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We consider a strongly interacting quantum dot connected to two leads held at quite different temperatures.
Our aim is to study the behavior of the Kondo effect in the presence of large thermal biases. We use three
different approaches, namely, a perturbation formalism based on the Kondo Hamiltonian, a slave-boson mean-
field theory for the Anderson model at large charging energies, and a truncated equation-of-motion approach
beyond the Hartree-Fock approximation. The two former formalisms yield a suppression of the Kondo peak for
thermal gradients above the Kondo temperature, showing a remarkably good agreement despite their different
ranges of validity. The third technique allows us to analyze the full density of states within a wide range of
energies. Additionally, we have investigated the quantum transport properties (electric current and thermocurrent)
beyond linear response. In the voltage-driven case, we reproduce the split differential conductance due to the
presence of different electrochemical potentials. In the temperature-driven case, we observe a strongly nonlinear
thermocurrent as a function of the applied thermal gradient. Depending on the parameters, we can find nontrivial
zeros in the electric current for finite values of the temperature bias. Importantly, these thermocurrent zeros yield
direct access to the system’s characteristic energy scales (Kondo temperature and charging energy).
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I. INTRODUCTION

The Kondo effect is a paradigmatic example of strong
many-body physics in condensed matter [1]. Although this
effect was firstly observed in metals with magnetic im-
purities, quantum dots (QDs) offer new possibilities for
the manipulation of such many-body states owing to the
tunability of the relevant parameters that control the physics
of the problem. Since the discovery of the Kondo effect in
semiconductor QD systems [2–6], interest has been spurred
both experimentally and theoretically during the last decades.
A prototypical setup showing Kondo physics consists of a QD
(an artificial quantum impurity) connected to two reservoirs
at temperature T lower than a characteristic temperature scale
dubbed Kondo temperature TK0. At such low temperature,
the electric transport becomes highly correlated and the QD
magnetic moment becomes screened by the electrons in the
leads. A many-body singlet between the conducting and the
localized electrons forms due to antiferromagnetic correlations
originated from higher-order spin-flip tunneling processes. At
equilibrium, these correlations generate a sharp resonance in
the local density of states around the Fermi energy εF whose
width is of the order of kBTK0 [7–9]. Importantly, the Kondo
temperature depends highly on the system parameters, i.e., the
position of the QD level relative to the Fermi energy, εd − εF ,
the charging energy of the electrons inside the dot U and
the tunnel amplitude coupling to the reservoirs Vαk (where
α labels the lead connected to the dot and k the electronic
wave number). When a voltage bias is applied between the
left and right contacts, a current is driven through the QD.
In this situation, the differential conductance shows a peak
that mimics the Kondo resonance (zero bias anomaly or
Abrikosov-Suhl resonance) [10]. For applied voltages of the
order of kBTK0/e, the peak splits and a strong dephasing
destroys the Kondo resonance [11].

Temperature gradients can in turn induce an electrical
current (i.e., a thermocurrent). Although an increasing back-
ground temperature clearly results in a destruction of the

Kondo many-body singlet [1], much less is known on the effect
of a thermal bias. A straightforward consequence is the genera-
tion of thermoelectric effects, which are essential for designing
reliable devices able to convert waste heat into useful electric
work [12]. Since miniaturization progress has led to better
performances [13], it is interesting to investigate thermopower
in quantum dots. In fact, the thermopower turns out to be more
sensitive than the conductance as a function of the gate voltage
(linear response) [14,15]. In the nonlinear regime of transport,
Ref. [16] observed a sign change in the thermovoltage Vth

with the applied thermal bias θ . More recently, Svensson et al.
[17] found analogous nonlinear effects in Vth for nanowire
QDs. The latter experiments where theoretically addressed by
two of us [18] in which the emergence of highly nonlinear
effects in the thermocurrent I (θ ) and thermovoltage Vth

nicely agreed with the experimental results. A Hartree-Fock
scheme using nonequilibrium Green’s functions within the
equation-of-motion formalism was employed to model the
thermoelectric transport in the Coulomb blockade regime.
The origin of nonlinear thermocurrents and thermovoltages
is related to a change in the direction of the electrical flow due
to the different QD resonance contributions. As a consequence,
the differential thermoelectric conductance plots present a
butterfly shape. Later on, Svilans et al. [19] reported similar
experimental findings.

The purpose of this work is to go beyond the Coulomb
blockade regime of previous works and to thoroughly investi-
gate the nonlinear thermoelectric properties of quantum dots
in the Kondo regime. Our first aim is to determine the fate
of the Kondo effect upon application of a thermal gradient.
In particular, we will discuss how the position of the Kondo
peak and its width get modified due to thermal biases. We
address this problem by employing different theoretical ap-
proaches: nonequilibrium Green’s function formalism (NEGF)
with higher-order equation of motion (EOM), slave-boson
mean-field theory (SBMFT) and perturbative approach. These
schemes encompass the whole range of temperatures, well
below the Kondo temperature and for temperatures of the order
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or higher than TK0. We compare the different approximations
and study their range of validity. Importantly, we predict that
the Kondo resonance is destroyed when the thermal bias
θ is sufficiently strong. This result is obtained using both
perturbative and SBMFT approaches. Further, we are able
to give a fully analytical expression for the Kondo quench
within perturbation theory. Our second aim is to analyze the
transport properties of the system driven out of the equilibrium
with both voltage and thermal biases and to examine the
current behavior for arbitrary values of θ . Our main finding
in this case is a strong nonlinear behavior in the EOM current
characteristics due to the existence of the Kondo resonance
and the single-particle peaks. This is a relevant result because
it would allow to experimentally measure the system’s energy
scales from the nontrivial zeros of the current.

Despite the fact that nonlinear thermoelectrics [20] in
Kondo-correlated systems is quite a new topic, there is already
a number of interesting results in the last years. Most of them
are focused on the study of the Seebeck coefficient S = Vth/θ

employing a large variety of methods: nonperturbative reso-
nant tunneling approximation [21], second-order perturbation
theory for the onsite Coulomb interaction [22], slave-boson
noncrossing approximation (NCA) [23], generalized Keldysh-
based NCA [24], nonequilibrium Green’s functions beyond
Hartree-Fock [25], quantum [26] and auxiliary [27] master
equation approaches and dual fermions renormalized pertur-
bation theory [28]. In the linear regime, experimental evidence
of the influence of the Kondo effect in the thermopower of
a QD was reported in Ref. [29]. Thermopower and strong
correlations are the subject of Refs. [30,31]. The Seebeck
coefficient of an Aharanov-Bohm interferometer with an
embedded QD shows modulated sign and magnitude [32].
When coupled to ferromagnetic leads, the quantum dot exhibits
spin-dependent thermopowers [33,34]. Double quantum dots
supporting molecular states are believed to display enhanced
thermoelectric power [35]. The spin Seebeck coefficient,
which measures the spin current generated in response to a
thermal gradient, shows interesting features when many-body
interactions are taken into account [36–38]. It turns out that
the thermopower is a reliable probe of correlations in QD
systems with SU(4) Kondo symmetry [39]. Kondo physics is
able to boost the power output and efficiency [24,40]. The
effect of spin-orbit coupling of the Rashba type is treated
in Ref. [41]. Finally, we briefly mention exciting topics
where thermoelectrics in Kondo artificial impurities play a
significant role: relaxation dynamics [42], orbital degrees
of freedom [43,44], universal ac thermopower [45], hybrid
devices connected to ferromagnetic and superconducting leads
[46], assisted hopping [47], and different configurations such
as parallel [48] or side coupled double QDs [49].

Our paper is organized as follows. In Sec. II, we describe our
model Hamiltonian. We then present in Sec. III a perturbative
analysis for the case where a thermal gradient is applied
across a two-terminal quantum dot. In Sec. IV, we employ
the slave-boson mean-field theory and investigate how the
width and position of the Kondo peak are modified under
voltage and thermal bias. We compute the thermoelectric
current when Kondo correlations are present. We treat the high
and moderate temperature regimes by using the equation-of-
motion approach in Sec. V. We consider the limit of large

FIG. 1. Sketch of the quantum dot system under the influence of
a voltage (μL − μR) and temperature gradient (θ ) applied between
the two reservoirs. The system consists of two reservoirs (left L and
right R) connected through tunnel barriers (with tunneling amplitudes
Vαk) to an interacting quantum dot acting as an artificial quantum
impurity (green arrow).

Coulomb repulsion and analyze the nonlinear transport for
large voltages and thermal biases. Finally, we summarize our
main findings in Sec. VI.

II. MODEL HAMILTONIAN

The setup under consideration is described by the single-
impurity Anderson Hamiltonian [50]. It describes the localized
quantum dot level connected by tunneling barriers to two
electronic reservoirs denoted with α = {L,R}. Each reser-
voir has an electrochemical potential μα = εF + eVα and
a temperature Tα = T + θα . We hereafter consider that the
left contact is held at a higher temperature than the right
electrode (θL = θ , θR = 0 as in Fig. 1). Furthermore, we take
εF = 0 as the reference energy and symmetric electric bias
VL = −VR = V/2.

The total Hamiltonian is the sum of the following contribu-
tions:

H = Hleads + Hdot + Htun . (1)

The reservoir Hamiltonian reads

Hleads =
∑
αkσ

εαkC
†
αkσCαkσ , (2)

where εαk is the energy dispersion relation for the α lead.
Here, C

†
αkσ (Cαkσ ) corresponds to the creation (annihilation)

operator of an electron in the α lead with wave number k and
spin σ = {↑,↓}. The quantum dot system reads

Hdot =
∑

σ

εdd
†
σ dσ + Ud

†
↑d↑d

†
↓d↓ , (3)

where the localized energy level is εd and the charging energy
is U . The tunnel Hamiltonian is represented as

Htun =
∑
αkσ

VαkC
†
αkσ dσ + H.c. (4)

Here, Vαk are the tunneling amplitudes.

