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Recently it was shown that an impurity exchanging orbital angular momentum with a surrounding bath can
be described in terms of the angulon quasiparticle [Phys. Rev. Lett. 118, 095301 (2017)]. The angulon consists
of a quantum rotor dressed by a many-particle field of boson excitations and can be formed out of, for example,
a molecule or a nonspherical atom in superfluid helium or out of an electron coupled to lattice phonons or a
Bose condensate. Here we develop an approach to the angulon based on the path-integral formalism, which sets
the ground for a systematic, perturbative treatment of the angulon problem. The resulting perturbation series
can be interpreted in terms of Feynman diagrams, from which, in turn, one can derive a set of diagrammatic
rules. These rules extend the machinery of the graphical theory of angular momentum—well known from
theoretical atomic spectroscopy—to the case where an environment with an infinite number of degrees of
freedom is present. In particular, we show that each diagram can be interpreted as a ‘skeleton’, which enforces
angular momentum conservation, dressed by an additional many-body contribution. This connection between
the angulon theory and the graphical theory of angular momentum is particularly important as it allows us to
systematically and substantially simplify the analytical representation of each diagram. In order to exemplify the
technique, we calculate the one- and two-loop contributions to the angulon self-energy, the spectral function, and
the quasiparticle weight. The diagrammatic theory we develop paves the way to investigate next-to-leading order
quantities in a more compact way compared to the variational approaches.
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I. INTRODUCTION

Impurity problems, where an isolated quantum particle
interacts with a many-body environment, represent one of
the key concepts in condensed matter, atomic, and chemical
physics [1–11]. Studying quantum impurities amounts to an
active, interdisciplinary research field of its own, with an
additional motivation coming from the domain of strongly-
correlated phases of matter. A quantum impurity, in fact, can be
regarded as a building block for strongly-correlated systems,
providing a basis to advance their understanding [12–15],
as well as to develop more accurate numerical techniques
[16].

Most impurities studied during the last years are
structureless—as in the case of an electron in a polarizable
medium forming a polaron [17–19]—or can be considered
structureless due to a very large gap between the ground state
and the first excited state. An example of the latter are polarons
formed of an atomic impurity immersed in an ultracold Bose or
Fermi gas [4,12,20–31]. Another kind of well-studied impurity
problem involves a localized spin coupled to a bath of fermions
[32], bosons [7], or other spins [33].

In several settings, however, an impurity possesses more
involved degrees of freedom, such as orbital angular momen-
tum. For instance, transfer of orbital angular momentum from
an electron to the phonon bath is believed to provide a major
contribution to ultrafast demagnetization of ferromagnetic thin
films [34–36]. On the other hand, molecular rotation is known
to be altered by the presence of a quantum solvent, such
as superfluid 4He [37]. Furthermore, recent breakthroughs
in the manipulation of ultracold quantum gases opened up
the possibility to prepare ultracold diatomic molecules in
selected quantum rotational states and fine-tune the long-
range interactions between them [38–50]. This paves the way

to study interactions between molecular impurities and the
surrounding Bose or Fermi gas.

Recently, it was shown that interaction of such orbital impu-
rities with a many-particle environment can be rationalized by
using the concept of the angulon quasiparticle [51–57]. While
in the case of polarons the bath degrees of freedom couple
to the impurity’s translational motion, in angulons the orbital
angular momentum is redistributed between the impurity and
the many-particle environment. Quantum rotations, in turn,
are described by the non-Abelian SO(3) algebra and feature a
discrete spectrum of eigenvalues [58]. As a result, the angulon
problem becomes substantially more involved and distinct
from other impurity problems involving, e.g., the polaron [59]
or spin-boson [7,8] type of coupling.

The concept of angulons has been used to study a variety
of physical systems, ranging from molecular ions rotating in
a BEC [60] to molecules in superfluid helium nanodroplets
[54,56], using variational approaches in either the strong-
[52,57] or weak-coupling [51,55,56] regimes. Strong evidence
was provided that molecules rotating in superfluid 4He form
angulon quasiparticles [54,61].

The coupling of rotations to a bath has been extensively
studied in the context of molecules in helium nanodroplets
using density functional calculations [62], a combination of
semianalytical and Monte Carlo techniques [63,64], reptation
quantum Monte Carlo [65–68], path integral Monte Carlo
[69–75], and diffusion Monte Carlo [74,76–83]. All these
techniques, however, model the environment as a cluster of
a finite size, and—as a consequence—are computationally
expensive. The angulon theory, on the other hand, accounts
for an infinite number of degrees of freedom in the many-
body environment analytically and leads to a computationally
inexpensive description in terms of quasiparticles. In the
present paper we develop a path integral and diagrammatic
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approaches to the angulon which allow us to integrate out the
many-body degrees of freedom exactly and thereby simplify
the treatment further. Starting from the seminal papers by
Feynman [84,85], path integrals have constituted one of the
sharpest theoretical tools available to study the Fröhlich
polaron, providing a superior, all-coupling treatment [86].

The paper is organized as follows. In Sec. II we describe the
angulon quasiparticle using the path integral formalism. Here,
the path integral serves two aims: On one hand it allows for an
exact treatment of the many-body bosonic environment, lead-
ing to an effective, single-particle description of the angulon in
terms of a quantum rotor with time-non-local self-interaction.
On the other hand, we show that the path-integral description
we develop naturally leads to a diagrammatic expansion,
derived in Sec. III. The diagrammatic expansion, in turn, can
be carried out in the angular momentum basis systematically,
leading to a peculiar set of Feynman rules mapping diagrams
to corresponding analytical expressions—as shown in Sec. IV.
In order to illustrate the capabilities of the technique, in Sec. V
we derive the Dyson equation in the angular momentum
representation. Next, in Sec. VI we calculate the one-loop
and two-loop contributions to the angulon self-energy, to the
spectral function, and to the quasiparticle weight.

The Feynman rules we obtain bear a remarkable resem-
blance to the rules one encounters in the context of the
graphical theory of angular momentum, widely used in atomic
and nuclear theory [58,87–89]. In such a way, it becomes
possible to establish a connection between atomic structure
calculations—dealing with a finite number of particles—
and the many-particle physics featured by the angulon. In
particular, we show that each diagram can be decomposed into
a ‘skeleton’—which coincides with the corresponding diagram
from the graphical theory of angular momentum—dressed
by an additional contribution accounting for the many-body
character of the problem. This paves the way to employ
the mathematical machinery developed in the context of the
graphical theory of angular momentum as a building block of
many-body calculations involving an infinite number of inter-
acting particles. The framework we introduce provides a fast
way of calculating higher order quantities—corresponding to
multiphonon processes—which in the case of variational treat-
ments [51] would require very involved angular momentum
algebra, making use of 3nj symbols for a n-phonon process.

