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Overcoming nanoscale friction barriers in transition metal dichalcogenides
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We study the atomic contributions to the nanoscale friction in layered MX2 (M = Mo, W; X = S, Se, Te)
transition metal dichalcogenides by combining ab initio techniques with group-theoretical analysis. Starting from
stable atomic configurations, we propose a computational method, named normal-modes transition approximation
(NMTA), to individuate possible sliding paths from only the analysis of the phonon modes of the stable geometry.
The method provides a way to decompose the atomic displacements realizing the layer sliding in terms of phonon
modes of the stable structure, so as to guide the selection and tuning of specific atomic motions promoting MX2

sheets gliding, and to adjust the corresponding energy barrier. The present results show that main contributions to
the nanoscale friction are due to few low frequency phonon modes, corresponding to rigid shifts of MX2 layers.
We also provide further evidences that a previously reported Ti-doped MoS2 phase is a promising candidate as
new material with enhanced tribologic properties. The NMTA approach can be exploited to tune the energetic
and the structural features of specific phonon modes, and, thanks to its general formulation, can also be applied
to any solid state system, irrespective of the chemical composition and structural topology.
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I. INTRODUCTION

Two-dimensional layer materials have been studied for
decades thanks to their peculiar chemical and physical
properties. Since graphene has recently been successfully
prepared and characterized [1], its properties have been
explored so extensively that research on pristine graphene
has already reached its climax, and further developments
on graphene-derived compounds are more complex and thus
expected at a slower pace. Transition metal dichalcogenides
(TMDs) are a promising alternative to graphene, thanks to their
versatile mechanical and electronic properties. The simple
stoichiometry of TMDs (MX2, where M is a transition metal
with formal charge +4 and X is a chalcogen of group VIA—S,
Se, Te) and their lamellar geometry can be promptly adjusted to
build a vast variety of van der Waals heterostructures [2], with
diverse electronic [3], chemical [4], and mechanical properties
[5]. In the present work we will focus on the latter, in particular
on the atomic contributions to nanoscale friction.

One of the main difficulties in understanding and predicting
frictional response is the intrinsic complexity of highly
nonequilibrium processes in any tribological contact, which
includes the breaking and formation of multiple interatomic
bonds between surfaces in relative motion. Understanding the
physical nature of these instabilities is crucial to properly
describe friction mechanisms. Current ab initio studies al-
ready present in the literature describe the atomic origin of
tribological properties in terms of energy landscape variations
as a function of geometric parameters, e.g., reciprocal position
and orientation of two subsequent MX2 layers [6,7]. In our
previous works on the nanoscale friction in MX2 TMDs
[8–10], we already observed that few low frequency phonon
modes are directly related to the sliding of adjacent layers.
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Such modes correspond to pure rigid layer translations or
layer shifts combined with intralayer motions, like stretching
and/or bending of atomic bonds, or flattening of coordination
polyhedra; finally, based on considerations on the properties
of the stable geometry, we argued that the intrinsic friction can
be adjusted by a fine control of such modes.

Here we extend our previous work in a substantial way by
studying possible potential energy barriers related to the layer
sliding in MX2 TMDs, choosing M = Mo, W and X = S,
Se, Te. To this aim, we formulate a computational protocol,
that we call normal-modes transition approximation (NMTA),
which allows us to: (i) find a reasonable guess of possible
sliding paths, and (ii) approximate the atomic displacements
realizing each path with a combination of phonon modes, in
order to promote the sliding and/or tune the related energy
barrier. With the expression sliding path we refer to the
sequence of geometric transformations which describes the
relative parallel shift of two subsequent MX2 layers. An
energy barrier is associated with a specific sliding path; such a
barrier corresponds to the adiabatic contribution to the intrinsic
friction hindering the layer gliding. The proposed method
requires only the knowledge of the frequencies and displace-
ment patterns forming the complete set of the phonon modes
of the stable geometry. The estimation of the sliding path
obtained with such an approach is then optimized by means
of standard techniques [11,12]. The optimized geometric path
and the relative energy profile are then decomposed in terms
of phonon modes of the reference stable structure. In this
way we obtain information on which are the atomic motions
responsible for the layer sliding (transition path) and which
are the electronic and structural features that we have to finely
manipulate in order to facilitate the layer sliding, that is to
lower the sliding energy barrier. In detail, we identify the
main contributions to the intrinsic friction with specific few
low frequency phonon modes; moreover, we provide further
evidences that a particular Ti-doped MoS2 phase previously
identified [8], is a promising candidate as a novel material
with improved frictional properties. Thanks to its general
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formulation, we expect that the NMTA method can be extended
to the study of transition paths and barrier in a vast variety of
solid state systems, irrespective of their chemical composition
or atomic geometry.

