dot) for a fixed B as ε0

is increased, the first at negative ε0 as the occupation of the dot
goes from 2 to 1 (single-doublet), and the second at positive ε0

when it jumps from 1 to 0 (doublet-singlet). Figure 2(b) shows
these two crossings in the trivial phase for fixed B = 0.1 meV.

FIG. 3. Same as Fig. 2 but for a shorter Lw = 400 nm. The
Majoranas overlap, which leads to oscillatory splittings (a) and a finite
hybridization with the dot states at the zero-energy crossings. This
results in bowtielike (b) or diamondlike (c) patterns in the Majorana
energy as a function of dot level ε0. (a) assumes ε0 = 1.25 meV, while
(b) and (c) are taken at fixed B = 1.0 and 1.7 meV, respectively
[vertical dashed lines in (a)].

In the topological phase B > Bc of a sufficiently long
nanowire, Majorana states arise at zero energy. Shiba states
attempting to cross zero energy, Figs. 2(c) and 2(d), are then
forced into an anticrossing with Majorana states. Each of the
two anticrossings has a different amplitude, but it is strictly
finite for finite t . For truly topological nanowires (much longer
than the Majorana size), the two Majoranas do not overlap,
which pins them to zero energy exactly, even across the
resonance with the dot state [39]. In other words, while the dot
state avoids crossing the Majorana zero mode, the Majorana
itself is unperturbed by the resonance with the dot state. This
is a direct manifestation of the Majorana nonlocality, or of
topological protection of the zero mode.

For shorter wires, comparable in length to the Majorana
size, the two Majoranas overlap to some extent, which leads
to an oscillatory splitting δ as a function of B (and μ), see
Fig. 3(a). In this case the crossing with the dot states does
lead to a change in the energy of the split Majorana states.
The crossings may then take the form of “bowtie”-like or
“diamond”-like shapes for the split Majorana levels, Figs. 3(b)
and 3(c), respectively. Intermediate patterns may also be
observed (not shown). These types of spectral patterns are
not uncommon in systems containing one or more Majorana
nanowires of finite length [40–45].

From the above discussion it may already be anticipated
that the sensitivity of overlapping Majoranas to the dot level
could be exploited to detect their degree of nonlocality and
hence of topological protection. Moreover, a comparison
between the strength of the two dot-Majorana resonances will
be shown to directly probe the spin structure of the Majorana
wave function itself. In the following we will derive a simple
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low-energy description that will allow us to interpret the
bowtie/diamond anticrossing structure and show how it can
be used to extract quantitative parameters of the Majorana
wave function at the contact.

III. DERIVATION OF THE EFFECTIVE
LOW-ENERGY MODEL

The goal is to derive an effective model that involves only
the two electronic states in the dot and the two Majoranas
but that accurately describes the low-energy sector of the full
system. To this end we introduce four new parameters that
emerge from the full model:

δ: splitting of overlapping Majoranas without the dot
θL: spin canting angle of the left Majorana at x = 0
θR: spin canting angle of the right Majorana at x = 0
tL: hopping from the dot to the left Majorana γL

tR: hopping from the dot to the right Majorana γR

We now discuss each of these in turn.
For a nanowire of finite length, the Majorana bound states

γL and γR are not eigenstates of Hw. Due to their spatial
overlap, they hybridize into a fermionic eigenstate c

†
M =

(γL − iγR)/
√

2 of energy δ. The low-energy effective Hamil-
tonian of the isolated nanowire in the topological phase thus
reads

H eff
w = δ

2
(c†McM − cMc

†
M ) = i

δ

2
(γLγR − γRγL) = iδ γLγR.

The value of δ decays exponentially with Lw and oscillates
around zero with kF Lw [46]. In the long wire limit, δ → 0 and
γL,R become degenerate zero-energy eigenstates.