III. PERTURBATIVE APPROACH

For the perturbative analysis, it is advantageous to resort to
the Kondo Hamiltonian by means of a Schrieffer-Wolff trans-
formation [1]. We remark that this Hamiltonian equivalence
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is only valid for the deep Kondo regime. Then, the Kondo
Hamiltonian is HK = H0 + H1, where

H0 =
∑
αkσ

εαkC
†
αkσCαkσ (5)

and

H1 =
∑

αkσβqs

Jαβ(t)xσsC
†
αkσCβqs , (6)

where β = {L,R} is a lead index and xσs = δσs/4 + Ŝls
l
σ s is

defined in terms of the quantum dot (Sl , l = x,y,z) and lead
(sl) spin operators, respectively. The Kondo coupling,

Jαβ(t) = J (0)
αβ exp

(
− ie

h̄
[Vα − Vβ]t

)
, (7)

depends on the voltage difference between the two reservoirs
with J (0)

αβ = −VαVβU/[εd (U + εd )] (in this approach the k

dependence of the tunneling amplitudes is neglected).
We calculate the electrical conductance in perturbation

theory up to third order in the Kondo coupling (H1) [51,52].
To do so, we first consider the expected value of the current
operator,

I = 〈S(−∞,0)Î (0)S(−∞,0)〉, (8)

with S(−∞,0) the S matrix given in terms of the perturbation
H1,

S(−∞,0) = T̂

∫ 0

−∞
H1(τ )dτ . (9)

Here, T̂ is the time-ordered operator. The explicit expression
for the α-current operator stems from the time deriva-
tive of the occupation number operator at lead α, Îα =
−e

∑
kσ ∂t (C

†
αkσCαkσ ). After a few algebraic manipulations,

we arrive at

Î (t) = ie

h̄

∑
kqσs

(JLR(t)xσsC
†
LkσCRqs − H.c.). (10)

The calculation of Eq. (8) up to third order in the Kondo
coupling by using Eq. (9) and Eq. (10) requires a lengthy
algebra that is discussed in detail in Appendix A. After
calculating the current expectation value, it is straightforward
to obtain the expression for the electrical conductance G ≡
dI/dV with V = VL − VR . We find

G = −3e2π

4h̄
ν2

[
J (0)

LR

]2
(

1 − ν

2

(
J (0)

LL + J (0)
RR

)
ln

∣∣∣∣k2
BTLTR

D2
0

∣∣∣∣
)

− e2π

4h̄
ν2[JLR]2. (11)

Here, D0 = √−εd (U + εd ) is the effective bandwidth, and ν is
the density of states of the leads, which we assume flat (wide
band limit). The conductance G has two contributions: the
exchange cotunneling and the regular cotunneling terms [first
and second lines in Eq. (11), respectively]. Notice that the
logarithmic divergence contains the product of the reservoir
temperatures. If we do not consider thermal gradients, our
expression reduces to the conductance obtained in Ref. [52].

The Kondo temperature is defined as the temperature at
which the second-order contribution in Eq. (11) dominates

over the first term. When there is neither thermal nor voltage
biases applied to our system, we recover the usual Kondo
temperature [53]

kBTK0 = D0 exp

[
πεd (U + εd )

U�

]
. (12)

Here, � = �L + �R is the total level broadening due to
tunneling, with �α = πν|Vα|2, which we take as a constant
parameter.

In the presence of a temperature bias, we substitute
TL = T + θ and TR = T in Eq. (11). Therefore, the Kondo
temperature becomes

TK (θ ) =
√(

θ

2

)2

+ T 2
K0 − θ

2
. (13)

This is a central result of our paper. It yields the Kondo
temperature as a function of the thermal gradient across a QD.
This TK should be understood as the energy scale at which
the perturbative expansion fails in the presence of a thermal
gradient. It should not be confused with TK0, which depends
on QD intrinsic parameters.

Equation (13) dictates that TK decreases as θ increases and
eventually vanishes for very high values of the temperature
bias. Our perturbative approach thus shows that a large thermal
gradient kills the Kondo effect. However, Kondo correlations
can survive for small values of θ . These findings are illustrated
in Fig. 2 (see solid blue curve). Here, the normalized Kondo
temperature TK/TK0 is displayed as a function of θ . We plot
the Kondo temperature in a logarithmic scale for clarity. We
observe that for small θ values the Kondo temperature stays
roughly constant (Kondo regime) until θ becomes close to TK0,
where TK drops quickly (scaling region) and then vanishes
monotonically (Kondo quench).

FIG. 2. Normalized Kondo temperature TK/TK0 as a function
of the thermal gradient θ/TK0 applied to a two-terminal quantum
dot when TL = T + θ , and TR = T . Blue line corresponds to the
perturbative analysis result whereas orange line shows the Kondo
Temperature [�̃ = kBTK derived from Eq. (25)] derived from slave
boson mean-field theory. Here, TK0 = TK (0) is defined as the intrinsic
Kondo temperature.
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IV. SLAVE-BOSON MEAN-FIELD THEORY

The perturbative approach presented above is only suitable
for background temperatures higher than TK0 because at low
temperature, the logarithmic dependence shown in Eq. (11)
dominates and diverges. In order to extend our analysis toward
the low-temperature regime, we now analyze the same setup (a
quantum impurity in the presence of large temperature biases)
within slave-boson mean-field theory (SBMFT). Certainly,
different formalisms are able to explain the Fermi liquid regime
(e.g., renormalized perturbation theory [54,55]). However, we
choose to use SBMFT because it gives accurate results in the
limit T → 0.

Let us consider the Anderson Hamiltonian description
[Eq. (1)] in the limit U → ∞. This limit gives the correct
low-temperature behavior for the deep Kondo regime [56].
In the slave-boson formalism [1] the dot operator dσ = b†fσ

is replaced by the product of a pseudofermion operator fσ

and a boson field operator b†. When an electron with spin
σ is annihilated in the dot a vacuum state is created, which
is represented by the boson creation operator b† and the
pseudofermion annihilation operator fσ . Then, the tunneling
Hamiltonian becomes

Htun =
∑
αkσ

VαkC
†
αkσ b†fσ + H.c. (14)

To properly carry out the perturbation theory using Htun

as a perturbation term, we need to rescale the tunneling
amplitudes as Vαk → Ṽαk ≡ Vαk/

√
N with N representing

the angular momentum degeneracy. The perturbation theory
is done in the parameter 1/N . Strictly, when N → ∞, the
perturbation theory leads to exact results [56]. We impose the
condition U → ∞ by adding a Lagrange multiplier λ to
the Hamiltonian as

HLag = λ

(
b†b +

∑
σ

f †
σ fσ − 1

)
. (15)

This term ensures that the Hilbert space does not contains the
double occupancy dot state.

Next, we consider the mean-field solution of the Hamil-
tonian. This corresponds to the lowest order in the large-N
expansion. Then, the boson operator is replaced with its
mean value 〈b〉 = b̃, b̃ being a c number. This way, charge
fluctuations are completely screened out. This assumption is
valid as long as T < TK0 and the dot level lies within the Kondo
regime (Fermi liquid fixed point). Our goal is then to derive
the mean-field equations for both the expectation value of b

and the Lagrange multiplier. We first determine the equation
of motion for b̃ in the stationary limit,

∑
αkσ

ṼαkG
<
f σ,αkσ (t,t) = −iNλ|b̃|2/h̄ , (16)

where G<
f σ,αkσ (t,t ′) = −(i/h̄)〈C†

αkσ (t ′)fσ (t)〉 is the lesser
Green’s function of the tunneling process [57]. The second
mean-field equation is directly the equation for the Lagrange
multiplier that imposes the closure relation for the restricted
Hilbert space [Eq. (15)] in terms of the mean-field value of the

boson operator:∑
σ

G<
f σ,f σ (t,t) = i(1 − N |b̃|2)/h̄ , (17)

where G<
f σ,f σ (t,t ′) = −(i/h̄)〈f †

σ (t ′)fσ (t)〉 is the dot pseud-
ofermion lesser Green’s function. The two nonlinear equations,
Eqs. (16) and (17), need to be solved self-consistently. By
combining Eqs. (16) and (17) in a single complex equation
and resorting to the Fourier space one gets

2

π

∫ D

−D

dω
F(ω)

ω − ε̃d + i�̃
= (εd − ε̃d )

N

�
− i

(
1 − N

�̃

�

)
,

(18)

where ε̃d = εd + λ is the renormalized dot level position due
to Kondo correlations, �̃ = |b̃|2� is the tunnel hybridization
also renormalized by Kondo correlations, and F(ω) is a
nonequilibrium distribution function [58]

F(ω) =
∑

α

�αfα(ω)

�
. (19)

Here, fα(ω) = 1/[1 + exp {(ω − μα)/(kBTα)}] is the Fermi-
Dirac function of lead α. Once the two mean-field parameters
are determined, we are in a position to compute the QD spectral
function

ρdσ (ω) = −|b̃|2
π

Im
[
Gr

f σ,f σ (ω)
]
, (20)

where Gr
f σ,f σ (t,t ′) = − i

h̄
θ (t − t ′)〈[f †

σ (t ′),fσ (t)]+〉 is the
pseudofermion retarded Green’s function in terms of [. . .]+,
the anticommutator of two operators. Calculating the equation
of motion for this Green’s function, we find a closed system
of equations that gives

ρdσ (ω) = |b̃|2
π

�̃

(ω − ε̃d )2 + �̃2
. (21)

Usually, the Kondo resonance is pinned at the Fermi energy.
Then, ε̃d ≈ εF , leading to the Kondo resonance. The peak
width is given by �̃. We remark that Eq. (21) obeys the Friedel
sum rule, π�ρdσ (ε̃d ) = 1, even though the energy integration
is not able give the full occupation since SBMFT does not
capture the single-particle peaks. SBMFT only describes the
Kondo peak properly, which nevertheless suffices for our
purpose of analyzing the Kondo temperature, as we next
discuss.