The paper is structured in the following way. We first
discuss the technical aspects of the NMTA approach; then
we show how the method works and which information it can
provide. We finally use the NMTA to individuate and study a
possible sliding path in the selected MX2 TMDs, discussing
which are the features relevant to the layer sliding, and how
to harness them to reduce friction in nanoscale TMD-based
materials.

II. THE NORMAL-MODES TRANSITION
APPROXIMATION METHOD

In the harmonic approximation we can write the potential
energy E of the system as a sum of Ek contributions each
coming from a single phonon mode k as [13]

E =
∑

k

Ek(ζk) =
∑

k

1

2
ω2

kζ
2
k , (1)

where Ek is a function of the normal coordinate ζk . Following
the standard definition of normal modes [13], ζk is a sinusoidal
function of the time t with amplitude Ck and associated
frequency ωk:

ζk(t) = Ck sin (ωkt + δk), (2)

where δk is the phase determined by the initial conditions.
Given a specific phonon mode k, the relation between the ith
Cartesian displacement ηi and the normal coordinate ζk is

ηi = aikζk, (3)

where {aik} is the matrix defining the transformation from
Cartesian to normal coordinates; the kth phonon mode thus
represents a synchronous displacement of all the atoms at the
corresponding frequency ωk (see the Supplemental Material
[14]).

Let us focus our attention on an arbitrary mode k and
consider arbitrary values of the normal coordinate ζk . From
now on we will consider only those ζk value ranges for
which the energy Ek of the k mode remains bounded,
varying as a continuous function between an upper (Emax

k )
and a lower (Emin

k ) limit (−∞ < Emin
k � Ek � Emax

k < +∞);
mathematical derivation of what follows is discussed in more
detail in the Supplemental Material [14]. Let us regard the
normal coordinate ζk as a configurational coordinate. At the
stable state, ζk = ζ0 and Ek(ζ0) = Emin

k ; for simplicity, we can
set ζ0 = 0 and Emin

k = 0. Along the ζk coordinate, the energy
Ek is bounded by hypothesis thanks to the assumption we made
above; then there exists ζ tr

k > ζ0 such that Ek(ζ tr
k ) = Emax

k ≡
Etr

k is the only energy maximum in [ζ0,ζ
tr
k ]. In such range we

can approximate the potential energy Ek of a single k mode
with a Fourier series truncated at the first term as

Ek(ζk) = 1

4
ω2

kC
2
k

[
1 − cos

(
π

Ck

ζk

)]
(4)

being the hypotheses required by the Fourier theorem satisfied
thanks to our assumptions on the Ek(ζk) function.

The geometric configuration ζk = ζ tr
k , at which the maxi-

mum of the energy is realized, can then be regarded as the
closest transition state to the stable state ζ0 along the ζk con-
figurational coordinate. The [ζ0,ζ

tr
k ] range, which corresponds

to that part of the path along the k mode connecting the stable
state ζ0 to the closest transition state ζ tr

k , is the transition path
along which the transition from ζ0 to ζ tr

k is realized. Moreover,
since we assumed that Ek(ζ tr

k ) is the only maximum in [ζ0,ζ
tr
k ],

no metastable states are present between the stable and the
closest transition state.