II. PATH INTEGRAL DESCRIPTION OF THE ANGULON

The starting point is the angulon Hamiltonian [51–53],
describing an orbital impurity exchanging angular momentum
with a many-body environment:

Ĥ = Ĥimp + Ĥbos + Ĥimp-bos, (1)

where Ĥimp and Ĥbos give the kinetic energies of the impurity
and the bosonic bath, respectively, and Ĥimp-bos describes the
impurity-bath interactions. As mentioned above, the formalism
can be used to describe a variety of the systems, from
highly-excited electronic states [90] and cold molecules [60]
interacting with a BEC, to electrons exchanging orbital angular
momentum with a crystal lattice [91], to polyatomic species
embedded in superfluid helium nanodroplets [54]. For the sake
of concreteness, we will think of the impurity as a linear rotor

molecule, as described by the following Hamiltonian:

Ĥimp = BĴ2, (2)

where the rotational constant B = 1/(2I ) is expressed through
the molecular moment of inertia I , and the units of h̄ ≡ 1 are
used hereafter. The bosonic environment is described by the
second term in Eq. (1), namely

Ĥbos =
∑
kλμ

ωkb̂
†
kλμb̂kλμ, (3)

where
∑

k ≡ ∫
dk, ωk is the dispersion relation for bath

excitations and the b̂† (b̂) operator creates (destroys) a bosonic
excitation with linear momentum k, angular momentum λ, and
angular momentum projection along the z axis, μ. The field
operators in the angular momentum basis are defined in terms
of the usual field operators as

b
†
kλμ = k

(2π )3/2

∫
d�kb

†
ki−λYλμ(�k), (4)

and similarly for bkλμ, having introduced the spherical har-
monics Yλμ [58] and the spherical coordinate representation
of the vector k, namely k → {k,�k}, with �k = {θk,φk},
see Ref. [53] for details. Finally, the interaction between
the molecule and the bosonic environment is given by the
following term:

Ĥimp-bos =
∑
kλμ

Uλ(k)[Y ∗
λμ(θ̂ ,φ̂)b̂†kλμ + Yλμ(θ̂ ,φ̂)b̂kλμ], (5)

where Uλ(k) is the angular-momentum-dependent potential in
momentum space, and the operators (θ̂ ,φ̂) give the orientation
of the molecular impurity with respect to the laboratory frame.
Here, only two Euler angles are required in order to describe
a linear molecule. In the most general case (such as that of
symmetric and asymmetric top molecules) the interaction (5)
will depend upon the third Euler angle, γ̂ .

In order to proceed with a path-integral description of the
angulon, it is necessary to rewrite the Hamiltonian Ĥ in terms
of the position and momentum operators [84,92,93], as given
by the following relations:

q̂kλμ =
√

1

2mωk

(b̂kλμ + (−1)μ b̂
†
kλ−μ) (6)

p̂kλμ = −i

√
mωk

2
(b̂kλμ − (−1)μ b̂

†
kλ−μ). (7)

This definition is analogous to the usual expressions of the
ladder operators for the standard harmonic oscillator, with
m being the mass of each particle constituting the bosonic
environment, and the angular momentum basis operators are
related to the usual momentum-space operators in a complete
analogy to Eq. (4). After the substitutions of (6) and (7), the
Hamiltonian (1) reads

Ĥ = BĴ2 +
∑
kλμ

1

2m
|p̂kλμ|2 + mω2

k

2
|q̂kλμ|2 + γkλμq̂kλμ, (8)

where we have introduced

γkλμ(θ̂ ,φ̂) =
√

2mωkUλ(k)Yλμ(θ̂ ,φ̂) . (9)
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By Legendre transforming the Hamiltonian of Eq. (8), we
obtain the corresponding Lagrangian. Next, integrating over
time and replacing each field operator with a corresponding
field variable, we arrive at the action

S[q(t),�(t)] =
∫

dtBJ2 +
∫

dt
∑
kλμ

m

2
|q̇kλμ|2

− mω2
k

2
|qkλμ|2 − γkλμ(θ,φ)qkλμ. (10)

Here it is implied that J is a differential operator acting on
the rotor coordinates, �(t). With the action at hand, we can
reformulate the angulon problem in terms of path integral. Let
us consider the Green function describing the total amplitude
for a particle to evolve in time from the configuration �i =
{θi,φi} to the configuration �f = {θf ,φf } during time T . The
invariance of the theory under time translations ensures that the
Green function is a function of time differences only. Within
the path-integral formalism, it can be written as a sum over
all possible trajectories connecting �i and �f , weighted by a
factor exp(iS):

G(�i,�f ; T ) =
∫

�(0) = �i

�(T ) = �f

D�
∏
kλμ

Dqkλμ eiS[q(t),�(t)]. (11)

The first part of the integration measure, D�, corresponds to
the rotating molecule, while the second part,

∏
kλμ Dqkλμ, de-

scribes the many-body environment. Crucially, the integration
over qkλμ can be carried out exactly as the q field appears
quadratically and linearly in the action [94–96], leading to the
following result:

G(�i,�f ; T ) =
∫

�(0) = �i

�(T ) = �f

D� eiSeff[�(t)] (12)

(the boundary conditions for the path integral will be omitted
from now on). The effective action reads

Seff =
∫ T

0
dtBJ2

︸ ︷︷ ︸
S0

+ i

2

∫ T

0
dt

∫ T

0
ds

∑
λ

Pλ(cos γ (t,s))Mλ(|t − s|)
︸ ︷︷ ︸

Sint

.

(13)

Here Pλ are the Legendre polynomials, γ (t,s) is the angle
between the position of the rotor at time t and at time s, and
M is defined as

Mλ(|t − s|) = 2λ + 1

4π

∑
k

|Uλ(k)|2 e−iωk |t−s|. (14)

Equation (13) is the main result of the present section: The
first term, S0, describes a free linear rotor, whereas the second
term, Sint, accounts for the interaction of the rotor with its past
self. Thus, analogously to the path-integral treatment of the
Fröhlich polaron [23,84,85], the bath degrees of freedom can
be integrated out exactly, leading to an effective single-particle
description, in which an effective potential encodes the many-
body physics of the original problem. In contrast to the polaron,

however, the orbital impurity considered here is moving in the
internal space represented by the non-Abelian SO(3) group,
rather than in the usual three-dimensional space. This makes
the angulon problem substantially different and more involved
compared to the polaron problem [53].

III. DIAGRAMMATIC EXPANSION

In order to investigate the properties of the angulon through
the effective action of Eq. (13), we pursue a perturbative
expansion, also dubbed as direct path-integral treatment in
the context of polarons [97–99]. Starting from the definition of
the angulon’s Green function, Eq. (12), we treat the interaction
term Sint as a perturbation. Then, the perturbation series for the
angulon Green function can be written as

G(�i,�f ; T ) = G0(�i,�f ; T ) +
∞∑

n=1

in

n!
〈Sn

int〉0. (15)

Here 〈X〉0 ≡ ∫
D� X exp(iS0) denotes the expectation value

of X taken over the states of the free impurity, as described by
S0 alone, and

G0(�i,�f ; T ) = −i
∑
λμ

Yλμ(�i)Y
∗
λμ(�f )e−iBλ(λ+1)T (16)

is the Green function of a free linear rotor [100], also see
Appendix B. We note that the order of magnitude of the
perturbation parameter Sint is determined by the potential term
|Uλ(k)|2, making the present perturbation theory essentially
a weak-coupling theory, as it will be confirmed later by
a comparison with other angulon theories. Analyzing the
perturbation series, one notices that the zeroth order term
coincides with the free propagator G0, whereas the first order
term reads

G(1)(�i,�f ; T ) = − i

2

∫
D� eiS0

∫
dtds χ (t,s) (17)

with the shorthand

χ (t,s) = −i
∑

λ

Pλ(cos γ (t,s))Mλ(|t − s|) . (18)

By introducing two midpoints in the path integral at times t

and s, and integrating over the angular configurations at the
midpoints, one can rewrite Eq. (17) in terms of the propagators
G0 and χ . For shortness’ sake we introduce the new variables,
i, f , 1, and 2, bundling together the angular configuration and
time, e.g., 1 = {�1,t1}, so that the first order contribution reads

G(1)(i,f ) = − i

2

∫
d1d2 G0(i,1) G0(1,2) χ (1,2) G0(2,f ).