A. Kondo resonance

Let us determine how small electrical and thermal biases
modify the Kondo resonance within SBMFT. To obtain
analytical results we consider |εd | � ε̃d (deep Kondo regime)
together with |b̃|2 
 1 (Fermi liquid). We denote the width
of the Kondo resonance with kBTK ≡ �̃. Whereas the Kondo
temperature TK found in Eq. (13) is identified as the energy
scale where perturbation theory breaks down in the presence
of external biases, here we can interpret kBTK as the energy
associated to the width of the Kondo peak, which also depends
on the external biases. Of course, at equilibrium and for T = 0,
we recover the intrinsic Kondo temperature given by Eq. (12)
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for U → ∞:

kBTK0 ≡ �̃(θ = 0) = De−π |εd |/�, (22)

which depends on the QD parameters and the lead
bandwidth D.

Our objective now is to examine the behavior of kBTK ≡ �̃

as a function of voltage and temperature shifts. In the voltage-
driven case, but still T = 0, the nonequilibrium distribution
function appearing in Eq. (18) plays a fundamental role when
�̃ is computed as a function of the voltage bias. In such case,
the distribution function becomes a doubly stepped function
depending on the voltage of the leads. Hence, one arrives at
the following expressions:

�̃(V )ε̃d = 0 , (23)

ε̃2
d −

(
eV

2

)2

− [�̃(V )]2 = −(kBTK0)2 . (24)

Remarkably, when eV approaches 2kBTK0 the width of the
Kondo peak drops to zero whereas ε̃d ≈ 0 due to the fact
that b̃ → 0 and λ = −εd . Then, at exactly eV = 2kBTK0

a phase transition occurs and the renormalized dot level
position undergoes a bifurcation. Such a bifurcation indicates
that the Kondo resonance splits due to the presence of the
electrical bias. This result agrees with the calculations made in
Refs. [59,60] and the experimental result shown in Ref. [10].
We note that SBMFT is valid for voltages smaller than 2kBTK0

since the predicted phase transition is in reality a crossover.
We present in Fig. 3 our numerical results for Eq. (18)

in the voltage-driven case and T = 0. We observe that the
numerical result nicely fits the analytical result found in
Eq. (24), especially for the deep Kondo regime (see the case
for εd = −3.5�). The phase transition occurs when eV =
2kBTK0, at which point the splitting of the Kondo resonance

FIG. 3. Position of the SBMFT (a) renormalized energy level ε̃d

and (b) width �̃ as a function of the applied voltage for different
dot level positions. The case εd = −3.5� agrees with the analytical
result given by Eq. (24). Parameters: D = 100�, kBT = 0, and �L =
�R = �/2.

takes place [Fig. 3(a)]. When the dot level approaches towards
the mixed-valence regime (εd � −�), charge fluctuations
become important and the phase transition occurs at much
lower voltage bias values. As expected, the Kondo resonance
becomes narrower as voltage grows [Fig. 3(b)].

For the temperature-driven case, an analytical treatment can
also be performed, leading to the result

∑
α

�α

�

[
log

∣∣∣∣2πkBTα

D

∣∣∣∣ + ψ

(
1

2
+ iε̃d + �̃

2πkBTα

)]
= πNεd

2�
,

(25)
where ψ(x) denotes the digamma function. By expanding the
digamma function around T = 0 we find the leading-order
contribution �̃ within a temperature gradient expansion. This
amounts to considering a Sommerfeld expansion in the integral
of Eq. (18). However, we need to calculate the second-order
term to get a dependence of �̃ on the thermal gradient,

ε̃d = 0 , (26)

�̃ = kBTK0e
− π2

12

T 2
L

+T 2
R

(TK0)2 . (27)

The solution of the mean-field equations demonstrates that
a thermal gradient, in contrast to a voltage bias, does not
cause any Kondo splitting but merely renormalizes the Kondo
resonance width. This renormalization is a decreasing function
of the thermal bias θ . We stress that this approximation is in
principle valid only for low temperatures TL,TR 
 TK0 for
which SBMFT can be applied (see the inset of Fig. 4). Still,
we arrive at the same conclusion as in the perturbation scheme
of the previous section: a thermal bias gradually destroys the
Kondo effect. The narrowing of the Abrikosov-Suhl resonance
is the smoking gun of this quenching.

FIG. 4. (a) Renormalized dot gate position ε̃d and (b) resonance
width �̃ as a function of the thermal bias θ for different εd values
within SBMFT. (Inset) Resonance width versus the thermal bias from
a numerical calculation (solid line) and from the analytical expression
given by Eq. (27) (dashed line) for εd = −3.5�. Parameters: D =
100�, kBT = 0, and �L = �R = �/2.
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Our numerical results for θ > 0 are displayed in Fig. 4.
Importantly, our analytical results agree well with the nu-
merical curves provided we are in the deep Kondo regime
(εd = −3.5�). Thus, as long as εd enters the mixed-valence
regime, we find departures from the analytical calculation,
as expected. We observe three distinct regions for the �̃(θ )
curves depending on the θ value. Thus, for a low-temperature
bias θ 
 0.1TK0, the renormalized parameters remains almost
unaffected. With increasing θ as 0.1TK0 < θ < 10TK0 the
width of the Kondo peak decays exponentially and eventually
drops to zero.

Surprisingly, the agreement between our perturbative anal-
ysis and the SBMFT result illustrated in Fig. 2 is quite good.
In both cases, we find a decrease of the binding energy of the
many-body Kondo singlet as a function of the thermal bias.
Notice that such agreement between both approaches holds
even when the considered θ values are away from the range
of validity for the SBMFT (θ small compared to TK0) and the
perturbative analysis (θ large compared to TK0), which further
supports the robustness of our main conclusion.

B. Transport properties

Once the renormalized parameters are determined for a
thermoelectric configuration the electrical current can be
readily computed. We recall that the current is defined as
the time derivative of the occupation of one of the leads
Iα = −e

∑
kσ ∂t 〈C†

αkσCαkσ 〉. Using the current conservation
condition for steady-state currents (I ≡ IL = −IR) and con-
sidering the wide band limit, the current reads

I = − e

h

∫ ∞

−∞
dω

∑
σ

4�L�R

�
Im

[
Gr

σ,σ (ω)
]
[fL(ω) − fR(ω)],

(28)

where Gr
σ,σ (t,t ′) = − i

h̄
θ (t − t ′)〈[d†

σ (t ′),dσ (t)]+〉 is the QD
retarded Green’s function. Following the same procedure as
above and performing the integration, one arrives at

I = I0Im

[
ψ

(
1

2
+ i(ε̃d − μR) + �̃

2πkBTR

)

− ψ

(
1

2
+ i(ε̃d − μL) + �̃

2πkBTL

)]
, (29)

where I0 = (8e�L�R)/(h�). In Fig. 5, the I -V characteristic
curves are shown for different dot gate positions. At very low
voltages, the current is linear with the bias voltage as expected.
From the I -V curve it is easy to obtain the differential
conductance which at zero bias can reach its maximum value
(see the inset of Fig. 5).

In Fig. 6, we show the results for the electrical current
when a temperature shift is applied for different dot gate
positions. We observe that the thermocurrent attains higher
values for dot level positions that are away from the deep
Kondo regime, a regime in which electron-hole symmetry
breaking is more prominent. If we express the current
as I � L1θ + L2θ

2, particle-hole symmetry is responsible
for vanishing thermoelectric conductance in linear response
(L1 � 0) since the transmission probability does not change
significantly with the temperature bias. Then, the leading order

FIG. 5. Current-voltage characteristics of a single level quantum
dot in the Kondo regime using slave-boson mean-field theory for
different values of the gate voltage (level position). (Inset) Differential
conductance of the quantum dot as a function of the applied voltage.
Parameters: D = 100�, kBT = 0, and �L = �R = �/2.

at low thermal shifts is given by

L2 = 4π2ek2
B

3h
�̃L�̃R

ε̃d

ε̃2
d + �̃2

. (30)

Remarkably, the sign of L2 in Eq. (30) depends on the
renormalized dot level position. Thus we observe that deep in
the Kondo regime (ε̃d � 0) the thermoelectric current is van-
ishingly small, even beyond linear response. This is better seen
in the inset in Fig. 6, which depicts the nonlinear thermoelectric
conductance L = dI/dθ . The blue curve corresponds to the
Kondo limit, which deviates little from the zero value. When
the dot level shifts to higher energies closer to the Fermi energy

FIG. 6. Thermocurrent as a function the thermal gradient θ of
a single level quantum dot in the Kondo regime using slave-boson
mean-field theory for different values of the dot gate position. Inset:
thermoelectric conductance as a function of the thermal bias for the
same dot gate positions. Parameters: D = 100�, kBT = 0, and �L =
�R = �/2.
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the thermoelectric conductance behavior is more interesting.
For instance, it shows a maximum value for small values of
θ and then changes its sign. The maximal L grows as the
dot gate position enters the mixed-valence regime due to the
lack of electron-hole symmetry. The change of sign occurs at
thermal biases of the order of the Kondo temperature because
for larger values of θ the thermocurrent starts to decrease due
to the quench of the Kondo effect (main panel of Fig. 6).