The Majorana bound states satisfy self-conjugation γi = γ
†
i

and {γi,γj } = δij (i = L,R). With this normalization, the γi

can therefore be thought of as two Bogoliubov quasiparticles
with a special particle-hole conjugation symmetry. Their
spatial wave-function structure in the continuum limit reads

γi = 1√
2

∫
dx

[
u(i)

σ (x)c†xσ + u(i)∗
σ (x)cxσ

]
, (3)

with properly normalized u(L,R)
σ (x) and v(L,R)

σ (x), concentrated
around the left and right ends of the nanowire. The outer (right-
most) Majorana is related to the inner (leftmost) Majorana by
spatial and σx inversion, see Fig. 1(b):

u
(R)
↑ (x) = −iu

(L)
↑ (Lw − x),

u
(R)
↓ (x) = iu

(L)
↓ (Lw − x). (4)

For the isolated nanowire, the u(i)
σ (x) amplitudes vanish at

x = 0 and x = Lw. Close to the x = 0 contact we may expand
u(i)

σ (x) ≈ x u′
σ

(i)(0) + O(x2) [47] and parametrize the slopes
u′

σ
(i)(0) by the spin canting angles θL,R and real coefficients

u′
0

(L,R):

(u′
↑

(L)(0),u′
↓

(L)(0)) = u′
0

(L)
(

sin
θL

2
,−cos

θL

2

)
,

(u′
↑

(R)(0),u′
↓

(R)(0)) = −iu′
0

(R)
(

sin
θR

2
, cos

θR

2

)
. (5)

For highly nonlocal Majoranas, we have u′
0

(L) � u′
0

(R). The
canting angle θL of the leftmost Majorana is independent of

nanowire length Lw, but for the amplitude of the rightmost
Majorana at x = 0 the angle θR depends on Lw, see Fig. 1(b).
Both θL,R are moreover expected to depend on the Zeeman
field B and the spin-orbit coupling α, as these two scales
control the spin orientation of propagating modes in the
Rashba nanowire in the absence of superconductivity 	. The
detailed relation is derived in Sec. A. Note, however, that as
written above, the Majorana spinors lie in the x − z plane of
SU(2), while the effective Zeeman-Rashba field lies in the
y − z plane. This might appear surprising, but it is correct:
the spin orientation of the electronic sector of Majorana bound
states is orthogonal to the spin of propagating states [48]. In
the limit of large B the Majorana spin orientation at the edge
becomes polarized along −Bẑ like that of propagating states
(θL = 0), while corrections of orderO(	/B,α/B) yield a spin
canting θL > 0 along the nanowire direction x.

The coupling of the quantum dot and the nanowire in the
low-energy effective model distinguishes between hoppings to
γL and γR , see Fig. 1. We may write

H eff
hop = (tLσ d†

σ − t∗Lσ dσ )γL + (tRσ d†
σ − t∗Rσ dσ )γR.

The hopping amplitudes tiσ arise from a wave-function
overlap between the dot states and the Majorana wave
function at the x = 0 edge, Eq. (5), so that tLσ = ta0u

′
σ

(L) =
tL(sin θL

2 ,− cos θL

2 ) (larger hoppings) and tRσ = ta0u
′
σ

(R) =
−itR(sin θR

2 , cos θR

2 ) (usually smaller than tLσ , exponentially
suppressed with increasing Lw). Here we have defined the
real hopping amplitudes ti ≡ ta0u

′
0

(i) from the dot to each
of the two Majoranas, with a0 the tight-binding lattice
spacing.2

The last piece of our low-energy model is the effective
Hamiltonian for the dot, which we take just as Hd in Eq. (1),
with the same mean-field decoupling of Eq. (2). In this case,
however, the mean-field self-consistency is approximated by
the analytical mean-field solution for a decoupled dot, which
for B > 0 reads

〈n↓〉 = 〈n↑〉 = 1 for ε0 < −U − B,

〈n↓〉 = 1 − 〈n↑〉 = 1 for − U − B < ε0 < B, (6)

〈n↓〉 = 〈n↑〉 = 0 for B < ε0.

2In the continuum limit the Majorana wave function vanishes
at the ends of the nanowire, u(L,R)

σ (0) = 0. In that case, the hop-
ping amplitudes tLσ,Rσ are proportional to the spatial derivatives
∂xu

(L,R)
σ (x = 0) times a length scale associated to the contact [47].

