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Valley and spin splittings in PbSe nanowires
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We use an empirical tight-binding approach to calculate electron and hole states in [111]-grown PbSe nanowires.
We show that the valley-orbit and spin-orbit splittings are very sensitive to the atomic arrangement within the
nanowire elementary cell and differ for [111] nanowires with microscopic D3d , C2h, and D3 symmetries. For the
nanowire diameter below 4 nm the valley-orbit splittings become comparable with the confinement energies and
the k · p method is inapplicable. Nanowires with the D3 point symmetry having no inversion center exhibit giant
spin splitting E = αkz, linear in one-dimensional wave vector kz, with the constant α up to 1 eV Å.
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I. INTRODUCTION

Lead chalcogenide nanostructures are widely used for
optoelectronics applications, including infrared detectors [1],
solar cells [2,3], and light emitting diodes [4,5]. Most of the
works are devoted to zero-dimensional nanocrystals [1–6].
However, quasi-one-dimensional lead chalcogenide nanowires
(NWs) and nanorods are offering more flexibility. In particular,
enhanced multiple exciton generation efficiency [7–10] and
suppressed Auger recombination rates [11–13] have been
experimentally demonstrated in PbSe NWs. PbSe NWs can
be grown using methods of colloidal chemistry [14–19]. The
approach based on the oriented attachment of PbSe nanocrys-
tals [15] enables controllable growth of NWs along the [100],
[110] and [111] axes with straight, zigzag, helical, branched,
and tapered shape. Growth of high-quality monocrystalline
PbSe [100] nanorods with homogeneous size distributions
using a catalyst-free, one-pot, solution chemistry method has
been reported in Refs. [16,17]. This technique offers control
over the nanorod aspect ratio in the range from 1–16 [18,19].
The energy spectrum of the nanowires can be probed optically
[17,20–22]. Simple stationary linear absorption spectroscopy
easily probes the effect of the nanorod size [21] and aspect ratio
[18] on the fundamental energy gap. More detailed information
might be accessible using the nonlinear and transient optical
setups [22,23].

While the basics of the electron structure of the nanowires is
well understood, the valley structure of the states has not been
fully investigated. The multivalley band structure represents a
challenge for the modeling, as one has to deal with electronic
states, originating from different valleys, whose degeneracies
are very sensitive to the microscopic properties and symmetry
of a nanostructure. The symmetry of a nanowire made of a
crystalline material with the rocksalt crystal lattice, having
band extrema in four L points of the Brillouin zone, is
determined by several major factors.

The first of these factors is the nanowire growth direction.
In most theoretical papers [20,24], NWs grown along the
two high-symmetry directions, [100] and [111], are consid-
ered. Theoretical works based on the effective mass method
[20,25,26] treat the valleys as independent. However, if
the valley mass anisotropy is taken into account [20], this
description becomes sensitive to the growth direction. In the
absence of intervalley coupling, the electronic states in [100]
NWs remain fourfold valley degenerate while in [111] NWs

the longitudinal [111] valley state becomes split off by the
effective mass anisotropy.

The second factor is the shape of the NW cross section. For
a theoretical model, it is natural to choose it in such a way
that it does not reduce the overall symmetry of the nanowire.
The simplest choice is the shape, which is as close to a circle
as possible. The presence of the NW surface leads to mixing
of the valley states (intervalley coupling), which results in
energy splittings [27–32]. The structure of electron energy
levels resulting from the valley splittings may be determined
from the overall nanowire symmetry, which is the combination
of the Oh symmetry of the crystal lattice and the symmetry of
the NW structure potential. The effective mass method may
be extended to account for the valley degree of freedom, so
that it can be used to predict the degeneracies of resulting
energy eigenstates and their transformation properties. Such
an extension of the effective mass method and symmetry
analysis of the intervalley coupling is one of the aims of
the present paper. However, a full quantitative analysis of the
intervalley coupling requires computational methods capable
of accounting for the atomistic structure of the nanowire.
Below we employ the empirical tight-binding method to
perform such an analysis. This method has proved to be
effective in the description of the intervalley coupling in
lead chalcogenide nanocrystal quantum dots [33] and in
nanowires with a rectangular cross section [24]. Contrary to
ab initio techniques [34,35], that are as yet limited to the
NWs thinner than 30 Å [34,35], the tight-binding method can
easily handle NWs with large diameters. An empirical tight-
binding description also naturally accounts for the relativistic
nature of Pb atoms that induces strong spin-orbit interaction,
representing a challenge for the ab initio approaches [36,37].