By comparing Eq. (1) with Eq. (2), and in agreement with
Eq. (4), we see that the energy Etr

k of the transition state

Etr
k = 1

2ω2
k

(
ζ tr
k

)2 = 1
2ω2

k

(
C tr

k

)2
(5)

is proportional to the square of the product between an
electronic and a geometric factor: (i) ωk , the frequency
associated to the k mode, which depends on the electronic
features of the atomic types; and (ii) ζ tr

k ≡ Ck , the normal
coordinate value at which the transition is realized, which
depends on the geometric features of the system and coincides
with the maximum amplitude of the normal coordinate ζk .
The smaller the frequency of the mode, the smaller the energy
needed by the system to undergo a transformation from the
stable configuration to the transition state. Leaving unaltered
the atomic topology, the frequency of the mode can be tuned
by changing specific atomic types present in the structure.
The selection of suitable atomic types can be done by means
of electrostructural descriptors like the cophonicity metric
[8–10]. By substituting specific atomic sites with suitable
atomic species, it is therefore possible to tune the energy
barrier. Moreover, the transition state can be identified by
inspecting how the stable geometry varies by varying the
amplitude ζk; in practice, the transition state can be numerically
evaluated by imposing that the interatomic distances fall in a
specific range at varying ζk . At the transition ζ tr

k , the ratios
among the atomic displacements define a relation among the
atomic positions that can be exploited to estimate the transition
state in any system with the same atomic topology but with
different chemistry; it is the case, for example, of the �(4) rigid
sliding mode in hexagonal P 63/mmc MX2 TMDs, which we
analyze later on in the present study.

Along a general configurational coordinate ζ , the total po-
tential energy E can be approximated as a sum of contributions
from all the K normal modes, by expressing Ek in a more
general form than that shown in Eq. (4):

E(ζ ) =
K∑

k=1

1

4
ω2

kC
2
k

[
1 − cos

(
π

Ck

ζ − θk

)]
, (6)

where some (or all) of the Ck amplitudes and θk phases can be
correlated if the modes are coupled along ζ .

Approximation done in Eq. (4) is reliable only if, along the
[ζ0,ζ

tr
k ] transition path, the frequency of all the other modes

vary within a small range. The wider such range, the more
important the contribution of the other modes to the potential
energy along the selected mode [14]; in that case, the modes
are coupled and the expression for Ek must take into account
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any deviation from the harmonicity:

Ek(ζk) = 1

4
ω2

kC
2
k

[
1 − cos

(
π

Ck

ζk

)]

+ f [ζk,ωj ,Cj (Ck); ∀j �= k], (7)

where f [ζk,ωj ,Cj (Ck); ∀j �= k] is a function of the amplitudes
and the frequencies of all the modes other than k, and each
amplitude Cj of the j th mode is a function of the Ck amplitude
of the mode k. Using Eq. (6), the correction f can be
approximated as

f [ζk,ωj ,Cj (Ck); j �= k]

≈
∑
j �=k

1

4
ω2

jC
2
j

[
1 − cos

(
π

Cj

ζk − θj

)]
, (8)

which represents the anharmonic contribution to the k mode.
Each ζk normal coordinate can thus be followed to look

for possible transition states. In this respect, the complete
set of normal modes constitutes a finite number of possible
routes to explore the energy landscape in a systematic way.
In the practice, a specific k mode is first selected, and
the transition path is initially estimated using intermediate
geometries connecting the stable and the transition state
along the ζk coordinate. Subsequently, such geometries can
be eventually modified by inducing atomic displacements
according to the distortion patterns of modes other than the
selected one, in order to capture different subtle and interesting
features of the transition. The corresponding total potential
energy is thus built as a linear superposition of all the modes
considered in the transition: such superposition corresponds
to the approximation done in Eq. (6), in which only the
modes participating to the transition will have non-null Ck

amplitudes. To explore all the possible transition paths, we
then consider the entire set of the k modes, select one at a
time, and build the transition path by considering other modes
that, eventually, participate to the transition. It is worthy to
note here that the individuation of possible transition paths
can be performed by a numerical evaluation of geometries that
requires the knowledge of only the displacement patterns of the
phonon modes: once the phonon modes of the stable state have
been calculated, the estimation of possible transition paths can
be computed within a few minutes of wallclock time on an
ordinary desktop computer. Moreover, despite the number of
linear superpositions to consider could be high, such a number
is still a finite quantity completely defined by the complete set
of normal modes. This aspect of the NMTA method drastically
reduces the effort to look for possible transition states of a given
system, providing a systematic prescription to build possible
transition paths.

Once the estimation of the transition path is built and
then optimized by means of numerical techniques [11,12],
Eq. (6) can be used to deconvolute the calculated energy profile
into contributions of single modes. By comparing the Ck

amplitudes it is possible to identify which is the mode that leads
the geometric transition: the higher the Ck value is, the higher
the atomic displacement induced by the k mode. Equation (6)
thus constitutes a tool to identify how each mode contributes to
the advancement of transitions, providing a route to finely tune

reaction barriers through the adjustment of the characteristics
(frequency and displacements) of single phonon modes.