In our minimal contact model within a discretized nanowire tight-
binding description, such a length scale is the lattice constant a0.
With this choice, the hopping amplitudes become proportional to the
Majorana amplitudes at the leftmost site of the discretized nanowire,
which are no longer zero, but a0u

′
0

(L,R)(0).
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The complete effective model then reads, up to a constant −U 〈n↑〉〈n↓〉, as

H eff = 1

2
(d†

↑,d
†
↓,d↑,d↓,γL,γR)Ȟ eff(d↑,d↓,d

†
↑,d

†
↓,γL,γR)T ,

1

2
Ȟ eff =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε0+B+U〈n↓〉
2 0 0 0 tL sin θL

2 −itR sin θR

2

0 ε0−B+U〈n↑〉
2 0 0 −tL cos θL

2 −itR cos θR

2

0 0 − ε0+B+U〈n↓〉
2 0 −tL sin θL

2 −itR sin θR

2

0 0 0 − ε0−B+U〈n↑〉
2 tL cos θL

2 −itR cos θR

2

tL sin θL

2 −tL cos θL

2 −tL sin θL

2 tL cos θL

2 0 iδ/2

itR sin θR

2 itR cos θR

2 itR sin θR

2 itR cos θR

2 −iδ/2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

Due to our choice of normalization for γL,R , the spectrum of
the system is simply given by the eigenvalues of the above
Ȟ eff matrix.

A. Interpretation of dot-Majorana anticrossings
using the effective model

The spectrum of the effective model as a function of dot
level ε0, shown in Fig. 4, replicates the phenomenology of
the full tight-binding model. It is characterized by the two
parity crossings in the dot, at ε0 = −U − |B| and ε0 = |B|,
where the average dot occupation changes according to Eq. (6).
At these two points, the spectrum has four levels close to
zero energy, two in the dot and two (Majorana) in the wire,
which then anticross. The fundamental difference between the
ε0 < 0 and ε0 > 0 anticrossings is the spin polarization of
the low-energy dot excitations involved, which is opposite
[d†

↑,d↑ on the negative and d
†
↓,d↓ on the positive crossing, see

top and bottom dot configurations, respectively, in Fig. 1(b)].
Thus, if the spin canting of the Majorana is not very large
(small θL), the negative and positive resonances result in
quite different anticrossing strengths of the four states. The
ε0 < 0 anticrossing tends to be smaller for realistic nanowire
parameters, since the Majorana spin has a larger ↓ component
(0 < θL < π/2) and is thus more orthogonal to the ↑ dot
excitations. Conversely, in the ε0 > 0 crossing, low-energy dot

excitations have a ↓ spin, mostly parallel to the Majorana’s,
and hybridize more strongly. Strong canting thus translates
into almost symmetric crossings and weak canting (Majorana
spin at the end of the nanowire mostly polarized along the
Zeeman field) into strongly asymmetric crossings.

The shape of each anticrossings (bowtie, diamond, or
something in between) is controlled by the relative value of
two energy scales that are both much smaller than the others,
at least for nanowires in the hundreds of nanometers: the
Majorana splitting δ and the dot–outer Majorana hopping tR .
For Majoranas with some degree of nonlocality, the hopping
tL is larger than tR , as the inner Majorana is more strongly
coupled to the dot. The splitting δ is oscillatory with nanowire
parameters, such as Lw, B, or μ, so it can become zero
at specific points in parameter space. tR , in contrast, also
oscillates but remains finite.

Figure 4 presents four typical spectra for the effective dot-
nanowire model of Eq. (7). This time, black lines correspond
to levels predominantly in the quantum dot and red to
Majorana-like levels in the nanowire. The Majorana M and dot
D energy levels at the ε0 = −U − |B| (−) and ε0 = |B| (+)
anticrossings are denoted by ε

M,D
± � 0, respectively. Panel (a)

shows the case of nonoverlapping Majoranas, with δ = tR = 0.
This is the situation of truly nonlocal, topologically protected
Majorana zero modes. Panel (b) shows a case with a finite
δ � tR . In this case, the two anticrossings exhibit a symmetric

FIG. 4. Low-energy spectrum, using the effective model, of the quantum dot coupled to the Majorana nanowire as a function of dot level
ε0. In panel (a) we show the limit of two decoupled Majoranas, δ,tR → 0 (sufficiently long nanowire), whose energy remains pinned to zero
across the Shiba-Majorana resonances. Panel (b) shows the bowtielike case, for which the Majorana splitting δ is finite, but the direct hopping
tR from the dot to the rightmost Majorana is suppressed. Panel (c) corresponds to the diamondlike case, where such direct hopping is not
suppressed, and the Majorana splitting δ is tuned close to zero. Patterns similar to (a), (c) were recently observed by Deng et al. [49]. The
trivial case of a strictly local zero mode relevant for very short wires (Shiba state with energy δ tuned to zero) is shown in (d). The complete
asymmetry between crossings reveals complete lack of spin canting (θL = θR = 0), while the lack of splitting between dot and Majorana lines
(black and red) reveals complete locality (tL = tR).
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/