V. EQUATION-OF-MOTION TECHNIQUE

In this section, we address the thermoelectric transport
in the Anderson model [Eq. (1)] for the case of moderate
temperatures. In Sec. III, we have employed the perturbative
analysis, which is also suitable for high temperatures, to derive
the Kondo temperature TK (θ ) for a finite temperature shift.
However, perturbation theory does not allow us to access
dynamical quantities like the local density of states. Therefore,
in this section, we propose an equation-of-motion (EOM)
scheme that permits to study the role of single-particle peaks in
addition to the Kondo resonance. In particular, we will be able
to study the impact of the different resonances in the nonlinear
transport regime. The EOM method aims at obtaining the
retarded Green’s function of the dot Gr

σ,σ within the Keldysh
formalism [57,61,62]. We find (the full calculation of Gr

σ,σ is
included in Appendix B)

Gr
σ,σ (ω) = 1 − 〈ñσ̄ 〉

ω − εd − �0 + U�1/[ω − εd − U − �0 − �3]

+ 〈ñσ̄ 〉
ω − εd − �0 − U − U�2/[ω − εd − �0 − �3]

,

(31)

where ω → ω + i0+, σ̄ denotes the spin opposite to σ and

�0 =
∑
αk

|Vαk|2
ω − εαk

, (32)

�1 =
∑
αk

V∗
αk

ω − εαk

⎡
⎣∑

βq

(Vβq〈C†
βqσ̄ Cαkσ̄ 〉 − �0〈d†

σ̄ Cαkσ̄ 〉)
⎤
⎦

+
∑
αk

Vαk

−ω1 + εαk

⎡
⎣∑

βq

(V∗
βq〈C†

αkσ̄Cβqσ̄ 〉

+�0〈C†
αkσ̄ dσ̄ 〉)

⎤
⎦, (33)

�2 = �3 − �1, (34)

�3 =
∑
αk

[ |Vαk|2
ω − εαk

+ |Vαk|2
εαk − ω1

]
, (35)

〈ñσ̄ 〉 = 〈nσ̄ 〉 +
∑
αk

V∗
αk

ω − εαk

〈d†
σ̄ Cαkσ̄ 〉

+
∑
αk

Vαk

ω1 − εαk

〈C†
αkσ̄ dσ̄ 〉, (36)

with ω1 = −ω + 2εd + U . Here, �0 is the tunneling self-
energy, which in the wide-band limit is approximated as
�0 ≈ �(ω) − i�, where �(ω) is the principal value of �0.
�i (i = 1,2,3) are additional self-energies which depend
on the expectation values 〈d†

σ̄ Cαkσ̄ 〉 and 〈C†
βqσ̄ Cαkσ̄ 〉. In

Ref. [62], Meir et al. assume 〈C†
βqσ̄ Cαkσ̄ 〉 ≈ fα(ω)δαβδkqδσs

and 〈d†
σ̄ Cαkσ̄ 〉 ≈ 0. Nevertheless, in general the expectation

values are functions of the lesser Green’s function G< that
should be calculated with the help of a modified fluctuation-
dissipation theorem [58] to account for the nonequilibrium
situation

〈A†B〉 = − 1

2πi

∫
dωF(ω)(〈〈B,A†〉〉r − 〈〈B,A†〉〉a), (37)

where the function F(ω) is the effective nonequilibrium
distribution function of the system [Eq. (19)] and 〈〈B,A†〉〉r,a
is the Fourier transform of the retarded (advanced) corre-
lator 〈〈B(t),A†(t ′)〉〉r,a = − i

h̄
θ (t ∓ t ′)〈[A†(t ′),B(t)]+〉, A and

B being two arbitrary second-quantization operators. Finally,
Eq. (36) depends on the occupation of the quantum dot 〈nσ̄ 〉
and is calculated self-consistently from

〈nσ 〉 = 1

2πi

∫
dω G<

σ,σ (ω) . (38)

Employing Eq. (37), we write the lesser dot Green function as
G<

σ,σ (ω) = −2iF(ω)Im[Gr
σ,σ (ω)].

A. Infinite Coulomb interaction

When U is very large (U → ∞), we immediately see that
both �2 and �3 drop from Eq. (31). Therefore the dot Green’s
function reads

Gr
σ,σ (ω) = 1 − 〈ñσ̄ 〉

ω − εd − �0 − �1
, (39)

with

�1 =
∑
αk

V∗
αk

ω − εαk

⎡
⎣∑

βq

(Vβq〈C†
βqσ̄ Cαkσ̄ 〉 − �0〈d†

σ̄ Cαkσ̄ 〉)
⎤
⎦,

(40)

〈ñσ̄ 〉 = 〈nσ̄ 〉 +
∑
αk

V∗
αk

ω − εαk

〈d†
σ̄ Cαkσ̄ 〉 . (41)

The expectation values 〈C†
βqσ̄ Cαkσ̄ 〉 and 〈d†

σ̄ Cαkσ̄ 〉 in
Eq. (40) and (41) are evaluated using Eq. (37). We next follow
Ref. [63], which discusses a decoupling scheme for solving the
set of EOM. By doing this, Eqs. (40) and (41), respectively,
become

�1(ω) = − i�

2
+ X (ω)

[
1 + 2i�Ga

σ̄ ,σ̄ (ω)
]
�, (42)

〈ñσ̄ 〉 = 〈nσ̄ 〉 + �Ga
σ̄ ,σ̄ (ω)X (ω), (43)

where X (ω) = ∑
α �αXα(ω)/� and Xα is defined as

Xα(ω) =
∫ D

−D

dω′

π

fα(ω′) − 1/2

ω − ω′ + i0+

= 1

π

[
1

2
ln

D2−ω2

(2πkBTα)2
− ψ

(
1

2
− i(ω−μα)

2πkBTα

)]
. (44)
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Due to the digamma function, Eq. (44) contains logarithmic
divergences that are responsible for the emergence of the
Kondo singularity. Finally, the QD retarded Green’s function
takes the form

Gr
σ,σ (ω) = g(ω)

[
δnσ + iQ(ω)

X ∗(ω)

]
, (45)

with

g(ω) = 1

ω − εd − � + i3�/2
, (46)

Q(ω) = S(ω) −
√

S2(ω) + |X (ω)|2( 3
2δnσ − δn2

σ

)
, (47)

S(ω) = z2 + 9
16 − zRe[X (ω)] + (

δnσ − 3
4

)
Im[X (ω)], (48)

where δnσ = 1 − 〈nσ 〉 and z = (ω − εd − �)/2�. Equation
(45) has two different terms. The first term in the right-hand
side depends only on δnσ and is responsible for the dot mean-
field resonance. The second term is responsible for the Kondo
singularity that becomes prominent for T < TK0.

Once we have determined the retarded dot Green’s function,
we can analyze the behavior of the local density of states. First,
we estimate the intrinsic Kondo temperature from Haldane’s
formula [53]

TK0 =
√

D�e−π |εd |/2� . (49)

As expected, a Kondo peak is visible in the spectral function
ρd (ω) = ∑

σ ρdσ (ω) defined as

ρdσ = − 1

π
Im

[
Gr

σ,σ (ω)
]

. (50)

This narrow resonance will survive as long as T < TK0 and, by
increasing T , smears out until it completely disappears [63].

The impact of voltage and temperature biases on the spectral
function is illustrated in Fig. 7. First, for the voltage-driven
case, the Kondo resonance becomes split with resonances
ω ≈ ±eV/2 [Fig. 7(a)], as experimentally observed [10]. Yet,
the employed EOM scheme does not capture the dephasing
effect generated by the voltage shift. A combination of EOM
using the dot occupation computed with the noncrossing
approximation has been proposed to amend the lack of
dephasing when a voltage is considered [11,58,64]. For the
temperature-driven case, we recall our thermal configuration
in which only the left contact is heated, TL = T + θ , whereas
the right reservoir is kept at the background temperature,
TR = T . Our results are depicted in Fig. 7(b). As expected, the
main effect of the thermal gradient is to smear out the Kondo
singularity. However, a further increase of the temperature
difference does not cause the Kondo peak to vanish even for
θ � TK0 [see Fig. 7(b)]. This can be understood as follows.
The Kondo resonance in EOM arises from the sharp character
of the Fermi function. In this case, even though one of the Fermi
functions becomes sufficiently smooth as θ increases, the other
contact Fermi function remains sharp for a low background
temperature. As a consequence, even if θ grows considerably
the Kondo peak is never totally quenched. This behavior is
an artifact of the EOM approach since it does not account
for dephasing processes as we earlier pointed out. However,

FIG. 7. (a) Nonequilibrium infinite-U quantum dot spectral den-
sity of states for different eV values. (Inset) Detail of the density
of states around the Fermi energy (εF = 0). (b) Nonequilibrium
infinite-U quantum dot spectral density of states for different thermal
gradients. The background temperature is set at T = 0.024TK0.
(Inset) Detail of the density of states around the Fermi energy
(εF = 0). Parameters: εd = −3.5�, D = 100�, and T = 0.024TK0.

this method gives the correct behavior at low θ : a thermal
bias does not split the Kondo resonance but gradually destroys
the peak, in agreement with the perturbative approach and the
mean-field slave-boson theory.