(19)
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Equation (19) has a simple interpretation in terms of Feynman
diagrams:

i 1 2 3 4 f

i 1 2 3 4 f

i 1 2 3 4 f

where a solid line represents the free propagator G0 and a
dashed line corresponds to χ . The meaning χ thereby becomes
clear: It is the phonon propagator, describing the interaction
of the angulon with the many-body environment. The same
reasoning can be straightforwardly generalized to the nth order
contribution to the angulon Green function. By making use of
2n midpoints, we obtain:

G(n)(i,f ) = 1

2n

(−i)n

n!

∑
{pi }

∫
d1 . . . d2n G0(i,1) . . . G0(2n,f )

×χ (p1,p2) . . . χ (p2n−1,p2n), (20)

where the sum extends over all the permutations, {p1, . . . ,p2n},
of the space-time configurations, {1, . . . ,2n}. These permu-
tations give rise to various topologically distinct Feynman
diagrams. For instance, at the second order we get the
following set of diagrams from G(2)(i,f ):

i 1 2 f

Finally, let us discuss the combinatorial prefactor in
Eq. (20), following the argument presented in Ref. [101].
Let us start by considering a single interaction line, χ (a,b),
connecting two configurations at times ta and tb. Clearly, as
both time variables run from 0 to T , one may have either ta > tb
or tb > ta . Alternatively and equivalently, we can choose to use
the retarded propagator for the interaction χ , which is nonzero
only for tb > ta , and multiply the final result by a factor
of 2 to account for the original multiplicity. This reasoning
yields a factor of 2n when applied to n interaction lines at nth
order. Having fixed the time ordering for every interaction line
coupling two configurations, we can still choose the relative
time ordering of configurations not connected by an interaction
line. This can be achieved by using a retarded propagator also
for G0 and thereby enforcing the ‘natural’ time ordering for all
configurations, i.e., t1 > t2 > . . . > t2n, selecting one possible
ordering among n! combinations, and therefore requiring
another prefactor n!. Thus we have demonstrated that, when
enforcing the ‘natural’ time ordering by means of retarded
propagators, every term in the perturbative series has no
combinatorial prefactor [97,101] as the prefactor 1/(2nn!) in
Eq. (20) cancels out. In what follows, we will always use this
convention, introducing the natural time ordering for the time
variables, making use of retarded propagators, and omitting
the combinatorial prefactors.

IV. FEYNMAN RULES FOR THE ANGULON

The aim of the present section is to establish a link between
the diagrams corresponding to every term in the perturbative
series generated by Eq. (20) and their analytic expressions writ-
ten in the angular momentum basis, by analogy with the usual
Feynman rules in momentum space [102,103]. The motivation
for switching to momentum-space diagrams comes from the
great simplification of the analytic expressions we can achieve.
As one can see, direct evaluation of a single nth order term
of Eq. (20) requires a calculation of a 4n-dimensional integral
over the angles. The diagrams in the angular momentum space,
on the other hand, require the evaluation of a discrete sum
over the angular momentum λ and its projection along the z

axis μ for each internal line of the corresponding diagram,
in addition to n frequency integrations. Furthermore, we will
show that the frequency integrations, as well as the sums over
μ, can be carried out analytically at every order. When working
with structureless particles, the aforementioned simplification
arises naturally in the momentum basis, as a consequence of
the translational invariance of Green functions [104]. Here, the
angular momentum basis is the right choice, as a consequence
of the rotational invariance of each Green function. We now
outline how these new rules arise in the angular momentum
representation, considering the angular and time dependence
of each Green function separately.

1. Angular dependence

Let us take into account a diagram representing a contri-
bution to the angulon Green function. For consistency, let us
consider G(1)(�i,�f ) of Eq. (19), however the same reasoning
can be applied at every order. We introduce the expansion in
the angular momentum basis for a function of two angular
variables, defined as

G
(1)
λμlm =

∫
d�id�f Y ∗

λμ(�i)Ylm(�f ) G(1)(�i,�f ). (21)

In order to proceed, we need to express every quantity inside
the integral in the angular momentum basis. Hence, we replace
each propagator G0 and χ , included in Eq. (21) through
Eq. (19), with its representation in the angular momentum
basis, defined as

G0(�,�′) =
∑
λμlm

Yλμ(�)Y ∗
lm(�′) G0,λμlm (22)

and

χ (�,�′) =
∑
λμlm

Yλμ(�)Y ∗
lm(�′) χλμlm . (23)

The representation in Eqs. (22) and (23) can be greatly
simplified due to rotational invariance. Using the lemma
introduced in Appendix A we can rewrite them as

G0(�,�′) =
∑
λμ

Yλμ(�)Y ∗
λμ(�′)G0,λ (24)

and

χ (�,�′) =
∑
λμ

Yλμ(�)Y ∗
λμ(�′)χλ . (25)
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Σλ
(1) (ω) = − i 

λ μ, ω λ1 μ1, ω − ω′ λ μ, ω

λ2 μ2, ω′

FIG. 1. The only diagram contributing to the first-order self-
energy in the diagrammatic expansion. The labels λ and ω on each
solid (dashed) line denote the angular momentum and the energy of
the angulon (phonon), respectively.

The angulon Green function in the angular momentum basis
G0,λ and the interaction Green function χλ are calculated in
Appendix B.

After inserting the momentum-space representations of
each Green function appearing in Eq. (21), the algebra gets
quite involved. Nonetheless, after some manipulations, a clear
pattern—valid for every diagram and at every order in the dia-
grammatic expansion—emerges, and the angular momentum
representation of each diagram follows the prescriptions listed
below.

Lines: Each line in a diagram corresponds to a set of quan-
tum numbers {λi,μi}, representing the angular momentum and
its projection along the z axis. Each line must be oriented in
an arbitrary, however consistent way—graphically we draw an
arrow on each line. We have introduced these labels in Figs. 1
and 2, which illustrate the one- and two-loop contributions
to the angulon self-energy studied in the next section. When
transcribing a line, one needs to write the propagator in the
angular momentum representation: either a free propagator,
(−1)μi G0,λi

, for a solid line, or an interaction propagator,
(−1)μi χλi

, for a dashed line [105]. In addition, for every
line one needs to write a summation over the corresponding

Σλ
(2,A) (ω) = − 

λ μ, ω λ2 μ2, ω − ω1

λ4 μ4, ω − ω1 − ω2

λ5 μ5, ω − ω2 λ μ, ω

λ1 μ1, ω1 λ3 μ3, ω2

Σλ
(2,B) (ω) = − 

λ μ, ω λ2 μ2, ω − ω1

λ4 μ4, ω − ω1 − ω2

λ5 μ5, ω − ω1 λ μ, ω

λ1 μ1, ω1

λ3 μ3, ω2

Σλ
(2,C) (ω) = − 

λ μ, ω

λ2 μ2, ω − ω1

λ3 μ3, ω

λ4 μ4, ω − ω2

λ μ, ω

λ1 μ1, ω1
λ3 μ3, ω2

FIG. 2. Diagrams appearing at the second order of the dia-
grammatic expansion. The first and second diagrams are 1-particle
irreducible and form the second order contribution to the self-energy

(2), whereas the third diagram is not 1-particle irreducible and is
accounted for in the Dyson sum for 
(1).

quantum numbers, i.e.,
∑

λi ,μi
. An additional integration over

the phonon momentum k for interaction lines is contained in
χλ, see Eq. (29).