Even when the nanowire growth direction and the shape of
its cross section are chosen, the symmetry of the nanowire is
not fully determined. For a nanowire with a cylindrical shape,
the position of the axis of this cylinder within a unit cell of
a bulk semiconductor is yet to be specified. It turns out that
not only is the intervalley coupling sensitive to the choice
of this position, but entirely new physical consequences such
as appearance of spin-dependent splittings of nanowire energy
levels can also result. From this point of view, the [111]-grown
NWs appear to be more interesting, and we will restrict our
consideration to these NWs. Analysis of the [100]-grown NWs
is a topic for future research.
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The paper is organized as follows. In Sec. II we describe
the system and explain the microscopic symmetry of the NWs.
In Sec. III we describe the extension of the effective mass
method that takes into account combinations of the valley
states. We formally consider an ideal cylindrical nanowire,
but restrict ourselves to the symmetry operations of the true
nanowire symmetry group specified in Sec. II. This allows us to
predict the degeneracies of eigenenergies and transformation
properties of eigenfunctions resulting from the valley-orbit and
spin-orbit splittings. In Sec. IV we explain the tight-binding
approach and its application to lead chalcogenides NWs. We
describe a technique for detailed analysis of the tight-binding
wave functions in both real and reciprocal spaces. In Sec. V
we discuss the results of the tight-binding calculations and
compare them with the effective mass consideration. In Sec. VI
the conclusions are drawn.

II. WIRE STRUCTURE IN REAL AND RECIPROCAL
SPACES

In this section we analyze the possible microscopic symme-
tries of the PbSe nanowires grown along the [111] direction.
Bulk PbSe has the rocksalt (fcc) crystal lattice with the Oh

point group. An elementary cell of a NW grown along [111]
direction contains three Pb and three Se (111) atomic layers, as
shown in Fig. 1. NWs have one-dimensional (1D) periodicity
along the growth direction characterized by the translational
vector

T = a(1,1,1), (1)

where a is the PbSe lattice constant. A nanowire is carved
out of the bulk crystal along a cylindrical surface with an axis
parallel to the [111] direction. Some possible arrangements
of atoms in the elementary cells of resulting nanowires are
shown in Fig. 1. They differ by the position of the NW axis

with respect to the unit cell of a bulk crystal leading to different
point symmetries of the resulting NWs. In particular, Fig. 1
shows three typical NWs with the center axis passing through
the atom [D3d , Fig. 1(a)], between atoms [D3, Fig. 1(b)] or
through the middle of a chemical bond [C2h, Fig. 1(c)]. In
the case of the D3d NWs we choose the inversion center at the
(0,0,0) cation. For the C2h NWs, the inversion center is chosen
at a( 1

2 , 1
4 , 1

4 ). Note that the crystallographic coordinate system
is used only to define NW directions, their inversion centers,
and reciprocal lattice vectors. Below we use the coordinate
system with the following axes:

x ‖ [1̄10], y ‖ [1̄1̄2], z ‖ [111] (2)

and, for the D3d and C2h NWs, the origin of this coordinate
system is set to the inversion center.

Now we discuss the relations between the one-dimensional
reciprocal space of a nanowire and the three-dimensional
reciprocal space of the parent bulk material. The conduction
band minima and valence band maxima in bulk lead chalco-
genides are located in the four inequivalent L valleys. The first
Brillouin zone is schematically shown in Fig. 1(d). The point
group of the wave vector in each L valley is D3d with its C3

axis directed along the valley. Four valleys Lν correspond to
the wave vectors kν (ν = 0,1,2,3), which we choose as

k0 = π

a
(1, 1, 1), k1 = π

a
(−1, − 1, 1),

k2 = π

a
(1, − 1, − 1), k3 = π

a
(−1, 1, − 1). (3)

We also choose the basis vectors of the bulk reciprocal
lattice as

b1 = −2k3, b2 = −2k1, b3 = −2k2. (4)

In the one-dimensional reciprocal space of a nanowire, the
quantum-confined states, originating from the electron and
hole states at the L points in the 3D bulk Brillouin zone,
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FIG. 1. (a)–(c) show elementary cells of three smallest NWs with the point group symmetry D3d , D3, and C2h, respectively. Cations (Pb)
are shown by red dots, and anions (Se) by blue dots. Color arrows (RGB for XYZ) indicate the crystallographic coordinate system with the
origin at the point (0,0,0). Inversion center of the D3d NW is at the (0,0,0) cation, while in the C2h NW the inversion center is chosen at the
a( 1