B. Finite Coulomb interaction

In this section, we generalize our previous findings to the
case where the Coulomb interaction is finite. In this case,
Eqs. (33), (35), and (36) take the following forms:

�1 = −i� + �X (ω)
[
1 + 2i�Ga

σ̄ ,σ̄ (ω)
]

−�X ∗(ω1)
[
1 + 2i�Gr

σ̄ ,σ̄ (ω1)
]
, (51)

�3 = �(ω) + �(ω1) − 2i�, (52)

〈ñσ̄ 〉 = 〈nσ̄ 〉 + �
[
Ga

σ̄,σ̄ (ω)X (ω) − Gr
σ̄ ,σ̄ (ω1)X (ω1)

]
. (53)

Note that now the retarded Green’s function depends re-
cursively on itself, which makes the decoupling scheme a
highly nontrivial task. In order to make further progress we
consider a finite but large U interaction. Hence, we can safely
neglect Gr (ω1) and find an explicit expression for the following
retarded Green’s function:

Gr
σ,σ (ω) = gu(ω)

[
δnu + iQu(ω)

X ∗
u (ω)

]
, (54)

The quantities entering in Eq. (54) depend on the function
u(ω) = U/(�0 + �3 + εd + U − ω):

Xu(ω) = u(ω)X (ω), (55)

gu(ω) = 1

2�(z + i(1 + u)/2 + X̄u)
, (56)
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FIG. 8. Finite-U quantum dot spectral density at equilibrium for
different background temperatures. Parameters: εd = −3.5�, D =
100�, and U = 20�. (Insets) (a) Detail of the dot spectral density of
states around the Fermi energy. (b) Height of the Kondo peak as a
function of the background temperature.

Qu(ω) = Su − (
S2

u − |X ∗
u δnu|2

+ |Xu|2[δnuh1(ω) − 2Im[δnu]h2(ω)]
)1/2

, (57)

Su(ω) = z2 + |1 + u|2
4

− Im[X̄u(1 + u)]

2
+ |X̄u|2

4

− zRe[Xu] − Im[Xu(1 + u∗)]

2
− Re[XuX̄u]

2

+ Im[Xuδn
∗
u] − zIm[u] + zRe[X̄u], (58)

where the bar indicates that the function is to be computed as
f̄ ≡ f (ω1). In Eq. (57), we have defined the functions h1(ω) =
−Im[X̄u] + 1 + Re[u], h2(ω) = z + i(1 + u)/2 + X̄ ∗

u /2, and
δnu = 1 − u(ω)〈nσ 〉.

Figure 8 shows our results for the dot spectral density
[Eq. (50)] at high background temperatures. As expected, the
dot DOS consists of two mean-field resonances, one centered at
ω = εd and another at ω = εd + U and the Kondo singularity
at ω ≈ 0. For these results, we take into account a modified
Kondo temperature for a system with finite U [1]:

TK0 ≈
√

2�U exp

[
−π |εd |(U + εd )

2�U

]
. (59)

We observe in Fig. 8 that the Kondo peak is quenched as
long as the background temperature surpasses the Kondo
temperature, as expected. Additionally, the inset of Fig. 8
shows the amplitude of the Kondo peak as a function of T . This
result confirms the fact that a high temperature destroys the
Kondo singularity as long as T > TK0 even when we consider
finite charging energies. We have also extended our study of the
dot DOS for finite U to the nonequilibrum case by considering
the influence of a voltage and temperature gradient. We observe
qualitatively similar results (not shown here) as those obtained
for the infinite U case (Fig. 7). We find that given voltage

FIG. 9. I -V characteristics at different dot level positions. (Inset)
Differential electric condutance vs voltage bias for the given values of
the energy level. Parameters: D = 100�, kBT = 0.0001�, U = 20�,
and �L = �R = �/2.

leads to a Kondo peak splitting, whereas a temperature gradient
smears out the Kondo singularity.

C. Voltage-driven transport

We proceed to the transport properties of the system. We
calculate the current from Eq. (28) using Eq. (54). The integrals
over energy of the self-consistent calculation are now solved
numerically. Figure 9 shows the I -V characteristic for different
dot gate positions. The data display a staircase-like behavior
where the step transitions take place whenever the bias voltage
aligns with the dot resonances. By direct differentiation, we
find the differential conductance curves shown in the inset of
Fig. 9. Here, when εd < −�, we find five different peaks,
four located when the mean field resonances aligns with
the electrochemical potential of the leads [eV ≈ ±2εd and
eV ≈ ±2(εd + U )] and the Kondo zero bias anomaly centered
at equilibrium (V = 0). Whenever a resonance occurs the I -V
has a visible jump. Our calculation is performed at finite
temperature. Therefore the Kondo peak is apparent in the
differential conductance only for sufficiently negative dot gate
positions.

D. Temperature-driven transport

We consider now the thermoelectric response of the elec-
trical current in Fig. 10. The thermocurrent I (θ ) is calculated
for the thermal configuration sketched in Fig. 1. Depending
on the energy level εd we find different regions where the
thermocurrent behaves distinctively: if εd > 0 or εd + U < 0
we find that the dot resonances are either above (empty orbital
regime) or below (full orbital regime) the Fermi energy. Then,
for these dot gate positions the thermocurrent either decreases
or increases monotonously (e.g., in Fig. 10 for εd = −20�).
Otherwise, when 0 > εd > −U the Ith(θ ) curves change sign.
Notably, the nontrivial zeros occur at different energy scales
determined by either spin fluctuations (kBTK0), see inset of
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FIG. 10. Thermocurrent vs the thermal gradient for different dot
gate positions. (Inset) Detail of the thermocurrent at low thermal
gradients. Parameters: U = 20�, D = 100�, kBT = 0.01�, and
�L = �R = �/2.

Fig. 10, or charge fluctuations (U ). See, e.g., the case εd = −�

with a nontrivial zero at around kBθ = � and another zero
at around kBθ = 10�. Notice that for very negative dot gate
positions the nontrivial zero of the thermoelectric current
associated with the Kondo scale may not occur due to the
fact that for those level values the Kondo temperature is
exceedingly small and one has T > TK0.

The nontrivial zeros can be explained with the aid of an
energy diagram. In Fig. 11 (top panel), we reproduce I (θ ) for
εd = −� and plot the dot configurations in the bottom panel for
three points indicated above. The QD shows three resonances
located approximately at ω ≈ εd , ω ≈ εd + U (single-particle
peaks), and the Kondo peak at ω � εF = 0. In the very low-
temperature regime, the only open transport channel is due to
the Kondo resonance through which electrons flow between
both leads. Away from the particle-hole symmetry point, the

Kondo peak becomes asymmetric and lies slightly above εF .
Then, if we heat the left reservoir up, electrons tend to flow
from the left to the right side (case A of Fig. 11). Increasing
θ , the single-particle resonance at εd starts to contribute to
the current flow but in the opposite direction and eventually it
dominates over the Kondo resonance. In between (case B), for
a given value of θ the current vanishes. Further increasing of
θ opens the higher single-particle resonance at εd + U , which
favors electron tunneling from left to right, i.e., opposite to the
previous current flow. As a consequence, an additional sign
change of the thermoelectrical current takes place (case C).

VI. CONCLUSIONS

In closing, we have examined the nonequilibrium thermo-
electric effects of a correlated quantum dot connected to two
electronic reservoirs. We have employed different theoretical
approximations with different ranges of validity. As a first
attempt, we have applied the perturbative analysis to the
Kondo Hamiltonian when a thermal and a voltage bias is
present. Interestingly, we find that the Kondo temperature
decreases monotonically in the presence of a thermal gradient
when one reservoir is heated. At very low temperatures, we
have employed the infinite-U slave-boson mean-field theory
suitable for the Fermi liquid regime. Here, we obtain a very
good agreement with the perturbative results for the behavior
of TK when a thermal shift is considered. Finally, in order to
investigate the density of states in the high- and moderate-
temperature regimes, we have applied the equation-of-motion
scheme to our setup. By using this approach we are able
to capture both Coulomb blockade and Kondo physics. We
consider both infinite and finite charging energies. We observe
that the Kondo peak splits under the action of a voltage bias.
In the case of a thermal gradient, the Kondo peak decreases
slowly. Finally, we have analyzed both the I -V characteristic
and the thermoelectric current. For the latter, we find the
existence of nontrivial zeros at two distinct energy scales
(kBθ ), each associated with Kondo correlations and charge

FIG. 11. (Top) Thermocurrent vs θ for εd = −� as taken from Fig. 10. (Bottom) Energy diagram corresponding to the current states
marked in the upper panel. Red (blue) line indicates the Fermi-Dirac function of the left (right) reservoir where orange curve corresponds to the
spectral function for the three points (A, B, and C) indicated in the top panel. εd is indicated with a black line. Dashed lines corresponds to the
εF = 0 and εd + U energies. Finally, the arrows show the direction and intensity of the electronic flow through the corresponding resonance.
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fluctuations. We explain the existence of these nontrivial zeros
due to a change of the flow caused by the contribution of the
different resonances as long as θ grows.

Admittedly, our employed methods have a limited range
of validity. For instance, none of them properly captures
dephasing, which should play a significant role for finite
voltage and temperature biases, as pointed out in Sec. V. In
the presence of dephasing, the strongly correlated Kondo state
lacks full coherence and the peak conductance then decreases.
One possibility to fix this issue is to attach a fictitious voltage
probe that mimics dephasing processes in the dot [65]. We
expect a stronger quenching of the Kondo resonance. However,
further work is needed to investigate dephasing effects from
more microscopic models.