External lines: The integrations over �i and �f from
Eq. (21), i.e., the integrations over the configurations which
belong to an external line in a Feynman diagram, give a result
of the form∫

d�iY
∗
λext,μext

(�i)Yλi,±μi
(�i) = δλext,λi

δμext,±μi
, (26)

where λext,μext are the quantum numbers associated with the
external (initial or final) state. The sign of μi is determined by
the orientation of the line and is given by a + (−) when the line
is entering (leaving) the diagram. The resulting Kronecker δ’s
can be used to carry out the sums over the quantum numbers
corresponding to external lines, removing the summation over
the corresponding quantum numbers {λi,μi}.

Vertices: Each vertex corresponds to an integral over three
spherical harmonics, leading to [58]

V
λiλj λk

±μi±μj ±μk
= (−1)λi 〈λi ||Y (λj )||λk〉

(
λi λj λk

±μi ±μj ±μk

)
,

(27)
where {λi,μi}, {λj ,μj } and {λk,μk} are the quantum numbers
associated with each of the three lines entering the vertex,
which are to be read in the counterclockwise direction.
In Eq. (27) we have introduced the 3j symbol and the
reduced matrix element of the spherical harmonic operator,
〈λi ||Y (λj )||λk〉 [58]. Again, the signs of each μi are + (−) when
the corresponding line is entering (leaving) the vertex. We
note that the reduced matrix element in each vertex reflects the
dynamics of the problem, whereas the 3j symbol encodes the
information about the geometry. This point will be addressed
in detail when analyzing the structure of two-loop diagrams in
Sec. VI.

2. Time dependence

The time dependence of the Green function follows the
usual Feynman rules in momentum space [103,104]. When
taking the Fourier transform of the time dependence of a
diagram, we observe that each internal loop corresponds to
an integral of the type (2π )−1

∫
dωi , each internal/external leg

corresponds to a Fourier-transformed propagator,

G0,λ(ω) = 1

ω − Bλ(λ + 1) + iδ
, (28)

or

χλ(ω) =
∑

k

|Uλ(k)|2
ω − ωk + iδ

, (29)

as derived in Appendix B, and the energy conservation
throughout the whole diagram is enforced by choosing an
adequate labeling, such as in Figs. 1 and 2.

3. Discussion

The approach just outlined can be systematically extended
to every order in perturbation theory and leads to the rules
listed in Table I, allowing us to bypass the lengthy expression
of Eq. (20). In order to evaluate a quantity at order n, one has to
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TABLE I. Feynman rules for the angulon in the angular momen-
tum basis. The prescription for the sign of each μ is given in the
text.

Each external line
λiμi

(−1)μiG0,λiδλext ,λiδμext,±μiλext μext λi μi

Each internal G0 line
λiμi

(−1)μiG0,λiλi μi

Each internal χ line
λiμi

(−1)μiχλiλi μi

Each vertex

(−1)λi λi| |Y (λj)| |λk
λi λj λk

μi μj μk

write all the relevant Feynman diagrams and convert them to
integrals in angular momentum space using the Feynman rules.

As opposed to most diagrammatic expansions
[97,106,107], here the momentum integrals are replaced
by discrete sums of λ and μ, which can be calculated exactly
in a majority of cases or approximated numerically using a
cutoff λmax to a very high precision [108,109]. Finally, we
stress that the rules of Table I bear a remarkable resemblance
with the rules derived in the context of the graphical theory
of angular momentum [87–89], specifically the 3j symbols
enforcing the angular momentum conservation at every
vertex, as well as the sign convention for the μ indices. In the
present context, however, each line is ‘dressed’ with a novel
G0 or χ propagator, reflecting the many-body character of the
angulon. This connection with the graphical theory of angular
momentum will be made clear in Sec. VI, where we establish
a rigorous mapping between the two theories and use the
graphical theory to simplify the angular momentum algebra.

V. THE DYSON EQUATION

The central object in the study of quasiparticles is the
self-energy 
, which encompasses the renormalization of the
quasiparticle properties due to the interaction with the many-
body environment [106]. Within the diagrammatic expansion,

 is identified as the 1-particle-irreducible (1PI) contribution
to the Green function. Here, it corresponds to all the diagrams
generated by Eq. (20) which cannot be divided into two by
cutting a single internal line, with the external legs G0(i,1)
and G0(2n,f ) removed. The first-order contribution to the
Green function of Fig. 1 is therefore 1PI, as well as the first
and the second diagrams in Fig. 2, which correspond to the
second-order contribution. The third second-order diagram,
however, can be divided into two by cutting a single internal
line, thereby being reducible. With these definitions, the Green
function of Eq. (20) can be readily defined as an infinite
series with alternating free propagators and the self-energy
contribution. This infinite series can, in turn, be rewritten in a
compact form as the Dyson equation for G [110]

G(i,f ) = G0(i,f ) +
∫

d1d2 G0(i,1)
(1,2)G(2,f ). (30)

When working with structureless particles, Eq. (30) greatly
simplifies when rewritten in the frequency-momentum rep-
resentation, due to the convolution theorem transforming
each integral over the position in space and time into a
product. In the present case, the internal degrees of freedom
of the angulon are represented by the angular configuration
�, and the Fourier transform is replaced by the spherical
harmonics expansion, as introduced in Eq. (21). Crucially, in
Appendix C we demonstrate that the rotational analog of the
convolution theorem holds in the angular momentum basis,
allowing us to write the Dyson equation for the angulon as
follows:

Gλ(ω) = G0,λ(ω) +
∞∑

n=1

(
λ(ω)G0,λ(ω))n. (31)

Summing the geometric series, we finally obtain a closed
expression for the angulon Green function

Gλ(ω) = 1

G−1
0,λ(ω) − 
λ(ω)

. (32)

Clearly, the self-energy 
λ(ω)—containing the 1PI contri-
butions to the Green function at every order—cannot be
calculated in closed form. Nevertheless, the present formalism
allows for a simple calculation of the first and second
order terms (and, potentially, at higher orders), as it will be
demonstrated in the following section.