<

(a) (b)

FIG. 5. (a) Asymmetric Shiba-Majorana anticrossing measured
in the group of Marcus [12], reproduced with permission. (b) Similar
structure obtained using the effective model of Eq. (7) in the δ ≈
tR < tL case.

bowtie structure of width 2δ for Majorana levels (εM
± = 0

at both anticrossings), and an asymmetric anticrossing for
dot levels, with different amplitudes εD

− < εD
+ in general.

As discussed, the degree of symmetry between dot-level
anticrossings is directly related to the amount of spin canting
of the inner Majorana, θL = π/4 in this simulation. Panel (c)
shows the opposite situation, wherein tR � δ. We see that
the anticrossing structure is very different in this case, with
an asymmetric diamondlike shape for the Majorana levels
(εM

+ > εM
− > 0). The degree of symmetry between the two

diamond heights is related to the amount of spin canting θR

of the outer Majorana, see below. Anticrossings similar to
Figs. 4(a) and 4(c) were recently measured in the group of
Marcus [49]. More generic anticrossings with a skewed profile
may also arise and have also been observed, see, e.g., Fig. 5.

The limiting case of a strictly local zero mode (trivial
Shiba state tuned to zero energy in a very short nanowire)
corresponds to δ = 0, tL = tR , and θL = θR = 0 (no canting,
full asymmetry between the two dot resonances), which results
in the characteristic anticrossing pattern shown in Fig. 4(d),
wherein diamonds are not spectrally separated from dot levels.

This lack of spectral separation is a generic feature of tL = tR
and occurs for any δ and θL,R . It can therefore be used as a
simple method to diagnose local subgap states.

All the important parameters in the model (δ,tL,R,θL,R)
can be quantified from the structure of the two anticrossings.
To make the connection clearer, we derive general analytical
expressions for the four positive energy levels ε

M,D
± at

resonance, valid for large B but for any values of δ and tL,R .
They are obtained by projecting out the high-energy dot levels
not involved at each anticrossing and explicitly diagonalizing
the resulting 4 × 4 Hamiltonian in this low-energy subspace.
We obtain

ε
M,D
− =

√√√√δ2

2
+ s2

L + s2
R ∓

√(
δ2

2
+ s2

L + s2
R

)2

− 4s2
Ls2

R,

ε
M,D
+ =

√√√√δ2

2
+ c2

L + c2
R ∓

√(
δ2

2
+ c2

L + c2
R

)2

− 4c2
Lc2

R,

where si = 2ti sin θi

2 and ci = 2ti cos θi

2 .
In the case of δ,tR � tL [decoupled Majoranas, Fig. 4(a)],

εM
± = 0 and εD

± = 2tL
√

1 ± cos θL. The limit tR � δ,tL also

yields εM
± = 0 and εD

± =
√

δ2 + 4t2
L(1 ± cos θL), see Fig. 4(b).

In the opposite case δ � tL,tR of Fig. 4(c) we have εM
± =

2tR
√

1 ± cos θR and εD
± = 2tL

√
1 ± cos θL. Note that in all

cases the dotlike energies εD
± depend only on the inner-

Majorana canting θL and hopping tL, and the Majorana-like
energies εM

± contain information about the outer Majorana
canting θR and hopping tR .

We can derive useful quantitative information from the
ratios of the four energies. The ratio between the dotlike
energies εD

± in the two anticrossings directly yields the inner

FIG. 6. (a) Energy εM of the lowest energy state, corresponding to the hybridized Majoranas in a Lw = 1 μm nanowire coupled to a quantum
dot. As a function of Zeeman B, this splitting becomes zero repeatedly (red) as a result of the oscillatory behavior of δ. At dot-Majorana
crossings, ε0 = |B| (shown) and ε0 = −U − |B| (not shown), the vertical εM = 0 lines become deflected. Different constant-B cuts across
the dot-Majorana resonance can exhibit bowtie or diamond shapes, see vertical white lines. (b) Correlation between the degree of Majorana
nonlocality �, Eq. (12), and the local estimator