III. RESULTS AND DISCUSSION

In the following sections we will show how the NMTA
method is used to estimate a possible sliding path in the
selected MX2 systems, to tune the properties of single phonon
modes, and how these are related to the sliding potential
energy barrier. The technical details of the calculations are
reported in the Supplemental Material [15]. We also analyze
two case studies, the inversion of the ammonia molecule and
the HCN → CNH isomerization reaction of the hydrogen
cyanide molecule, in order to show how to individuate a
possible transition path from the coupling of multiple phonon
modes and how to evaluate their contribution to the transition
rate constant. However, we report such discussion in the
Supplemental Material [19], while here we will focus on layer
shifts in transition metal dichalcogenides.

A. The rigid shift of subsequent layers in M X2

transition metal dichalcogenides

We consider the bulk structure of MX2 transition metal
dichalcogenides, with M = Mo, W and X = S, Se, Te,
together with the Mo3TiS8 system which we reported in our
previous studies [8,9]; for simplicity, we will refer to them as
MX and Ti:MoS, respectively. We will here use the NMTA
method to individuate a possible transition path starting from
one vibrational mode of the ground phase. As an example, we
select the �(4) phonon mode, corresponding to rigid sliding
of subsequent layers (see the Supplemental Material [19]).
We build the transition path along the ζ�(4) configurational
coordinate in this way: the first structure of the path is the
ground state configuration ζ0; we then build the path sequence
by distorting ζ0 using gradually increasing values of ζ�(4). This
can be done either by inspecting the displacement vectors
of the k mode and modifying the equilibrium coordinates
accordingly by hand, or by using tools like ISODISTORT [16] or
the BILBAO crystallographic server [17,18]. We then calculate
the energy of the considered geometries, in order to estimate
the corresponding energy profile [19]. Inspecting Fig. 1, it is
immediately apparent that the energy expression in Eq. (4)
is a very good approximation of the calculated values. To
check if the �(4) mode is coupled with other normal modes,
we calculate the phonon band structure along a standard [20]
linear path joining the high-symmetry points of the irreducible
Brillouin zone (IBZ) at each of the considered ζ�(4) amplitudes.
We want to stress here that a standard phonon-phonon
coupling calculation would not provide enough information
for our purposes, since it is performed considering small
displacements about the stable configuration, while we are
considering geometries far from the equilibrium. We find that,
in the MoSe, MoTe, and Ti:MoS systems, the frequency values
of the modes calculated at the high symmetry points of the IBZ
display a similar trend at increasing ζ�(4) amplitudes, hence
affecting the E�(4) values in the same way. For this reason, we
can compare the corresponding maximum energy values Etr

�(4)

among those realized at similar ζ tr
�(4) amplitudes (Table I); we

can appreciate that the energy of the transition state ζ tr
�(4) is
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FIG. 1. Calculated energy values (symbols) of the considered
compounds along the ζ�(4) configurational coordinate, corresponding
to the �(4) vibrational mode. The top and the bottom x axis are the
reference for the MX and Ti:MoS systems, respectively. Each solid
line represents the best fit of the corresponding data set by means of
Eq. (4).

smaller when the corresponding frequency is lower, in good
agreement with Eq. (5). The same argument applies to the
WS, WSe, and WTe systems. We finally note that the MoS
system is the only one for which some frequencies, different
from ω�(4), vary within a range wider than what we observe
in the remaining systems. This means that in the MoS system,
the contribution to E�(4) from such modes, corresponding
to the correction term f in Eq. (7), cannot be neglected,
and comparison with the other systems is not trivial. This
result indicates that �(4) is strongly coupled with all those
modes whose frequency varies along the [ζ0,ζ

tr
�(4)] path. In

this respect, we can state that the harmonic approximation is
valid not only for small displacements about the equilibrium

TABLE I. Calculated mode amplitude ζ tr
�(4) (a.u.) and corre-

sponding energy maximum Etr
�(4) (eV/f.u.), frequency ω�(4) (cm−1),

and cophonicity Cph(M-X) (cm−1) of each of the considered TMD
chemistries. ζ tr

�(4) and Etr
�(4) values are extracted from the fitting

functions shown in Fig. 1, while ω�(4) and Cph(M-X) values have
been calculated using the stable configuration of the corresponding
compound.