VI. SELF-ENERGY, SPECTRAL FUNCTION, AND
QUASIPARTICLE WEIGHT

A. Self-energy

Using the rules derived in Sec. IV, we associate the
following analytic expression to the first-order self-energy
diagram:



(1)
λ (ω) = (−i)

∑
λ1,μ1,λ2,μ2

(−1)μ1+μ2V
λ,λ1,λ2
μ,−μ1,−μ2

V
λ,λ1,λ2−μ,μ1,μ2

×
∫

dω′

2π
G0,λ1 (ω − ω′)χλ2 (ω′). (33)

The integral over dω′ in Eq. (33) can be evaluated exactly using
contour integration in the complex plane. Moreover, using the
properties of the 3j symbol [58] we can carry out the sums
over μ1 and μ2, bringing Eq. (33) to the following form:



(1)
λ (ω) = 1

4π

∑
l1,l2,k

(2l1 + 1)(2l2 + 1)|Ul2 (k)|2
ωk + Bl1(l1 + 1) − ω

(
λ l2 l1
0 0 0

)2

.

(34)
By rewriting the 3j symbol in terms of the Clebsch-Gordan
coefficients [58] we immediately recover the result found in
Refs. [51,53] using a variational ansatz for the wave function
based on a single bath excitation. This strongly suggests that
the diagrammatic expansion for the self-energy is equivalent
to an expansion of the many-body wave function in bath
excitations. We note that an analogous result holds for a
spin-↓ impurity in a Fermi sea of spin-↑ fermions, where the
equivalence between the variational ansatz including single
particle-hole excitations and a diagrammatic treatment has
been demonstrated [111].
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Now let us focus on the second-order contribution to the self-energy. Two topologically distinct contributions to the second-
order self-energy—as depicted in the first and second panel of Fig. 2—correspond to the following analytic expressions:



(2,A)
λ (ω) = (−i)2

∑
λ1,μ1,...,λ5,μ5

(−1)
∑

i μi V
λ,λ1,λ2
μ,−μ1,−μ2

V
λ2,λ3,λ4
μ2,−μ3,−μ4

V
λ1,λ4,λ5
μ1,μ4,−μ5

V
λ3,λ5,λ
μ3,μ5,−μ

×
∫

dω1

2π

dω2

2π
G0λ2 (ω − ω1)G0λ4 (ω − ω1 − ω2)G0λ5 (ω − ω2)χλ1 (ω1)χλ3 (ω2) (35)

and



(2,B)
λ (ω) = (−i)2

∑
λ1,μ1,...,λ5,μ5

(−1)
∑

i μi V
λ,λ1,λ2
μ,−μ1,−μ2

V
λ2,λ3,λ4
μ2,−μ3,−μ4

V
λ3,λ4,λ5
μ3,μ4,−μ5

V
λ1,λ5,λ
μ1,μ5,−μ

×
∫

dω1

2π

dω2

2π
G0λ2 (ω − ω1)G0λ4 (ω − ω1 − ω2)G0λ5 (ω − ω1)χλ1 (ω1)χλ3 (ω2) (36)

and



(2)
λ = 


(2,A)
λ + 


(2,B)
λ . (37)

Let us analyze the structure of the two-loop self-energies in
detail, in order to reveal their physical meaning. It is convenient
to split the analytic expressions corresponding to each self-
energy diagram of Eqs. (35) and (36) into three terms, as



(2,x)
λ = (−i)2

∑
{λi }



(2,x)dyn
λ × 


(2,x)geom
λ × 


(2,x)freq
λ (38)

and x = {A,B}. The first term, 

(2,x)dyn
λ , contains the product

of four reduced matrix elements for the spherical harmonic
operator which describe the dynamics of angular momentum,
namely



(2,A)dyn
λ = 〈λ||Y (λ1)||λ2〉〈λ2||Y (λ3)||λ4〉

×〈λ1||Y (λ4)||λ5〉〈λ3||Y (λ5)||λ〉 (39)

and



(2,B)dyn
λ = 〈λ||Y (λ1)||λ2〉〈λ2||Y (λ3)||λ4〉

×〈λ3||Y (λ4)||λ5〉〈λ1||Y (λ5)||λ〉 . (40)

The second term, 

(2,x)geom
λ , containing a phase factor, the

product of four 3j symbols and a summation over μi , describes
the geometric aspects of the problem, i.e., the conservation of
angular momentum. This term can be understood in terms
of the graphical theory of angular momentum [87–89], in
which analytical expressions involving angular momenta are
rewritten as diagrams, often allowing for very substantial
simplifications of lengthy calculations. Indeed, it turns out that
when the ‘geometric’ term is represented using the rules of the
graphical theory of angular momentum, the resulting diagram
has exactly the same topological structure as the diagrams of
Fig. 2, provided that two external lines are joined and that
every dashed interaction line is replaced by a solid line. This
connection is analyzed in greater detail in Appendix D, where
it is shown that the summations over μi can be carried out
exactly, leading to the following analytic expression



(2,A)geom
λ = (−1)λ1+λ2+λ3+λ4

2λ + 1

{
λ2 λ1 λ

λ5 λ3 λ4

}
(41)

having introduced the 6j symbol [58] and



(2,B)geom
λ = (−1)λ4+λ5δλ2,λ5

(2λ + 1)(2λ5 + 1)
{λ λ1 λ2}{λ2 λ3 λ4}. (42)

Here {a b c} is the 0j symbol [87,112], which equals 1 if a,
b, c satisfy the triangular condition, and is 0 otherwise.

Finally, the third term, 

(2,x)freq
λ , contains the frequency

integrals and the summations over the phonon momenta. The
former can be evaluated exactly using contour integration
in the complex plane. Note that the two integrals, although
very similar, are essentially different, reflecting different
topological structure of the diagrams they represent. The
results of contour integration are:



(2,A)freq
λ

=
∑
k1,k2

|Uλ1 (k1)|2|Uλ3 (k2)|2
(ω−Eλ2−ωk1 )(ω−Eλ5−ωk2 )(−ω + Eλ4+ωk1+ωk2 )

(43)

and



(2,B)freq
λ

=
∑
k1,k2

|Uλ1 (k1)|2|Uλ3 (k2)|2
(ω−Eλ2−ωk1 )(ω−Eλ5−ωk1 )(−ω+Eλ4+ωk1+ωk2 )

(44)

with Eλ = Bλ(λ + 1). We stress that the integrals of Eq. (43)
and Eq. (44)—along with the one-loop counterpart of
Eq. (34)—are the only equations in the present paper that
need to be evaluated numerically in order to get the results
in the present section. Due to the moderate dimensionality of
the integrals, the computation can be carried out with great
accuracy using standard numerical libraries.

In conclusion of the present section, let us comment on
the connection to the graphical theory of angular momentum
[87–89]. Here, we have demonstrated that each diagram
contains a ‘geometric’ part which enforces angular momentum
conservation. This part can be understood—and significantly
simplified—in terms of a completely analogous diagram
introduced within the graphical theory of angular momentum.
On the other hand, the ‘dynamical’ and ‘frequency’ parts
associated with each diagram represent a novel contribution

085410-7



G. BIGHIN AND M. LEMESHKO PHYSICAL REVIEW B 96, 085410 (2017)

FIG. 3. The angulon spectral function ÃL ≡ ALB for L = 0,1,2 as a function of the dimensionless density, ñ = n(mB)−3/2, and of the
dimensionless energy, ω̃ = ω/B, parameters defined in the text. The left panel shows the first-order spectral function, Eq. (45), obtained
from the Dyson equation of Eq. (32) and one-loop diagrams, Eq. (34). The right panel, on the other hand, includes two-loop contributions,
Eqs. (35) and (36). The white dashed lines show the energy of the first-order quasiparticle states, derived from Eq. (48), showing the
negative shift in the quasiparticle energy due to the inclusion of two-phonon processes in the high-density region. The dashed red region
corresponds to an unphysical region with negative spectral weight, as described in the text. The notation for the state labels is also introduced in
the text.

and can be understood as a many-body part dressing the
skeleton provided by the geometric terms.