√
tR/tL, both computed within the tight-binding model of Eq. (1) for different values of B > Bc

and Lw at μ = 0 (other realistic values of μ yield similar results). Insets show the dependence of �,
√

tR/tL, and δ/	 with Lw for B just
above the critical Bc and at higher B [46]. (c) Spin-canting tan(θL/2) of the left Majorana as a function of B for 	 = 0.5 meV and μ = 0 as
spin-orbit coupling α increases in steps of 10 meV nm. Circles correspond to tight-binding, solid lines to Eq. (A5), and dashed lines to the
weak spin-orbit approximation of Eq. (A7).
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Majorana canting θL if δ � tL for any tR:

εD
−

εD+
=

∣∣∣∣tan
θL

2

∣∣∣∣ (for δ � tL). (8)

Similarly, a comparison of εM
± at δ � tR (i.e., at diamondlike

anticrossings) yields the outer Majorana canting θR at the
contact:

εM
−

εM+
=

∣∣∣∣tan
θR

2

∣∣∣∣ (for δ � tL,tR). (9)

Once θL and θR are known using the above, we can measure
the ratio from the dot and Majorana energies within each
anticrossing to extract the ratio tR/tL:

εM
−

εD−
=

∣∣∣∣∣ tRtL
sin θR

2

sin θL

2

∣∣∣∣∣ (for δ � tL,tR), (10)

εM
+

εD+
=

∣∣∣∣∣ tRtL
cos θR

2

cos θL

2

∣∣∣∣∣ (for δ � tL,tR). (11)

This fully characterizes analytically the energies at the two
anticrossings in terms of physical properties of the Majorana
wave function.

The energy of the lowest level εM for a general B and
ε0 is shown in Fig. 6(a) for a 1-μm nanowire using the
full tight-binding model. This plot allows one to understand
the evolution of the εM = 0 parity crossing (red) throughout
the ε0,B plane, and the alternation of bowtie and diamond
anticrossings as B increases. In particular, bowtie (diamond)
anticrossings as a function of ε0 appear at values of B with
maximum δ (δ = 0), see solid white lines. Other values of B

exhibit a varying amounts of anticrossing asymmetry, see, e.g.,
Fig. 5(b).

IV. QUANTIFYING NONLOCALITY WITH
LOCAL MEASUREMENTS

The degree of nonlocality of the two Majoranas is defined
by their overlap:

� =
∑

σ

∫ Lw

0
dx

∣∣u(L)
σ (x)u(R)

σ (x)
∣∣. (12)

This quantity ranges from 0 (no overlap) to 1 (perfect overlap)
and is connected to the charge of overlapping Majoranas by
Q = e� [50,51]. It is also related to the resilience of Majorana
qubit to local environmental noise, with complete nonlocality
� = 0 signaling topological qubit protection. The value of �

is sometimes incorrectly identified with the Majorana splitting
δ/	, arguably because � = 0 implies δ = 0. However, the
converse is not true. It is known that δ = |〈γL|Hw|γR〉| can
vanish at special points (parity crossings [40,52–54]) or
extended parameter regions (pinned Majoranas [51]) even
when Majoranas overlap, while � by definition cannot. In
this section we show that, in contrast to δ/	, the ratio
tR/tL = |〈x = 0|γR〉/〈x = 0|γL〉| is an accurate estimator of
�, despite being a purely local quantity. More specifically,

� ≈
√

tR/tL. (13)

It is easy to see that both in the strictly local case � = 1 and in
the completely nonlocal case � = 0, the above relation holds.
To evaluate it for intermediate overlaps, we have computed the
Majorana wave functions of depleted nanowires described by
Hw in Eq. (1) for a range of lengths Lw and Zeeman fields
B > Bc, extracting � and

√
tR/tL for each. Figure 6(b) shows

a plot of the two quantities for all simulations, which shows
a high correlation, with an correlation coefficient exceeding
0.95. In the insets, we show �,

√
tR/tL, and δ/	 as a function

of nanowire length Lw. We see that for B just above the
critical Bc (left inset), a regime in which the Majorana bound
states in our model exhibit a double-exponential decay [46],√

tR/tL underestimates the overlap �. At higher magnetic
fields (right inset) only one decay length scale survives, and√

tR/tL becomes an essentially exact estimator of �.