System ζ tr
�(4) Etr

�(4) ω�(4) Cph(M-X)

MoS 0.22 0.25 30 0.009
MoSe 0.18 0.10 28 −0.034
MoTe 0.16 0.16 30 −0.066
WS 0.19 0.29 26 0.046
WSe 0.17 0.21 24 0.024
WTe 0.15 0.21 22 −0.029
Ti:MoS 0.63 0.02 22 −0.005

FIG. 2. Energy of the transition state (a) and corresponding ζ tr
�(4)

mode amplitude (b) of each considered compound as a function of the
M-X pair cophonicity. Cophonicity values close to zero realize the
minimum energy barrier and the maximum amplitude displacement.
Lines are guides for the eye.

position, but also for any displacement magnitude and pattern
for which the modes can be considered uncoupled.

We now want to relate the maximum energy values Etr
�(4)

to the dynamical features of the system in the stable geometry.
To do this, using the stable configuration, we calculate the
cophonicity [8] Cph(M-X) of the M-X pair in the frequency
range [0,35] cm−1, corresponding to the frequency range
of the �(4) mode common to all the considered chemical
compositions; we then relate the energy maximum to the
calculated M-X pair cophonicity. We exclude the MoS system
from the present analysis, due to non-negligible coupling
effects we refer above. We observe that the lowest Etr

�(4)

value is realized when Cph(M-X) ≈ 0.0 cm−1 [Table I and
Fig. 2(a)], that also realizes the maximum ζ�(4) amplitude
among the considered compounds [Fig. 2(b)]. The cophonicity
of the M-X pair can thus be exploited as a knob to adjust the
frequency of a mode, the energy of the related transition state,
and the amount of distortion amplitude needed to build such
transition configuration starting from the stable geometry.

We now extend our exploration of the transition path along
the selected �(4) mode beyond the corresponding transition
state ζ tr

�(4). According to Eq. (4), the closest minimum beyond
the transition state is located at ζ�(4) = ζ ∗

�(4) > ζ tr
�(4); thus the

corresponding energy E�(4)(ζ ∗
�(4)) is null, as it is for the stable

position ζ0. Indeed, irrespective of the eventual coupling with
other modes, the assumption that the closest minimum is
located at ζ�(4) = ζ ∗

�(4) does not necessarily implies that the
actual energy value E�(4)(ζ ∗

�(4)) is the same of that pertaining
the stable configuration, from which the mode �(4) has been
calculated. This occurs because, in general, the displacement
pattern of a k mode is not a periodic function of the mode
amplitude. However, if Eq. (4) is a good approximation of the
energy profile in [ζ0,ζ

tr
k ], as it is the case of k = �(4) mode

in the examined TMD systems, the magnitude of the energy
curvature takes very close values at both ζ0 and ζ tr

k ; that is,
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FIG. 3. Blue dots: Computed energy values of the WSe system
along the ζ�(4) configurational coordinate; solid blue line is a guide
for the eye. Dashed red line: Fit of the computed values by means of
Eq. (4) in the range [ζ0,ζ

tr
�(4)]. The position of the energy minimum

ζ 1
�(4) > ζ tr

�(4), obtained from the calculated data, is very close to ζ ∗
�(4),

the latter obtained as an approximation of ζ 1
�(4) by means of Eq. (4).

the energy minimum, used to calculate the phonon spectrum,
and its closest maximum show similar energy curvature values
along the selected k mode. Considering the geometry at ζ ∗

�(4)
as the starting stable configuration, we can then be confident
that the energy curvature at ζ ∗

�(4) (energy minimum) and at
ζ tr
�(4) (closest energy maximum) will be similar; this implies

that both ζ0 and ζ ∗
�(4) configurations have similar ω�(4) values.