B. Spectral function

The self-energy we have just calculated allows us to
evaluate the angulon Green function through Eq. (32), which,
in turn, leads to the angulon spectral function

AL(ω) = − 1

π
Im GL(ω + i0+) (45)

The spectral function encodes the information about the
angulon excitation spectrum, as well as its quasiparticle
properties [51,106,107].

In order to analyze the angulon spectral function quan-
titatively, let us define the quantities introduced in Sec. II.
We choose the effective momentum-space potential, Uλ(k)
of Eq. (5), to be of the same form as the one used in
Ref. [51] to describe an ultracold molecule immersed in a
weakly-interacting BEC:

Uλ(k) = uλ

√
8nk2εk

ωk(2λ + 1)

∫
drr2fλ(r)jλ(kr), (46)

where n is the density of the bosonic bath, εk = k2/(2m),
jλ are the spherical Bessel functions, and the form fac-
tors fλ determine the details of the molecule-environment
interaction, along with the interaction parameters uλ. We
choose the same Gaussian form factors as in Ref. [51],
i.e., fλ(r) = (2π )−3/2 exp(−r2/(2r2

λ)), as well as the same
interaction parameters u0 = 1.75u1 = 218B. For the bosonic
bath we take the dispersion relation ωk = √

εk(εk + 2gbbn),
with gbb = 4πabb/m. The boson-boson scattering length is

set to abb = 2.0(mB)−1/2. Since the goal of this paper is to
introduce a new formalism for the angulon, we use the same
parameters as in Ref. [51], except for a reduced abb, in order
to make the second-order corrections more evident. The role
of abb in enhancing the relevance of second-order corrections
will also be analyzed in Fig. 4. We stress, however, that in
the case of a molecular impurity within a He nanodroplet,
the parameters of the model can also be inferred, in a more
physical way, from the impurity-bath potential energy surfaces
[54,61].

In Fig. 3 we compare the dimensionless angulon spectral
function ÃL = ALB obtained using the one-loop self-energy
(left panel) with the spectral function obtained from the one-
and two-loop contributions (right panel), as a function of the
dimensionless angulon energy ω̃ = ω/B and of the dimension-
less density ñ = n(mB)−3/2. We briefly comment on the essen-
tial features of the spectral function, motivated by emphasizing
the new features introduced by two-phonon processes analyzed
in the present paper; a thorough description of the whole many-
body-induced fine structure (MBIFS) can be found in Ref. [51].
In the low density region the quasiparticle peaks essentially
coincide with the energy levels of a free quantum rotor EL =
BL(L + 1), so that we can simply label a state with its quantum
number L.

As the density is increased the state splits and an upper
phonon branch Lph develops, while the energy of the quasi-
particle state is shifted towards lower energies. The L = 0
state is stable across the whole parameter space considered,
whereas the L = 1 and L = 2 states undergo an ‘angulon
instability’ for intermediate density values, corresponding to
the emission of a phonon carrying a quantum of angular
momentum, bringing the angulon to the 1′ and 2′ state,
respectively.
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FIG. 4. The angulon spectral function, ÃL ≡ ALB, as a function
of the dimensionless energy, ω̃ = ω/B, in the high-density regime
log(ñ) = 5, for different values of the boson-boson scattering length,
[in units of (mB)−1/2]. The lowest peaks for L = 0,1 are shown,
in the case of abb = 2.0(mB)−1/2 also a third peak L = 2 is visible
in the plotted range of energies. Smaller values of the boson-boson
scattering length abb correspond to a stronger renormalization of the
angulon energy, as well as to an increased splitting between the peaks
calculated using the first order theory (solid line) and the second order
theory (dashed lines).

Let us now focus on the modifications induced by the
inclusion of two-phonon processes. Indeed, a comparison
between the left and the right panel shows that the qualitative
picture and the MBIFS is essentially unaltered, as no new
features appear in the angulon spectral function. However,
a closer look at the quantitative details reveals the rele-
vance of two-phonon processes. We compare the position of
the quasiparticle peaks, aided by the white dashed lines in
the right panel of Fig. 3, showing the first-order quasiparticle
peaks superimposed over the second-order spectral function.
One can immediately see that in the high-density region the
quasiparticle energy is shifted towards lower values by as much
as by E ∼ B. This effect becomes more substantial to the
right from the angulon instabilities. In Fig. 4 we show that—by
varying the boson-boson scattering length—the effect of the
second-order correction on the position of the quasiparticle
peaks becomes more conspicuous for smaller values of abb.
We note that in the case of an impurity in a filled Fermi sea,
a nearly perfect cancellation makes second-order corrections
negligible [113].

We note that the spectral function we obtain incorrectly
predicts regions with unphysical negative spectral weight,
dashed in red in Fig. 3. These regions always appear near
the phonon branch, and originate in omission of some of the
higher-order diagrams, which does not affect the quasiparticle
peaks lying at lower energies. This problem has been known
for a long time in the case of an electron gas [114,115] and has
found a solution—applicable in all generality to any many-
body diagrammatic expansion—only recently [116,117]. In
particular, it has been demonstrated that, in general, the nth
order truncation of a diagrammatic expansion does not lead

to a positive-definite spectral function, whereas an opportune
combination of all diagrams up to the nth order plus certain
(n + 1)th order diagrams is positive definite. Following the
approach in Refs. [116,117] one can divide each one of the
second-order diagrams in two half-diagrams [117]. Then a
minimal, positive-definite set of diagrams can be found by
‘completing the square’, i.e., by introducing all third-order
diagrams that can be obtained joining two half-diagrams. In the
present case, one would need to include third order diagrams
with the following structure:

whose calculation—however made easier by the techniques
introduced here—exceeds the scope of the present work and
will be the the subject of future investigations.

C. Quasiparticle weight

Finally, we analyze the quasiparticle weight, ZL—a quan-
tity which measures the overlap between a bare particle
and a dressed quasiparticle [118]. It follows then that Z ∼
1 corresponds to the regime where the angulon can be
accurately described as a ‘renormalized rotor’, whereas Z  1
signals that the interaction with the many-body environment
is hindering such a description. In the present context the
quasiparticle weight is defined as [107]:

Z
(n)
L = 1

1 − ∂ Re 
L(ω)
∂ω

∣∣
ω=ωP

, (47)

where ωP is a quasiparticle pole, corresponding to the solution
of the equation

ωP = BL(L + 1) + Re 
L(ωP ), (48)

and 
L is the sum of all relevant self-energy contributions,
i.e.,


L =
∑

1�j�n



(j )
L (49)

so that the superscript n in Eq. (47) refers to the order
of the diagrammatic expansion. In order to understand the
extent to which the two-phonon processes included in 
(2)

are affecting the properties of the angulon, in Fig. 5 we
compare the quasiparticle weights, Z

(1)
L , calculated using the

one-loop theory (black solid lines) and quasiparticle weights,
Z

(2)
L , calculated including both one- and two-loop contributions

(red solid lines). The states with L = 0, L = 1, and L = 2 are
shown from left to right, as a function of the dimensionless
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FIG. 5. The angulon spectral weight for the L = 0, L = 1, and L = 2 states, from left to right, calculated at one-loop level (black solid line)
and at two-loop level (red solid line), as a function of the dimensionless density ñ = n(mB)−3/2 and the dimensionless boson-boson scattering
length ãbb = abb(mB)1/2.

density ñ and of the dimensionless boson-boson scattering
length ãbb = abb(mB)1/2.