2 , 1
4 , 1

4 ) point in the crystallographic coordinate system. Three auxiliary axes x ‖ [1̄10], x ′ ‖ [01̄1], x ′′ ‖ [101̄] are shown in (c). (d) shows
the bulk PbSe Brillouin zone. Wave vectors ki (3) are shown as black arrows. The colored cross sections are formed by (111) planes, which
pass through the points k1, − k1, k0. Projections of these vectors to the [111] axis are indicated by tick marks on the [111] axis.
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are located at the projections of the kν onto the wire one-
dimensional Brillouin zone defined by the vector

bk = 2π

|T |
1√
3

(1,1,1), (5)

whose length bk = 2π/a
√

3 is three times shorter than the
length of the basis reciprocal lattice vectors.

To illustrate the relation between the 1D and 3D Brillouin
zones, in Fig. 1(d) we show three 1D Brillouin zones embedded
into the 3D bulk Brillouin zone by red arrows. The three
cross-section planes, which cut the 3D Brillouin zone at the
projections of the valleys ±k0,1,2,3 onto the [111] axis are
painted in Fig. 1(d) in red, green, and blue. The wave vectors
k0,1,2,3 are shown by black arrows. The distance between
the cross sections is equal to the length of the 1D Brillouin
zone, which means that the states originating from the four
inequivalent L valleys become equivalent in the [111] NWs.

It is convenient to map all the inequivalent L valleys into
a single (111) plane. The natural choice is the plane passing
through the k0 point. In order to map the valleys into this plane,
we add the reciprocal lattice vectors b1 and b2 + b3 to the
vectors from the green and blue planes in Fig. 1, respectively.
Below we will adhere to this scheme and, instead of addressing
vectors from the three planes confined within the first 3D
Brillouin zone, we will use equivalent vectors from the single
plane. The planar translation vectors can be expressed via the
reciprocal lattice vectors

T 2D
1 = b1 − b2, T 2D

2 = b3 − b2. (6)

III. EFFECTIVE MASS APPROACH

The k · p effective mass model to describe the electron
energy spectrum near the extrema of the conduction and
valence bands in a given L valley of a bulk lead chalcogenide
compound (PbS, PbSe, PbTe, etc.) was proposed by Dimmock
and Wright [38]. The isotropic version of this method, which
neglects the mass anisotropy was used to calculate the states
in spherical nanocrystals [39], cylindrical nanowires [25],
and cylindrical nanorods [26]. Bartnik et al. [20] applied an
axially symmetric model, which may be obtained by averaging
the mass anisotropy in the directions, perpendicular to the
nanowire growth direction, to describe quantum confined
states in NWs. In what follows we further extend this approach
to account for the mixing of the valley states. This enables
us to classify the electron states in a nanowire with a given
point symmetry (cf. Fig. 1) with respect to their transformation
properties.

Figure 2 qualitatively illustrates the degeneracies of the
lowest electron levels in the conduction band of D3(d) and C2h

symmetry NWs grown along the [111] direction. At kz = 0 the
level is eightfold (4 valleys × 2 spin) degenerate within the
isotropic effective mass model [25]. The axially symmetric
effective mass model [20] partially lifts this degeneracy by
splitting this level into the twofold degenerate level originating
from the longitudinal L0 valley and the sixfold degenerate
level formed by the states from the inclined valleys. Both
the symmetry analysis in the framework of the k · p method
presented below and the tight-binding calculations show that
the states originating from the three inclined valleys are further
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FIG. 2. Scheme of the lowest electron energy levels in D3(d) and
C2h [111]-grown NWs. Left to right: isotropic k · p method; in k · p
method with account of mass anisotropy; and with the valley splitting.
States in D3 NWs have the same structure as in D3d without a certain
parity.

split into three twofold degenerate levels. We label them in
accordance with the irreducible representations of the point
group of a NW using the Koster notation [40].