Equation (4) is then a plausible approximation of the entire
transition path ζ0 → ζ tr

�(4) → ζ 1
�(4) connecting the stable state

ζ0 with the final state ζ 1
�(4). As an example, we here consider

the transition path ζ0 → ζ 1
�(4) for the WSe compound along

the �(4) mode. By inspecting Fig. 3, we can appreciate that
the position ζ 1

�(4) of the computed energy minimum E1
�(4) and

the position ζ ∗
�(4) of the minimum extrapolated from Eq. (4)

are very close.
According to the presented results, we have been able to

individuate a possible transition (layer shift) that the examined
TMDs can undergo by exploiting the knowledge of only one
phonon mode.

B. Layer sliding in M X2 transition metal dichalcogenides

We now consider again the MX2 and Ti:MoS bulk struc-
tures discussed in Sec. III A, and apply the NMTA method
to study the energetics of one of the possible layer sliding
paths. To build a possible guess for the path, we select
the low frequency �(4–6) and A(1–6) modes, representing
layer sliding [�(4–5), A(1–4)] and interlayer distance reduc-
tion/elongation along a direction orthogonal to the layer plane
[�(6) and A(5–6), also known as flexural modes]; we already
pointed at such modes to be related to the layer sliding by
means of geometric considerations [8–10]. For each of the
six considered chemistries, we build the guess for a possible
ζ0 → ζ1 sliding path by starting from the optimized geometry
(ζ0 ≡ ζ = 0) and overlapping the distortion pattern of the
selected �(4–6) and A(1–6) modes at different amplitudes
(Fig. 4). We then fully relax the [ζ0,ζ1] path using the
NEB method, without imposing any constraint on the atomic
positions.

FIG. 4. Schematic representation of the ζ0 → ζ1 sliding path,
showing only one intermediate configuration as an example. For MX

systems (a), only one sliding path has been considered, while for the
Ti:MoS system (b) and (c), two distinct sliding paths have been built.
In (b), at ζ = ζ1, Ti atoms belonging to different layers are aligned
along the ĉ direction. In (c), at ζ = ζ1, Ti atoms belonging to one
layer are aligned with Mo atoms belonging to adjacent layers along
the ĉ direction.

To quantify the evolution of the structural distortions along
the sliding path, we perform a group-theoretical analysis of
each geometry by decomposing the NEB-optimized structures
into irreducible representations of the reference geometry at
ζ = 0, aided by the ISODISTORT [16] software. Irrespective
of the chemical composition, we observe that the unit cell
volume is not constant along the sliding path; moreover,
interestingly, we find that the atomic displacement patterns
leading the layer sliding can be ascribed to the �(4–5) and
�(6) modes, representing rigid layer shifts, while intralayer
motions have negligible contributions. Following these results,
we approximate the calculated energy profiles by means of
Eq. (6), in which we set k = �(4–5), �(6) (Fig. 5). We first
observe that the Ti:MoS system shows the lowest potential
energy barrier along the individuated sliding path; moreover,
low ζ tr structural distortion amplitudes realize low Etr energy
maximum values [Fig. 6(a)]. Irrespective of the atomic type,
the �(4–5) degenerate modes prevail on the �(6) one, being the
C�(4–5) amplitudes the main contributions to ζ tr. The energy
barrier can thus be lowered by selecting the atomic types
that minimize the C�(4–5) amplitudes needed to realize the
energy maximum. To this aim, we relate the ζ tr amplitude
to the M-X pair cophonicity (Table I) corresponding to
the �(4–5) modes [Fig. 6(b)]. We observe that the lowest
ζ tr value is realized when Cph(M-X) ≈ 0.0 cm−1; this cor-
responds to the Ti:MoS system, which is the one showing
the lowest energy barrier to overcome in order to realize the
individuated ζ0 → ζ1 sliding displacement. In this respect, the
M-X pair cophonicity can be exploited to select the proper
atomic type in order to adjust the energy barrier of specific
sliding paths.

085406-5



ANTONIO CAMMARATA AND TOMAS POLCAR PHYSICAL REVIEW B 96, 085406 (2017)

FIG. 5. Energy profile along the configurational coordinate rep-
resenting the overlap of the �(4–5) and �(6) modes. The entire path
has been split into two parts in order to account for the asymmetric
profile of the energy barrier about the transition state. Filled symbols
represent the calculated data while the solid line is the best fit by
means of Eq. (6) with �(4–6), �(6). Data labeled as “Ti:MoS p1” and
“Ti:MoS p2” correspond to the paths depicted in Figs. 4(b) and 4(c),
respectively.