A. Overlap estimator beyond uniform nanowires

The above analysis connecting the structure of dot-
Majorana anticrossings, a strictly local measurement, to the
degree of Majorana overlap is made possible by a stringent
assumption about the form of the Majorana wave function
along the nanowire. Indeed, by comparing the estimator√

tR/tL to the overlap � for different parameter values of
the Hw model in Eq. (1), we are effectively assuming that the
Majorana wave function should always be of the Oreg-Lutchyn
type [46] for pristine, uniform nanowires. While this is a
frequent assumption in the literature, it might be incomplete or
not even apply in real samples. One should therefore consider
whether physically sound generalizations of the Oreg-Lutchyn
model could break the relation between

√
tR/tL and �.

We have analyzed several such extensions, including
extended quantum dots, disorder, and screened potentials in
the nanowires. We have found that even in these cases,

√
tR/tL

remains, perhaps surprisingly, a rather faithful estimator of �

throughout the (nominally) topological regime. To back this
claim we now present simulations for inhomogeneous and
disordered nanowires.

Figures 7(a) and 7(b) show specifically the correlation
between

√
tR/tL and � for extended models of Hw with a

nonuniform but smooth μ(x) = μ0 + 	μ(x/Lw) (with 	μ >

0 physically produced, e.g., by inhomogeneous screening
from the environment or nonuniform charge transfer from the
parent superconductor). Panel (a) shows a result analogous to
Fig. 6(b), for lowest-lying states in nanowires that are triv-
ial at all points [i.e. B < Bc(x = 0) =

√
μ2

0 + 	2 < Bc(x)],
while panel (b) corresponds to nanowires for which a finite
portion around x = 0 is nontrivial B > Bc(x = 0). Each point
corresponds to a different set of values for B, μ, 	μ, and Lw.
In these plots, the color of each point encodes the normalized
energy δ/	 of the lowest-lying state, ranging from zero (red) to
1 (blue). As in Fig. 6(b), the estimator

√
tR/tL and � remain

highly correlated in this generalized model throughout the
nontrivial regime, panel (b), with a correlation coefficient still
exceeding 95%. This is despite the fact that the Majorana wave
functions with this smooth μ(x) confinement strongly deviates
from the uniform case [particularly for γR , see inset to panel
(b)].

A similar computation was carried out for Hw in the
presence of Anderson disorder μ(x) = μ0 + V (x), where
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FIG. 7. Correlation plots between
√

tR/tL and the Majorana
overlap �, defined from the lowest Andreev bound state. Each
dot corresponds to a different choice of system parameters. Dot
color encodes the Majorana hybridization δ/	 from zero (red)
to 1 (blue). Panels (a), (b) correspond to nanowires (	 = 0.5
meV, α = 60 meV nm) with a smoothly varying Fermi energy
μ(x) = μ0 + 	μx/Lw . We vary 	μ = 0 to 3 meV, Lw = 5 to 1000
nm, μ0 = −1.5 to 1.5 meV, and B = 0 to Bc (a) or B = Bc to 3Bc

(b), where Bc =
√

μ2
0 + 	2. Panels (c), (d) show the correlation

in the presence of Anderson disorder, μ(x) = μ0 + V (x), with
V (x) a spatially uncorrelated random potential uniformly distributed
between −	μ and 	μ, and with 	μ again ranging from 0 to 3 meV.

V (x) is a spatially uncorrelated random potential uniformly
distributed between −	μ and 	μ. Figures 7(c) and 7(d) show
the correlation of the estimator in this case, for 	μ again
ranging from zero to 3 meV, and with a different disorder
realization for each choice of the rest of parameters. Again
the overlap estimator remains very faithful in the nontrivial
regime, panel (d), with a correlation of around 95%.

We thus conclude that a direct measurement of the quantity√
tR/tL via dot-Majorana anticrossings provides an accurate

estimate of the degree of Majorana nonlocality under rather
general conditions, even beyond uniform nanowire models.