We observe that, in general, the quasiparticle weight is close
to one both for low and high values of the density and exhibits
a minimum in the intermediate density region. This picture
is in agreement with the spectral function, showing angulon-
phonon hybridization at work primarily for intermediate values
of the density. One can see that inclusion of second-order
processes by means of the two-loop diagrams results in an
enhanced transfer of spectral weight from the impurity to the
phonons, significantly reducing the quasiparticle weight. In
the L = 0 case, the reduction can amount to as much as 30%
in the parameter region we consider. For the angulon states
characterized by a higher L, such a reduction is generally
more pronounced. Furthermore, we note that the minimum
of the quasiparticle weight, identifying the instability re-
gion, is shifted towards lower densities when second-order
processes are taken into account. This effect arises as a
result of the interplay between the angulon and phonon
branches and is also evident from the spectral functions of
Fig. 3.

Finally, we observe that Fig. 5 shows that an increase in the
boson-boson scattering length abb stabilizes the quasiparticle
description of the angulon in the density region we consider,
whereas lower values of abb correspond to a less stable
angulon characterized by lower quasiparticle weights. This
phenomenon is particularly evident in the high density region
of each plot of Fig. 5, where a dashed line serves as an eye
guide. This effect is somewhat reminiscent of the Landau
stability criterion for the Bose gas, where the critical velocity of
the particle increases with the speed of sound in the superfluid,
vs ∼ a

1/2
bb [119,120].

VII. CONCLUSIONS

In the present paper we have introduced a path-integral
treatment for the angulon. After integrating out the degrees
of freedom pertaining to the many-body environment exactly,
we used a perturbative treatment of the effective action to
perform a diagrammatic expansion. The resulting Feynman
rules for the angulon were used to calculate the self-energy
at the first and second order of the perturbative expansion.
The formalism derived in this paper establishes a connec-
tion between the theory of orbital quantum impurities—or

angulons—and the graphical theory of angular momentum
commonly used in atomic structure calculations [58,87–89].
We exemplified the technique by revealing the role played by
two-phonon processes in the angulon model in the high-density
regime.

The approach we introduced significantly simplifies the
treatment of orbital quantum impurities and could be naturally
extended to account for more involved physical settings, e.g.,
the interaction of two angulons [11,15,121], or the interaction
of an angulon with an external field [55,56,122], thereby
advancing the comprehension of the angular momentum prop-
erties of quantum many-body systems. In addition, the present
description of the angulon—revolving around the angulon
Green function and providing a framework for its calculation
at higher orders—paves the way to analyze the dynamical
properties of an orbital impurity. There, the diagrammatic
technique is expected to be more accurate compared to the
approach based on the Suzuki-Trotter decomposition of the
time evolution operator [123].

Finally, we stress that the approach we have introduced
can be incorporated into more advanced techniques that can
be developed for the angulon problem, in particular those
involving the analytic inclusion of higher-order terms [116]
or numerical calculations based on diagrammatic Monte
Carlo techniques [124–126]. The latter represent a natural
step forward for the present theory, since the diagrammatic
expansions for the polaron and for the angulon feature a similar
structure [126–128].
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APPENDIX A: ANGULAR MOMENTUM
REPRESENTATION OF ROTATIONALLY-INVARIANT

FUNCTIONS OF TWO ANGLES

Let us consider a function of two angles, f (�,�′),
which depends only on the relative angle γ , i.e. f (�,�′) =
f (γ (�,�′)). Due to rotational invariance, each Green function
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considered in the present paper possesses this property. Then
the spherical harmonics expansion flml′m′ , defined by

flml′m′ =
∫

d�

∫
d�′ Y ∗

lm(�)Yl′m′(�′)f (γ (�,�′)), (A1)

has the following structure:

flml′m′ = flδll′δm,m′ , (A2)

where the functions fl are to be defined below. Let us
demonstrate it by a direct calculation. We start by rotating
the spherical harmonics Yl′m′ (�′) by the angles (0,−θ,−φ).
The spherical harmonics can be expressed in the rotated frame
making use of the Wigner D matrix, as follows [58]

Yl′m′ (�′) =
∑
m′′

Dl′
m′′m′(0,−θ,−φ)Yl′m′′(�′′), (A3)

so that, after rearranging, we get

flml′m′ =
∑
m′′

∫
d� Y ∗

lm(�)Dl′
m′′m′(0,−θ,−φ)

×
∫

d�′′Yl′m′′ (�′′)f (γ (0,�′′)), (A4)

where (with a slight abuse of notation) γ (0,�′′) is the angle
between the north pole and the point on the surface of a sphere
identified by the angle �′′, and clearly γ (�,�′) = γ (0,�′′).
The innermost integral can be readily evaluated using the
standard representation of spherical harmonics in terms of
the Legendre polynomials Pl , giving∫

d�′′ Yl′m′′ (�′′)f (γ (0,�′′)) = fl′

√
2l′ + 1

4π
δm′′0 (A5)

where

fl = 2π

∫ 1

−1
dx Pl(x)f (x), (A6)

with a substitution of x = cos γ . Eq. (A6) defines the expan-
sion of a rotationally-invariant function of two angles in the
angular momentum basis, and will be used throughout the
paper. With this definition, equation (A4) becomes

flml′m′ = fl′

√
2l′ + 1

4π

∫
d� Y ∗

lm(�)Dl′
0m′(0,−θ,−φ), (A7)

from which, using the relation [58]

Dl
0m(−χ,−θ,−φ) =

√
4π

2l + 1
Ylm(θ,φ), (A8)

along with the orthogonality and symmetry properties for
spherical harmonics, we recover Eq. (A2).

APPENDIX B: GREEN FUNCTIONS IN THE ANGULAR
MOMENTUM BASIS

The Green function for a free quantum rotor can be written
as [100,129]

G0(�,�′; t) = −i
∑

n

ψn(�)ψ∗
n (�′)e−iEnt , (B1)

where the index n runs over all the eigenstates En of the
rotor, each one corresponding to a wave function ψn. Before

taking the Fourier transform, we ensure causality by inserting
a step function, which corresponds to calculating a retarded
propagator. We use the following integral representation for
the step function

θ (t) = −
∫

dE′

2π i

e−iE′t

E′ + iδ
, (B2)

where the limit δ → 0+ is implied. The retarded Green
function in frequency representation is then given by

G0(�,�′; ω) =
∫ +∞

−∞
dt eiωt G0(�,�′; t)θ (t). (B3)

After carrying out the integrations we get the Lehmann spectral
representation for the retarded Green function

G0(�,�′; ω) =
∑

n

ψn(�)ψ∗
n (�′)

ω − En + iδ
. (B4)

In the case of a linear rotor, the wave functions ψn are given
by the spherical harmonics with n = {λ,μ}, so that we get:

G0(�,�′; ω) =
∑
λμ

Y ∗
λμ(�)Yλμ(�′)

ω − Bλ(λ + 1) + iδ
. (B5)

The sum over μ can be carried out using the spherical
harmonics addition theorem, obtaining

G0(�,�′; ω) =
∑

λ

2λ + 1

4π

Pλ(cos γ (�,�′))
ω − Bλ(λ + 1) + iδ

, (B6)

where γ (�,�′) is the angle between � and �′. Writing
the result in the angular momentum basis as outlined in
Appendix A, and using the orthogonality of Legendre
polynomials, we obtain:

G0,λ(ω) = 1

ω − Bλ(λ + 1) + iδ.
(B7)

Likewise, we can derive the interaction propagator in the
angular momentum basis, starting from its definition

χ (�,�′; t) = −i
∑

λ

Pλ(cos γ (�,�′))M(t) . (B8)

The calculation for the free case leading from Eq. (16) to
Eq. (B7) is straightforward to adapt to the present case. In a
completely analogous way, taking the Fourier transform and
using the spherical harmonics expansion, we obtain

χλ(ω) =
∑

k

|Uλ(k)|2
ω − ωk + iδ

. (B9)

APPENDIX C: THE CONVOLUTION THEOREM IN THE
ANGULAR MOMENTUM BASIS

The convolution theorem states that the Fourier transform
of a convolution is the product of the Fourier transforms
of every single function entering the convolution. We would
like to find an analogous results for the spherical harmonics
expansion, holding between the spherical basis and the angular
momentum basis. In order to do so we consider the following
‘spherical convolution’:

h(�i,�f ) =
∫

d�′f (�i,�
′)g(�′,�f ) . (C1)
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Again, and crucially, we assume that f and g depend only on
the angle between their arguments, i.e.,

f (�1,�2) = f (γ (�1,�2)), (C2)

and similarly for g. Rotational invariance implies that h should
be a function only of the angle between its arguments as well,
so we can write without loss of generality:

h(�i,�f ) = h(γ (�i,�f )) . (C3)

We start from expanding h in the angular momentum basis,
making use of Eq. (A5)

hl =
√

4π

2l + 1

∫
d� Yl0(�)

∫
d�′ f (γ (0,�′))g(γ (�′,�)).

(C4)
Following the analogy with Appendix A, by inverting the
integration order and rotating the spherical harmonics by the
angle (0,−θ,−φ), we obtain

hl =
√

4π

2l + 1

∑
m

∫
d�′f (γ (0,�′))Dl

m0(0,−θ ′,−φ′)

×
∫

d�′′ Ylm(�′′)g(γ (�′′,0)), (C5)

where the integrals appear decoupled. Making use of Eq. (A5),
the innermost integral is easily seen to be

gl

√
2l + 1

4π
δm0. (C6)

After carrying out the summation over m, the innermost
integral can be evaluated using, again, the techniques in
Appendix A, which gives fl . Combining the results we finally
get

hl = fl gl (C7)

which extends the usual convolution theorem for the Fourier
transform to the case of the spherical harmonics expansion.
The result just found can be readily extended to the ‘spherical
convolution’ of an arbitrary number of rotationally invariant
functions. Introducing the � notation for the convolution in the
spherical basis, Eq. (C7) takes the form

(f � g)l = fl gl. (C8)

Extending by induction, the convolution theorem for n func-
tions reads

(f1 � f2 � . . . � fn)l =
n∏

j=1

(fj )l . (C9)

APPENDIX D: GRAPHICAL REPRESENTATION OF THE
GEOMETRIC TERMS

Let us focus on the resemblance between the rules listed in
Table I and the rules derived within the graphical theory of
angular momentum. Such a similarity paves the way to develop
a formal connection with the diagrammatic theory presented
in this paper and allowing for a great simplification of
otherwise cumbersome calculations. Let us take into account
the ‘geometric’ contributions to the self-energy, as defined in

Section VI, i.e.,



(2,A)geom
λ =

∑
{μi }

(−1)
∑

i μi (−1)λ1+λ2+λ3+λ

×
(

λ λ1 λ2

μ −μ1 −μ2

)(
λ2 λ3 λ4

μ2 −μ3 −μ4

)

×
(

λ1 λ4 λ5

μ1 μ4 −μ5

)(
λ3 λ5 λ

μ3 μ5 −μ

)
(D1)

and



(2,B)geom
λ =

∑
{μi }

(−1)
∑

i μi (−1)λ1+λ2+λ3+λ

×
(

λ λ1 λ2

μ −μ1 −μ2

)(
λ2 λ3 λ4

μ2 −μ3 −μ4

)

×
(

λ3 λ4 λ5

μ3 μ4 −μ5

)(
λ1 λ5 λ

μ1 μ5 −μ

)
(D2)

We rewrite these analytic expressions using the rules of the
graphical theory of angular momentum. In particular, we adopt
the conventions of Ref. [87]. As already noted, the resulting
diagrams have exactly the same topological structure as their
‘parent’ diagrams shown in Fig. 2, provided that the lines
corresponding to the initial and final states are joined and
every interaction line is substituted with a solid line. After
elementary manipulations, these diagrams can be converted
into the diagrams shown in Fig. 6. Finally, using the rules of the
graphical theory of angular momentum [87] we can carry out

Σλ
(2,A)geom = (−1)λ4+λ5 

λ5

λ
3λ 4

λ 1 λ

λ 2

Σλ
(2,B)geom = (−1)λ4+λ5 

λ5

λ2

λ 1 λ

λ
3

λ
4

FIG. 6. The diagrams in Fig. 2 and the corresponding analytic
expressions for the geometric part can be readily mapped onto
diagrams of the graphical theory of angular momentum [87]. These
diagrams encode the geometric aspect of the self-energies and reflect
the conservation of angular momentum. These diagrams still contain
the summations over μi which can be eliminated using graphical
techniques: the upper diagram is simplified by changing the sign
of two nodes, thus reconstructing the 6j symbol, whereas the lower
diagram is simplified making use of the separation technique for
subdiagrams connected by two lines. As a result we arrive at the
noticeably simpler results of Eq. (D3) and Eq. (D4).

085410-12



DIAGRAMMATIC APPROACH TO ORBITAL QUANTUM . . . PHYSICAL REVIEW B 96, 085410 (2017)

the summations over μi . In particular, in the case of 

(2,A)geom
λ

we can modify the orientation of two lines and change the sign
of the negative nodes, obtaining the representation of the 6j

symbol. As a result, we obtain Eq. (41) which we present here
for the sake of completeness:



(2,A)geom
λ = (−1)λ1+λ2+λ3+λ4

2λ + 1

{
λ2 λ1 λ

λ5 λ3 λ4

}
. (D3)

Similarly, in the case of 

(2,B)geom
λ , we need to apply the

graphical rules for the separation of two internal lines, on the λ2

and λ5 lines. The resulting simplified graphical representation
leads to Eq. (42):



(2,B)geom
λ = (−1)λ4+λ5δλ2,λ5

(2λ + 1)(2λ5 + 1)
{λ λ1 λ2}{λ2 λ3 λ4} .

(D4)
Although exemplified with one- and two-loops diagrams, as
for most results of the present paper this connection is valid at
every order in the diagrammatic expansion.
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