These results show that, along the selected sliding path, the
sliding barrier is mainly due to the displacement pattern of
the low frequency �(4–5) degenerate modes, corresponding
to parallel rigid shifts of subsequent MX2 layers, while other
atomic displacements play a minor role. More sliding paths,
other than the ζ0 → ζ1 just discussed, can be individuated
by combining other distortion modes at different amplitudes;

FIG. 6. (a) Energy maximum values, extracted from data shown
in Fig. 5, as a function of the corresponding ζ tr distortion amplitude:
low sliding barriers are realized at small structural distortions, the
latter obtained (b) by selecting the atomic type in such a way that the
M-X cophonicity is close to zero. Lines are guides for the eye.

each guess can then be optimized and decomposed into mode
contributions following the NMTA prescription as discussed
above, and the resulting barrier finely adjusted by a proper
selection of the atomic type. Indeed, this is one of the
main future directions of the present work, expanding, in a
systematic way, our investigation on the atomic contributions
to the nanoscale friction. The present outcomes finally provide
further evidences that our previously reported Ti-doped MoS2

phase is a promising candidate as a new material with enhanced
tribologic properties.

IV. CONCLUSIONS

We studied the atomic contributions to the nanoscale fric-
tion in layered transition metal dichalcogenides by combining
group-theory analysis with ab initio techniques. To this aim,
we formulated a method, named normal-modes transition
approximation which allowed us to individuate a possible
sliding path starting from a stable geometric configuration, by
means of the computation of only the phonon spectrum of the
stable system. Each displacement pattern relative to specific
phonon modes is regarded as a configurational coordinate;
possible transition paths can be built by considering linear
combinations of such configurational coordinates.

We find that the system energy along such coordinates
can be approximated by sinusoidal functions of the mode
frequency and amplitude; accordingly, energy barriers are
functions of the mode frequency and the amount of distortion
amplitude needed to build the transition state. By changing
the frequency, it is possible to tune the energy barrier and the
transition state geometry. In turn, the mode frequency can be
tuned by means of electrostructural descriptors.

We apply the normal-modes transition approximation
method to the study of the layer sliding of selected TMD
systems. We find that, irrespective of the chemical compo-
sition, the atomic displacement pattern leading the sliding
motion can be ascribed to the �(4–6) modes, corresponding
to rigid shifts of subsequent layers, while other distortions
play a negligible role. Accordingly, lower sliding energy
barriers are realized when the cophonicity calculated about
the �(4–5) modes is close to zero; such condition also realizes
the minimum sliding mode amplitude among the considered
systems. These outcomes further support our suggestion on a
previously reported Ti-doped MoS2 phase, as promising novel
material with improved frictional properties. Following the
NMTA prescription, we will extend our exploration on the
nanoscale friction to different MX2-derived systems as future
works.

We also considered two case studies, namely the inversion
of the ammonia molecule and the isomerization of the
hydrogen cyanide, in order to show how the NMTA method is
able to decompose energy barriers and reaction rates in terms
of normal modes that cooperate to produce the transition path.
We find that the energy barrier of the ammonia inversion can
be described by the coupling of the stretching and bending
mode, the latter leading the geometric advancement of the
transition and giving the highest contribution to the transition
rate. Concerning the HCN → CNH isomerization, we observe
that the reaction is initiated by the cooperation of the bending
and asymmetric bond stretching modes, while the reverse
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reaction is led by the coupling of the two stretching modes
of the CNH stable isomer. These last results show that the
NMTA method also provides information on which phonon
modes must be mainly excited to initiate and lead a specific
transition.

The normal-modes transition approximation method is then
able to individuate possible transition paths to be used as guess
to calculate the minimum energy path by using rare-event
sampling methods. It can serve as a support to experimental
methods to determine transition states from characteristic
patterns in frequency-domain spectra [21–24]. The method
can also be used to tune the energetic and the structural
features of specific phonon modes in materials where the
electron-phonon coupling plays a fundamental role in the
system response to external stimuli, like in electronic or optical
device applications [25–29], or in energy production/storage
materials [30–33]. Finally, the method can be exploited to
guide the deconvolution of vibrational spectra and to study
the phonon-phonon coupling in a broad variety of applications
[34–38].
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