V. CONCLUSIONS

The field of topological superconductivity has reached a
stage in which one may cautiously claim that Majorana zero
modes have finally been detected experimentally. An important
next step is now to carefully characterize these states, and
in particular, to demonstrate their unique nonlocal nature,
which is the key to their promise as topologically protected
logic elements for quantum computation. In this work we
have shown that Majorana nonlocality may be demonstrated
through transport spectroscopy across currently available
quantum dot–nanowire junctions. The key is to analyze the
changes in the energy of Majorana states as they resonate with

the quantum dot level around zero energy. Only a true nonlocal
Majorana completely decoupled from its partner will remain
pinned to zero energy across the resonance, while the dot state
anticrosses. The combination of an insensitive zero mode plus
a dot-state anticrossing constitutes an essentially unambiguous
signature of Majorana nonlocality, assuming a rather general
model for the dot-nanowire system. Deviations from strict
nonlocality become visible in the form of bowtie- and dia-
mondlike line shapes of the Majoranas across the resonance.
These may be used to quantify the degree of nonlocality �,
in particular by the estimator � ≈ √

tR/tL, as extracted, e.g.,
from diamond line shapes using Eqs. (8)–(11). This estimator
remains highly accurate in the topological regime even in the
presence of Anderson disorder or nonuniform potentials in the
nanowire.

Furthermore, the spin polarization of the dot state, a result of
single occupancy in the Coulomb blockade regime, also allows
the dot to probe the internal spin structure of the Majorana
zero mode at the end of the nanowire, i.e., its degree of spin
canting. Moreover, as the orientation of the Majorana electron
spin depends on the nanowire’s spin-orbit coupling, it becomes
possible to quantitatively measure the latter, with the aid of
simple analytical formulas, by comparing two consecutive dot
anticrossings as the Zeeman field is increased.

In summary, and rather remarkably, a local junction to a
quantum dot is found to be capable of extracting the most
relevant properties of the Majorana wave function, to quantify
the degree of its topological protection, and to distinguish
true nonlocal Majorana zero modes from other forms of
zero modes, such as, e.g., overlapping Majoranas subject
to electrostatic pinning [51], or topologically trivial parity
crossings of nontopological origin [10,15,55]. Implications
of our findings for quantum information measurement-only
protocols based on quantum dots coupled to Majoranas
[34,56,57] should be the subject of a future work.

Note added. Recently a preprint was posted online [58]
which partially overlaps with some of our results regarding
Majorana nonlocality detection, although in a simpler spinless
setting.
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APPENDIX: PARAMETER RELATIONS BETWEEN
TIGHT-BINDING AND EFFECTIVE MODELS

In this appendix we relate analytically the spin canting of the
inner Majorana at x = 0, θL, with the microscopic parameters
of the nanowire, that is, α, B, μ, and 	. This will allow us to
quantify the spin-orbit coupling of the nanowire by analyzing
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dot-Majorana splittings. To find this connection, we calculate
the Majorana wave function at the end of a semi-infinite
wire, see Eq. (5). Following Lutchyn et al. [4] we solve
the Bogoliubov–de Gennes (BdG) equations for the nanowire
Hamiltonian, Hw�±(x) = ±E�±(x), and look for zero-
energy solutions. These solutions only exist for B2 > 	2 +
μ2 and correspond to zero-energy Majorana bound states.
The eigenstates �±(x) are four component Nambu spinors
�±(x) = [u↑(x),u↓(x),v↑(x),v↓(x)]T related by the electron-
hole symmetry �+(x) = Seh�−(x), where Seh = σ0τxK , and
K is the conjugation operator, K�(x) = �∗(x). Since the
BdG Hamiltonian is real we can construct real Nambu
spinors �±(x). Due to the relation between electron-hole
operators and Majorana operators, we can write these spinors
in terms of the Majorana left and right spinors: �+(x) =
[�L(x) + i�R(x)]/

√
2 and �−(x) = [�L(x) − i�R(x)]/

√
2,

where �L(x) has real components and �R(x) pure imaginary
ones. Due to the Majorana reality condition, Majorana spinors
are eigenstates of Seh: Seh�L,R = λ�L,R with eigenvalue
λ = 1 for the left Majorana and λ = −1 for the right one.
This imposes a constraint (v(L,R)

↑,↓ )∗ = λu
(L,R)
↑,↓ between holelike

and electronlike components. The 4 × 4 BdG matrix is then
reduced to a 2 × 2 one:(

− h̄2

2m
∂2
x − μ + B −α∂x + λ	

α∂x − λ	 − h̄2

2m
∂2
x − μ − B

)(
u

(L,R)
↑ (x)

u
(L,R)
↓ (x)

)
= 0.