Our work contributes to the understanding of the fate of
the Kondo effect in thermally driven quantum dots far from
equilibrium. We have provided key theoretical predictions
that might be experimentally tested with present transport
techniques.
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APPENDIX A: CALCULATION OF THE CONDUCTANCE

The goal of this Appendix is to find an expression for the
electrical conductance using the expectation value of Eq. (8).
We start our calculation performing a perturbation expansion
around the coupling constant J (0)

αβ (see Ref. [52]). To first
order in perturbation theory, the electrical current is absent
〈Î (0)〉 = 0. Therefore we need to start at second order where

the current, after some algebraic manipulations, takes the form

I (2) =
(

− 2

h̄

)∑
�α �β

J (0)
αβ Im

[ ∫ 0

−∞
dte− ie

h̄
(Vα−Vβ )t

×〈T̄ [xσsC
†
�αC �β Î (0)]〉

]
, (A1)

where T̄ is the anti-time-ordering operator. To make the
notation more compact, we have defined in Eq. (A1) the sets
�α ≡ {α,k,σ } and �β ≡ {β,q,s}. Inserting Eq. (10) into Eq. (A1)
and applying Wick’s theorem to the expectation values, the
electrical current turns out to be

I (2) = −2e
[
J (0)

LR

]2

(∑
σ1σ2

〈
T̄

[
xσ1σ2xσ2σ1

]〉) ∑
α

(1 − 2δαR)

×
∫ 0

−∞
dtRe

[∑
k1k2

e− ie
h̄

(Vα−Vᾱ )t gt̄
αk1

(0,t)gt̄
ᾱk2

(0,t)

]
,

(A2)

where gt̄
αk1

(t1,t2) is the anti-time-ordered Green’s function of
the free electrons in lead α. It reads

gt̄
αk1

(t1,t2) = − i

h̄
e− i

h̄
εαk1 (t1−t2)[θ (t2 − t1) − fα(εαk1 )]. (A3)

Using the identity
∑

σ1σ2
〈T̄ [xσ1σ2xσ2σ1 ]〉 = 1/2, substituting

Eq. (A3) into Eq. (A2) and solving the integral in time and
in ki , we find

I (2) = −e2π

h̄
ν2

[
J (0)

LR

]2
V. (A4)

Therefore the second-order conductance term becomes con-
stant independently of temperature. Hence we need to compute
the third order in perturbation theory:

I (3) = − 1

h̄2

∑
�αi

�βi

J (0)
α1β1

J (0)
α2β2

Re

[∫ 0

−∞
dt2

∫ 0

−∞
dt1e

− ie
h̄

(Vα1 −Vβ1 )t1e− ie
h̄

(Vα2 −Vβ2 )t2
〈
T̄

[
xσ1s1C

†
�α1

C �β1
xσ2s2C

†
�α2

C �β2
Î (0)

]〉]

+ 1

h̄2

∑
�αi

�βi

J (0)
α1β1

J (0)
α2β2

Re

[∫ 0

−∞
dt2

∫ 0

−∞
dt1e

− ie
h̄

(Vα1 −Vβ1 )t1e− ie
h̄

(Vα2 −Vβ2 )t2
〈
xσ1s1C

†
�α1

C �β1
Î (0)xσ2s2C

†
�α2

C �β2

〉]
. (A5)

Now, we separate both terms in the right hand side of Eq. (A5) as I (3a) and I (3b). We proceed in the same way as the second order
and apply Wick’s theorem. After lengthy but straightforward algebra, we find

I (3a) = e
∑
αβ

[
J (0)

LR

]2J (0)
αα

(∑
σi

〈
T̄

[
xσ1σ2 (t1)xσ2σ3 (t2)xσ3σ1 (0)

]〉 + 〈
T̄

[
xσ1σ2 (t2)xσ3σ1 (t1)xσ2σ3 (0)

]〉)
(1 − 2δβL)

×
∫ 0

−∞
dt1

∫ 0

−∞
dt2Re

⎡
⎣∑

ki

e− ie
h̄

(Vβ−Vα )t1e− ie
h̄

(Vα−Vβ̄ )t2gt̄
βk1

(0,t1)gt̄
αk2

(t1,t2)gt̄
β̄k3

(t2,0)

⎤
⎦ , (A6)

I (3b) = −e
∑
αβ

[
J (0)

LR

]2J (0)
αα

(∑
σi

〈
xσ1σ2xσ2σ3xσ3σ1

〉) ∫ 0

−∞
dt1

∫ 0

−∞
dt2(1 − 2δβL)Re

×
⎡
⎣∑

{ki }
e− ie

h̄
(Vα−Vβ̄ )t1e− ie

h̄
(Vβ−Vα )t2g>

βk1
(0,t2)g<

αk2
(t2,t1)g>

β̄k3
(t1,0)

⎤
⎦
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− e
∑
αβ

[
J (0)

LR

]2J (0)
αα

(∑
σi

〈
xσ1σ2xσ3σ1xσ2σ3

〉) ∫ 0

−∞
dt1

∫ 0

−∞
dt2(1 − 2δβR)

× Re

⎡
⎣∑

ki

e− ie
h̄

(Vβ−Vα )t1e− ie
h̄

(Vα−Vβ̄ )t2g<
βk1

(0,t1)g>
αk2

(t1,t2)g<
β̄k3

(t2,0)

⎤
⎦ , (A7)

where g<
αk and g>

αk are the lesser and greater Green’s function for electrons on lead α. The spin expectation values of Eq. (A6)
depends on the time ordering and yield 5/8 + (3/8)sgn(t2 − t1), with sgn(t) the sign function. Meanwhile, the terms in Eq. (A7)
are independent of time and the spin expectation values are thus 1/8 and 1/2, respectively. Substituting these values and the
definition of the Green’s function in Eq. (A3),

g<
αkσ (t1,t2) = i

h̄
e− i

h̄
εαk (t1−t2)fα(εαk) , (A8)

g>
αkσ (t1,t2) = − i

h̄
e− i

h̄
εαk (t1−t2)(1 − fα(εαk)) , (A9)

the current up to third order reads

I (3) = e

8h̄3

∑
αβ

[
J (0)

LR

]2J (0)
αα (1 − 2δβL)

∫ 0

−∞
dt1

∫ 0

−∞
dt2

⎧⎨
⎩(5 − 3sgn(t2 − t1))

× Im

⎡
⎣∑

ki

e− i
h̄

[εαk2 −εβk1 +e(Vβ−Vα )]t1e− i
h̄

[εβ̄k3
−εαk2 +e(Vα−Vβ̄ )]t2fβ

(
εβk1

)(
θ (t2 − t1) − fα

(
εαk2

))(
1 − fβ̄

(
εβ̄k3

))⎤⎦

− Im

⎡
⎣∑

ki

e− i
h̄

[εαk2 −εβk1 +e(Vβ−Vα )]t1e− i
h̄

[εβ̄k3
−εαk2 +e(Vα−Vβ̄ )]t2

(
fα

(
εαk2

) − fβ

(
εβk1

)
fα

(
εαk2

) − fβ̄

(
εβ̄k3

)
fα

(
εαk2

)

− 4fβ̄

(
εβ̄k3

)
fβ

(
εβk1

) + 5fβ̄

(
εβ̄k3

)
fα

(
εαk2

)
fβ

(
εβk1

))⎤⎦
⎫⎬
⎭. (A10)

We next combine the Fermi functions of Eq. (A10) and perform the sums over the wave numbers ki by transforming them into
integrals. We solve the resulting integrals by performing the Fourier transform of the Fermi function:∫ ∞

−∞
dω

e−iωt

1 + eh̄ω/kBT
= πi

sinh πkB tT
h̄

. (A11)

Then, the current becomes

I (3) = −eπ3

8h̄2 ν3
[
J (0)

LR

]2 ∑
αβ

J (0)
αα (1 − 2δβL)

∫ 0

−∞
dt

[
3Bsββ̄(t) − Bsβα(t) + Bsαβ̄(t)

]

− eπ3

8h̄2 ν3
[
J (0)

LR

]2 ∑
αβ

J (0)
αα (1 − 2δβL)Re

[∫ 0

−∞
dt2e

− ie
h̄

(Vα−Vβ̄ )t2

∫ 0

−∞
dt1e

− ie
h̄

(Vβ−Vα )t1 Tsβαβ̄(t1,t2)

]
, (A12)

where we define the functions

Bsαγ (t) = sin [e(Vα − Vγ )t/h̄]

βαβγ sinh πt
βαh̄

sinh πt
βγ h̄

, (A13)

Tsαγ δ(t1,t2) = sgn(t2 − t1)

βαβγ βδ sinh πt1
βαh̄

sinh π(t1−t2)
βγ h̄

sinh πt2
βδh̄

, (A14)

with βα = 1/kBTα the inverse temperature of lead α. Finally, after solving the sum over α and β, we obtain

I (3) = 3eπ3

4h̄2 ν3
[
J (0)

LR

]2(J (0)
LL + J (0)

RR

) ∫ 0

−∞
dt

sin (eV t/h̄)

βLβR sinh πt
βLh̄

sinh πt
βRh̄

. (A15)
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Once we have the third-order term, we are interested in the linear conductance G = ∂I/∂V |V =0, which defines the height of the
Kondo resonance. Applying the voltage derivative to Eq. (A4) and Eq. (A15) the conductance is given by

G = −e2π

h̄
ν2

[
J (0)

LR

]2 + 3e2π3

4h̄3 ν3
[
J (0)

LR

]2(J (0)
LL + J (0)

RR

) ∫ 0

−∞
dt

t

βLβR sinh πt
βLh̄

sinh πt
βRh̄

+ D−2
0

. (A16)

We note that we have added the energy bandwidth D0 = √−εd (U + εd ) to the integral in order to find a convergent solution.
Additionally, we need to assume that the minimum time of the integral in Eq. (A16) is related to the temperatures as τ ≈ h̄

√
βLβR .

These assumptions yield Eq. (11).