A. Bulk Hamiltonian

The isotropic k · p Hamiltonian written in the basis of the
spinors and the Bloch functions in the longitudinal valley L0,

E0 = (∣∣Lc
0

〉|↑〉,∣∣Lc
0

〉|↓〉,∣∣Lv
0

〉|↑〉,∣∣Lv
0

〉|↓〉), (7)

takes the form [25,38,39]

H =
[(Eg

2 − αc�
) −iP (σ∇)

iP (σ∇) −(Eg

2 − αv�
)
]
, (8)

where αc,αv are combinations of remote band mass parame-
ters, P is the interband momentum matrix element.

In a bulk crystal with the inversion center chosen at a cation
the conduction band Bloch function |Lc

0〉 is odd and the valence
band Bloch function |Lv

0〉 is even, however, we use the |Lc,v〉
notation instead of commonly used |L∓

0 〉 (or simply |L∓〉)
because the parities of the Bloch functions depend on the
position of the inversion center, which is different in D3d and
C2h NWs, see Fig. 1.

It is worth noting that, for kz = 0, the anisotropic model of
Ref. [20] reduces to the isotropic one with renormalized pa-
rameters. Our k · p calculations will be limited to this case. The
k · p parameters can be extracted from the band structure cal-
culated using the tight-binding approach: P l = 3.8859 eV Å,

αl
c = 22.9078 eV Å

2
, αl

v = 27.5727 eV Å
2

for longitudinal

valley L0 and P i = 3.5943 eV Å, αi
c = 15.9308 eV Å

2
, αi

v =
17.9751 eV Å

2
for inclined L123 valleys, with the zero-

temperature band gap Eg = 0.2129 eV.

B. Effective mass model for nanowire states originating
from a single valley

Since the Hamiltonian Eq. (8) commutes with the total
angular momentum operator Ĵ [39], it is convenient to classify
the NW’s states with respect to its component, Ĵz, along the
growth direction. The eigenvalues of Ĵz are denoted by m.
Equation (8) has four linearly independent solutions finite
at ρ = 0, where ρ is the in-plane radial coordinate of the
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cylindrical coordinate system. The boundary condition (which
we choose in the form of vanishing wave functions at the
surface of the nanowire) reduces the set to two.

For the states at the edges of the NW sub-bands (kz = 0),
one may obtain the following dispersion equation [25]:

gJm+ (kR)Im−(κR) − GJm− (kR)Im+(κR) = 0, (9)

where Jm± (kR), Im± (κR) are, respectively, Bessel and modi-
fied Bessel functions of the integer index m± = m ± 1/2, R

is the NW radius,

g = Pk

αvk2 + E + Eg/2
, k = √

� + 	,

G = Pκ

αvκ2 − E − Eg/2
, κ = √

� − 	, (10)

� =
√

	2 +
(
4E2 − E2

g

)
4αvαc

,

	 = E(αv − αc) − P 2 − (αv + αc)Eg/2

2αvαc

. (11)

For a given m, we enumerate all roots of the dispersion
equation (9), Em,n, with the index n in a way that a positive
n refers to the nth positive root and a negative n refers
to the |n|th negative root. For each energy, there exist two
eigenfunctions of the Hamiltonian (8), which we denote as
|ν = 0,↑(↓),m, n〉. Below, for the sake of brevity, we will
sometimes omit one or two of these indices, where it cannot
lead to a confusion, but the order of the indices will always be
preserved. The explicit form of the eigenfunctions is

|↑(↓),m〉 = E0 μ̂↑(↓),m, (12)

where E0 is the row vector of the basis functions (7) and μ̂↑(↓) m

are envelope column bispinors

μ̂↑m =

⎛
⎜⎜⎝

u(ρ)eim−ϕ

0
0

iv(ρ)eim+ϕ

⎞
⎟⎟⎠, μ̂↓m =

⎛
⎜⎜⎝

0
u(ρ)e−im−ϕ

iv(ρ)e−im+ϕ

0

⎞
⎟⎟⎠, (13)

where the radial functions u(ρ), v(ρ), are

u(ρ) = Nm[Jm−(kρ) + c Im− (κρ)],

v(ρ) = Nm[gJm+(kρ) + c GIm+ (κρ)], (14)

where c = −Jm− (kR)/Im− (κR) and Nm is the normalization
constant.

The functions Eq. (12), as mentioned above, are eigenfunc-
tions of the Ĵz with the following eigenvalues

Ĵz|↑(↓),m〉 = ±m|↑(↓),m〉. (15)

Thus, the electron states at the nanowire sub-band edges (kz =
0), originating from a single valley, are characterized by the
main quantum number n, projection m of the total angular
momentum on the NW axis, and parity. Numerical solutions
of Eq. (9) for a few energies near the band gap are shown in
Table I.