Since we are interested in the left Majorana bound state
located at x = 0 that decays exponentially for x > 0, we
solve this set of coupled differential equations for λ = 1
using the ansatz u

(L)
↑,↓(x) ∝ u

(L)
↑,↓e−κx , with Re[κ] > 0. The

characteristic equation for κ is a fourth-order polynomial with
real coefficients(

h̄2

2m

)2

κ4 +
(

α2 + μ
h̄2

2m

)
κ2 + 2	ακ + C0 = 0, (A1)

where C0 ≡ μ2 + 	2 − B2. As explained by Lutchyn et al.
[4], it is only possible to find a Majorana wave function that
satisfies the boundary condition �L(x) = 0 and normalization
if C0 < 0, i.e., in the topological regime. In this case it is
possible to express the four solutions of the polynomial in
terms of two real positive constants a and b in the following
way: κ1,2 = a ± ib and κ3,4 = −a ±

√
a2 − 4C0/(a2 + b2).

With this parametrization, only the first three roots have
Re[κi] > 0.

We can thus write the Majorana wave function as

�L(x) =
(

u
(L)
↑ (x)

u
(L)
↓ (x)

)
=

3∑
i=1

Ai

(
u

(L)
i↑

u
(L)
i↓

)
e−κix, (A2)

where (
u

(L)
i↑

u
(L)
i↓

)
∝

(
h̄2

2m
κ2

i + μ + B

−(ακi + 	)

)
. (A3)

Note that Eq. (A2) exhibits only a two-exponential decay
for increasing x, since both Re[κ1] = Re[κ2] = a. The three
coefficients Ai can be worked out by the two boundary

conditions, one for each spinor component, and imposing
normalization.

In principle, we can find θL from Eqs. (5) and (A2) by
relating the spin-up and spin-down amplitudes: tan(θL/2) =
limx→0 −u

(L)
↑ (x)/u(L)

↓ (x). However, since strictly at x = 0 the
bound-state wave function is zero (by construction), we have
to go to the first derivative to find this relation:

tan
θL

2
= −∂xu

(L)
↑ (x)

∂xu
(L)
↓ (x)

∣∣∣∣
x=0

= −
∑3

i=1 κiAiu
(L)
i↑∑3

i=1 κiAiu
(L)
i↓

. (A4)

This definition is consistent with Eq. (5). After some algebra
we find

tan
θL

2
= −

h̄2

2m
κ2

4 + μ − B

ακ4 + 	
, (A5)

where κ4 is the real negative root of Eq. (A1), i.e., precisely
the one that does not appear in the Majorana wave function
Eq. (A2). Figure 6(c) shows the evolution of the above
expression for increasing B and α at μ = 0 (solid lines), and
a comparison to numerical results using the full tight-binding
model (circles).

It is possible to find a manageable analytical solution for κ4

in the limit of weak spin-orbit coupling:

κ4 ≈ −
√

2m

h̄2

√
μc − μ − mα	

h̄2μc

+ O(α2), (A6)

where μc = √
B2 − 	2. In this limit,

tan
θL

2
≈ B − μc

	
+

√
2m

h̄2 α

√
μc−μ

	2

(
B−B2

μc

)
+ O(α2).

(A7)

This expression yields a good description of the canting angle
at realistic values of α, see Fig. 6(c), dashed lines. Note also
that if B is much bigger than 	, the spin canting vanishes as
θL ≈ 	/B.

For completeness, we also derive an expansion for strong
spin-orbit coupling:

κ4 ≈ −	 + 	c

α
+ h̄2

2m

(	 + 	c)2

α3	c

+ O(α−5) (A8)

and

tan
θL

2
≈ 	c

B + μ
+ h̄2

2mα2

B(B2 + 	2 − μ2 + 2		c)

	c(B + μ)

+O(α−4), (A9)

where 	c =
√

B2 − μ2. We note that while this expansion
does indeed recover the asymptotic behavior of Eq. (A5) for
large spin-orbit, its regime of validity requires an unphysically
large α for real nanowires.

The expressions in this section, together with the measure-
ment scheme for θL encoded in Eq. (8), provide a powerful
method to extract important quantities of the nanowire system,
such as spin-orbit coupling α.
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