APPENDIX B: EQUATION OF MOTION BEYOND HARTREE-FOCK

The aim of this Appendix is to give more details of the equation-of-motion calculation yielding Eq. (31). Firstly, we compute
the equation of motion for the retarded Green’s function

(ih̄∂t − εd )Gr
σ,σ (t,t ′) = δ(t − t ′) +

∑
αk

VαkG
r
αkσ,σ + U 〈〈dσnσ̄ ,d†

σ 〉〉 . (B1)

Equation (B1) depends on 〈〈dσnσ̄ ,d†
σ 〉〉, which is a higher-order correlator. Considering that U � kBT ,� we calculate the equation

of motion for 〈〈dσnσ̄ ,d†
σ 〉〉,

(ih̄∂t − εd − U )〈〈dσnσ̄ ,d†
σ 〉〉 = 〈nσ̄ 〉δ(t − t ′) +

∑
αk

V∗
αk[〈〈Cαkσnσ̄ ,d†

σ 〉〉 + 〈〈dσ d
†
σ̄ Cαkσ̄ ,d†

σ 〉〉] −
∑
αk

Vαk〈〈dσC
†
αkσ̄ dσ̄ ,d†

σ 〉〉. (B2)

At this point, if we determine the EOM of 〈〈Cαkσnσ̄ ,d†
σ 〉〉 and neglect the contributions of the correlators 〈〈dσ d

†
σ̄ Cαkσ̄ ,d†

σ 〉〉,
〈〈dσ C

†
αkσ̄ dσ̄ ,d†

σ 〉〉, 〈〈CαkσC
†
βqσ̄ dσ̄ ,d†

σ 〉〉 and 〈〈Cαkσ d
†
σ̄ Cβqσ̄ ,d†

σ 〉〉 we arrive at the two peak solution that has been widely investigated
[66]. However, our interest for the moment is to take a step further and include Kondo correlations. We follow the calculation
of Lacroix [67] and Kashcheyevs et al. [68] and extend the EOM scheme by computing the evolution of these higher-order
correlators:

(ih̄∂t − εαk)〈〈Cαkσnσ̄ ,d†
σ 〉〉 = Vαk〈〈dσnσ̄ ,d†

σ 〉〉 +
∑
βq

[V∗
βq〈〈Cαkσ d

†
σ̄ Cβqσ̄ ,d†

σ 〉〉 − Vβq〈〈CαkσC
†
βqσ̄ dσ̄ ,d†

σ 〉〉], (B3)

(ih̄∂t − εαk)〈〈dσ d
†
σ̄ Cαkσ̄ ,d†

σ 〉〉 = 〈d†
σ̄ Cαkσ̄ 〉δ(t − t ′) + Vαk〈〈dσ nσ̄ ,d†

σ 〉〉 +
∑
βq

[V∗
βq〈〈Cβqσ d

†
σ̄ Cαkσ̄ ,d†

σ 〉〉 − Vβq〈〈dσC
†
βqσ̄ Cαkσ̄ ,d†

σ 〉〉],

(B4)

(ih̄∂t + δεαk)〈〈dσC
†
αkσ̄ dσ̄ ,d†

σ 〉〉= 〈C†
αkσ̄ dσ̄ 〉δ(t − t ′) −V∗

αk〈〈dσ nσ̄ ,d†
σ 〉〉+

∑
βq

Vβq[〈〈CβqσC
†
αkσ̄ dσ̄ ,d†

σ 〉〉+ 〈〈dσ C
†
αkσ̄Cβqσ̄ ,d†

σ 〉〉], (B5)

where δεαk = εαk − 2εd − U . New higher-order correlators are generated in the process. Then, in order to obtain a solvable
system of differential equations, we consider the approximation proposed by Mattis [68,69]:

〈〈A†BC,D†〉〉 ≈ 〈A†B〉〈〈C,D†〉〉 − 〈A†C〉〈〈B,D†〉〉 . (B6)

Therefore, after applying Eq. (B6) to Eqs. (B3)–(B5), the system of equations can be closed. In the Fourier space, we end up
with Eq. (31).
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25, 505305 (2013).
[42] D. M. Kennes and V. Meden, Phys. Rev. B 87, 075130 (2013).
[43] J. S. Lim, R. López, and D. Sánchez, New J. Phys. 16, 015003

(2014).
[44] L. Z. Ye, D. Hou, R. Wang, D. Cao, X. Zheng, and Y. J. Yan,

Phys. Rev. B 90, 165116 (2014).
[45] R. Chirla and C. P. Moca, Phys. Rev. B 89, 045132 (2014).
[46] K. P. Wójcik and I. Weymann, Phys. Rev. B 89, 165303 (2014).
[47] S. B. Tooski, A. Ramsak, B. R. Bulka, and R. Zitko, New J.

Phys. 16, 055001 (2014).
[48] S. Donsa, S. Andergassen, and K. Held, Phys. Rev. B 89, 125103

(2014).
[49] K. P. Wójcik and I. Weymann, Phys. Rev. B 93, 085428 (2016).
[50] P. W. Anderson, Phys. Rev. 124, 41 (1961).
[51] A. Kaminski, Y. V. Nazarov, and L. I. Glazman, Phys. Rev. Lett.

83, 384 (1999).
[52] A. Kaminski, Y. V. Nazarov, and L. I. Glazman, Phys. Rev. B

62, 8154 (2000).
[53] F. D. M. Haldane, Phys. Rev. Lett. 40, 416 (1978).
[54] A. C. Hewson, Phys. Rev. Lett. 70, 4007 (1993).
[55] A. Oguri and A. Hewson, J. Phys. Soc. Japan 74, 988 (2005).
[56] P. Coleman, Phys. Rev. B 29, 3035 (1984).
[57] See, e.g., H. Haug and A.-P. Jauho, Quantum Kinetics in

Transport and Optics of Semiconductors (Springer, Berlin,
2007).

[58] C. A. Balseiro, G. Usaj, and M. J. Sánchez, J. Phys.: Condens.
Matter 22, 425602 (2010).

[59] P. Coleman, C. Hooley, Y. Avishai, Y. Goldin, and A. F. Ho,
J. Phys.: Condens. Matter 14, 205 (2002).

[60] R. López, R. Aguado, and G. Platero, Phys. Rev. B 69, 235305
(2004).

[61] M. Wagner, Phys. Rev. B 44, 6104 (1991).
[62] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
[63] O. Entin-Wohlman, A. Aharony, and Y. Meir, Phys. Rev. B 71,

035333 (2005).
[64] Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett. 70,

2601 (1993).
[65] D. Sánchez and R. López, Phys. Rev. B 71, 035315 (2005).
[66] A. C. Hewson, Phys. Rev. 144, 420 (1966).
[67] C. Lacroix, J. Phys. F: Met. Phys. 11, 2389 (1981).
[68] V. Kashcheyevs, A. Aharony, and O. Entin-Wohlman, Phys.

Rev. B 73, 125338 (2006).
[69] A. Theumann, Phys. Rev. 178, 978 (1969).

085416-14

https://doi.org/10.1038/35098012
https://doi.org/10.1038/35098012
https://doi.org/10.1038/35098012
https://doi.org/10.1038/35098012
https://doi.org/10.1088/0268-1242/9/5S/136
https://doi.org/10.1088/0268-1242/9/5S/136
https://doi.org/10.1088/0268-1242/9/5S/136
https://doi.org/10.1088/0268-1242/9/5S/136
https://doi.org/10.1103/PhysRevB.55.R10197
https://doi.org/10.1103/PhysRevB.55.R10197
https://doi.org/10.1103/PhysRevB.55.R10197
https://doi.org/10.1103/PhysRevB.55.R10197
https://doi.org/10.1209/0295-5075/22/1/011
https://doi.org/10.1209/0295-5075/22/1/011
https://doi.org/10.1209/0295-5075/22/1/011
https://doi.org/10.1209/0295-5075/22/1/011
https://doi.org/10.1088/1367-2630/15/10/105011
https://doi.org/10.1088/1367-2630/15/10/105011
https://doi.org/10.1088/1367-2630/15/10/105011
https://doi.org/10.1088/1367-2630/15/10/105011
https://doi.org/10.1103/PhysRevB.90.115313
https://doi.org/10.1103/PhysRevB.90.115313
https://doi.org/10.1103/PhysRevB.90.115313
https://doi.org/10.1103/PhysRevB.90.115313
https://doi.org/10.1016/j.physe.2015.10.007
https://doi.org/10.1016/j.physe.2015.10.007
https://doi.org/10.1016/j.physe.2015.10.007
https://doi.org/10.1016/j.physe.2015.10.007
https://doi.org/10.1016/j.crhy.2016.08.005
https://doi.org/10.1016/j.crhy.2016.08.005
https://doi.org/10.1016/j.crhy.2016.08.005
https://doi.org/10.1016/j.crhy.2016.08.005
https://doi.org/10.1209/epl/i2001-00559-8
https://doi.org/10.1209/epl/i2001-00559-8
https://doi.org/10.1209/epl/i2001-00559-8
https://doi.org/10.1209/epl/i2001-00559-8
https://doi.org/10.1088/0953-8984/14/45/316
https://doi.org/10.1088/0953-8984/14/45/316
https://doi.org/10.1088/0953-8984/14/45/316
https://doi.org/10.1088/0953-8984/14/45/316
https://doi.org/10.1103/PhysRevB.75.155330
https://doi.org/10.1103/PhysRevB.75.155330
https://doi.org/10.1103/PhysRevB.75.155330
https://doi.org/10.1103/PhysRevB.75.155330
https://doi.org/10.1103/PhysRevB.86.075303
https://doi.org/10.1103/PhysRevB.86.075303
https://doi.org/10.1103/PhysRevB.86.075303
https://doi.org/10.1103/PhysRevB.86.075303
https://doi.org/10.1063/1.4922907
https://doi.org/10.1063/1.4922907
https://doi.org/10.1063/1.4922907
https://doi.org/10.1063/1.4922907
https://doi.org/10.1103/PhysRevB.88.235133
https://doi.org/10.1103/PhysRevB.88.235133
https://doi.org/10.1103/PhysRevB.88.235133
https://doi.org/10.1103/PhysRevB.88.235133
https://doi.org/10.1103/PhysRevB.94.245125
https://doi.org/10.1103/PhysRevB.94.245125
https://doi.org/10.1103/PhysRevB.94.245125
https://doi.org/10.1103/PhysRevB.94.245125
https://doi.org/10.1103/PhysRevLett.95.176602
https://doi.org/10.1103/PhysRevLett.95.176602
https://doi.org/10.1103/PhysRevLett.95.176602
https://doi.org/10.1103/PhysRevLett.95.176602
https://doi.org/10.1103/PhysRevB.81.235127
https://doi.org/10.1103/PhysRevB.81.235127
https://doi.org/10.1103/PhysRevB.81.235127
https://doi.org/10.1103/PhysRevB.81.235127
https://doi.org/10.1103/PhysRevB.82.075324
https://doi.org/10.1103/PhysRevB.82.075324
https://doi.org/10.1103/PhysRevB.82.075324
https://doi.org/10.1103/PhysRevB.82.075324
https://doi.org/10.1103/PhysRevB.67.165313
https://doi.org/10.1103/PhysRevB.67.165313
https://doi.org/10.1103/PhysRevB.67.165313
https://doi.org/10.1103/PhysRevB.67.165313
https://doi.org/10.1103/PhysRevB.73.075307
https://doi.org/10.1103/PhysRevB.73.075307
https://doi.org/10.1103/PhysRevB.73.075307
https://doi.org/10.1103/PhysRevB.73.075307
https://doi.org/10.1103/PhysRevB.88.085313
https://doi.org/10.1103/PhysRevB.88.085313
https://doi.org/10.1103/PhysRevB.88.085313
https://doi.org/10.1103/PhysRevB.88.085313
https://doi.org/10.1103/PhysRevB.84.241107
https://doi.org/10.1103/PhysRevB.84.241107
https://doi.org/10.1103/PhysRevB.84.241107
https://doi.org/10.1103/PhysRevB.84.241107
https://doi.org/10.1103/PhysRevB.85.085117
https://doi.org/10.1103/PhysRevB.85.085117
https://doi.org/10.1103/PhysRevB.85.085117
https://doi.org/10.1103/PhysRevB.85.085117
https://doi.org/10.1088/1367-2630/15/10/105023
https://doi.org/10.1088/1367-2630/15/10/105023
https://doi.org/10.1088/1367-2630/15/10/105023
https://doi.org/10.1088/1367-2630/15/10/105023
https://doi.org/10.1103/PhysRevB.86.041107
https://doi.org/10.1103/PhysRevB.86.041107
https://doi.org/10.1103/PhysRevB.86.041107
https://doi.org/10.1103/PhysRevB.86.041107
https://doi.org/10.1103/PhysRevB.86.165106
https://doi.org/10.1103/PhysRevB.86.165106
https://doi.org/10.1103/PhysRevB.86.165106
https://doi.org/10.1103/PhysRevB.86.165106
https://doi.org/10.1063/1.4867697
https://doi.org/10.1063/1.4867697
https://doi.org/10.1063/1.4867697
https://doi.org/10.1063/1.4867697
https://doi.org/10.1088/0953-8984/25/50/505305
https://doi.org/10.1088/0953-8984/25/50/505305
https://doi.org/10.1088/0953-8984/25/50/505305
https://doi.org/10.1088/0953-8984/25/50/505305
https://doi.org/10.1103/PhysRevB.87.075130
https://doi.org/10.1103/PhysRevB.87.075130
https://doi.org/10.1103/PhysRevB.87.075130
https://doi.org/10.1103/PhysRevB.87.075130
https://doi.org/10.1088/1367-2630/16/1/015003
https://doi.org/10.1088/1367-2630/16/1/015003
https://doi.org/10.1088/1367-2630/16/1/015003
https://doi.org/10.1088/1367-2630/16/1/015003
https://doi.org/10.1103/PhysRevB.90.165116
https://doi.org/10.1103/PhysRevB.90.165116
https://doi.org/10.1103/PhysRevB.90.165116
https://doi.org/10.1103/PhysRevB.90.165116
https://doi.org/10.1103/PhysRevB.89.045132
https://doi.org/10.1103/PhysRevB.89.045132
https://doi.org/10.1103/PhysRevB.89.045132
https://doi.org/10.1103/PhysRevB.89.045132
https://doi.org/10.1103/PhysRevB.89.165303
https://doi.org/10.1103/PhysRevB.89.165303
https://doi.org/10.1103/PhysRevB.89.165303
https://doi.org/10.1103/PhysRevB.89.165303
https://doi.org/10.1088/1367-2630/16/5/055001
https://doi.org/10.1088/1367-2630/16/5/055001
https://doi.org/10.1088/1367-2630/16/5/055001
https://doi.org/10.1088/1367-2630/16/5/055001
https://doi.org/10.1103/PhysRevB.89.125103
https://doi.org/10.1103/PhysRevB.89.125103
https://doi.org/10.1103/PhysRevB.89.125103
https://doi.org/10.1103/PhysRevB.89.125103
https://doi.org/10.1103/PhysRevB.93.085428
https://doi.org/10.1103/PhysRevB.93.085428
https://doi.org/10.1103/PhysRevB.93.085428
https://doi.org/10.1103/PhysRevB.93.085428
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/PhysRevLett.83.384
https://doi.org/10.1103/PhysRevLett.83.384
https://doi.org/10.1103/PhysRevLett.83.384
https://doi.org/10.1103/PhysRevLett.83.384
https://doi.org/10.1103/PhysRevB.62.8154
https://doi.org/10.1103/PhysRevB.62.8154
https://doi.org/10.1103/PhysRevB.62.8154
https://doi.org/10.1103/PhysRevB.62.8154
https://doi.org/10.1103/PhysRevLett.40.416
https://doi.org/10.1103/PhysRevLett.40.416
https://doi.org/10.1103/PhysRevLett.40.416
https://doi.org/10.1103/PhysRevLett.40.416
https://doi.org/10.1103/PhysRevLett.70.4007
https://doi.org/10.1103/PhysRevLett.70.4007
https://doi.org/10.1103/PhysRevLett.70.4007
https://doi.org/10.1103/PhysRevLett.70.4007
https://doi.org/10.1143/JPSJ.74.988
https://doi.org/10.1143/JPSJ.74.988
https://doi.org/10.1143/JPSJ.74.988
https://doi.org/10.1143/JPSJ.74.988
https://doi.org/10.1103/PhysRevB.29.3035
https://doi.org/10.1103/PhysRevB.29.3035
https://doi.org/10.1103/PhysRevB.29.3035
https://doi.org/10.1103/PhysRevB.29.3035
https://doi.org/10.1088/0953-8984/22/42/425602
https://doi.org/10.1088/0953-8984/22/42/425602
https://doi.org/10.1088/0953-8984/22/42/425602
https://doi.org/10.1088/0953-8984/22/42/425602
https://doi.org/10.1088/0953-8984/14/8/105
https://doi.org/10.1088/0953-8984/14/8/105
https://doi.org/10.1088/0953-8984/14/8/105
https://doi.org/10.1088/0953-8984/14/8/105
https://doi.org/10.1103/PhysRevB.69.235305
https://doi.org/10.1103/PhysRevB.69.235305
https://doi.org/10.1103/PhysRevB.69.235305
https://doi.org/10.1103/PhysRevB.69.235305
https://doi.org/10.1103/PhysRevB.44.6104
https://doi.org/10.1103/PhysRevB.44.6104
https://doi.org/10.1103/PhysRevB.44.6104
https://doi.org/10.1103/PhysRevB.44.6104
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevB.71.035333
https://doi.org/10.1103/PhysRevB.71.035333
https://doi.org/10.1103/PhysRevB.71.035333
https://doi.org/10.1103/PhysRevB.71.035333
https://doi.org/10.1103/PhysRevLett.70.2601
https://doi.org/10.1103/PhysRevLett.70.2601
https://doi.org/10.1103/PhysRevLett.70.2601
https://doi.org/10.1103/PhysRevLett.70.2601
https://doi.org/10.1103/PhysRevB.71.035315
https://doi.org/10.1103/PhysRevB.71.035315
https://doi.org/10.1103/PhysRevB.71.035315
https://doi.org/10.1103/PhysRevB.71.035315
https://doi.org/10.1103/PhysRev.144.420
https://doi.org/10.1103/PhysRev.144.420
https://doi.org/10.1103/PhysRev.144.420
https://doi.org/10.1103/PhysRev.144.420
https://doi.org/10.1088/0305-4608/11/11/020
https://doi.org/10.1088/0305-4608/11/11/020
https://doi.org/10.1088/0305-4608/11/11/020
https://doi.org/10.1088/0305-4608/11/11/020
https://doi.org/10.1103/PhysRevB.73.125338
https://doi.org/10.1103/PhysRevB.73.125338
https://doi.org/10.1103/PhysRevB.73.125338
https://doi.org/10.1103/PhysRevB.73.125338
https://doi.org/10.1103/PhysRev.178.978
https://doi.org/10.1103/PhysRev.178.978
https://doi.org/10.1103/PhysRev.178.978
https://doi.org/10.1103/PhysRev.178.978