TABLE I. Sub-band-edge energies and quantum numbers for
the first few sub-bands in the conduction and valence bands of a
nanowire of the diameter 29.92 Å calculated in the framework of the
isotropic k · p approximation with the two sets of parameters, listed
in Sec. III A. Symmetries of the k · p states refer to the D3d NWs
and show distribution of the irreducible representations, S, associated
with the states at the extrema of the corresponding energy sub-bands,
over the longitudinal, L0, and inclined, L123 valleys.

EL0 , eV SL0 EL123 , eV SL123 n m

3.45 �−
4 2.55 �−

5,6 ⊕ 2�−
4 2 1

2

3.04 �−
5,6 2.27 �−

5,6 ⊕ 2�−
4 1 − 3

2

2.99 �−
4 2.21 �−

5,6 ⊕ 2�−
4 1 5

2

1.81 �+
4 1.39 �+

5,6 ⊕ 2�+
4 1 − 1

2

1.77 �+
5,6 1.34 �+

5,6 ⊕ 2�+
4 1 3

2

0.81 �−
4 0.65 �−

5,6 ⊕ 2�−
4 1 1

2

−0.94 �+
4 −0.71 �+

5,6 ⊕ 2�+
4 −1 − 1

2

−2.08 �−
5,6 −1.48 �−

5,6 ⊕ 2�−
4 −1 − 3

2

−2.12 �−
4 −1.53 �−

5,6 ⊕ 2�−
4 −1 1

2

−3.55 �+
4 −2.46 �+

5,6 ⊕ 2�+
4 −1 − 5

2

−3.59 �+
5,6 −2.51 �+

5,6 ⊕ 2�+
4 −1 3

2

−4.09 �+
4 −2.83 �+

5,6 ⊕ 2�+
4 −2 − 1

2

1. Parity, T , and C symmetry of the states

Taking into account the parity of the Bloch functions

P̂
(∣∣Lc

0

〉
,
∣∣Lv

0

〉) = (∣∣Lc
0

〉
,
∣∣Lv

0

〉)
(−σz), (16)

and the bispinor components, one can establish the parity of
the eigenstates Eq. (12)

P̂|↑(↓),m〉 = (−1)m
+|↑(↓),m〉. (17)

Without magnetic field, the k · p Hamiltonian commutes
with the time-reversal operator T̂ , with the matrix form
(I2 ⊗ −iσy)K̂0 in the basis Eq. (7). Here K̂0 is the complex
conjugation operator and I2 is the 2 × 2 unit matrix. Under the
time reversal the eigenfunctions Eq. (12) transform one into
another as spinors

T̂ (|↑,m〉,|↓,m〉) = (|↑,m〉,|↓,m〉)(−iσy). (18)

Next we consider the charge conjugation operator [41]
Ĉ = γ 2K̂0, where γ μ are Dirac matrices [42], which act on
the bispinors Eq. (13). The Hamiltonian (8) is not invariant
under the C symmetry if αc �= αv . The charge conjugated
Hamiltonian is HC = −γ 2H ∗γ 2, and the charge conjugation
acting on the eigenfunctions produces functions, which do
not satisfy the dispersion equations. However, if αc = αv

then charge conjugation reverses the sign of the Hamiltonian,
HC = −H , thus exchanging conduction and valence bands. In
this case the main quantum number n changes its sign and the
wave functions transform as

Ĉ|↑(↓),m,n〉 = sign(n)(−1)m
−|↑(↓), − m, − n〉. (19)

We emphasize the fact that only in the case of a C-
symmetric Hamiltonian the identity Em,n = −E−m,−n holds.
In contrast to the time-reversal operator T̂ , the charge con-
jugation operator Ĉ exchanges the states with the opposite
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parity. Even though the charge symmetry does not hold in
real lead chalcogenides, the corresponding analysis provides
an insight into the structure of the electron energy levels. If
one starts from the Hamiltonian with αc = αv , then the states
can be classified using the charge conjugation operator. An
adjustment of the parameters αc,αv to their actual values breaks
the C symmetry, but this does not affect the degeneracies of
the levels and only slightly changes their energy positions.

This analysis is helpful in revealing the relations between
the solutions with positive and negative energies. In particular,
it guarantees that negative energy solutions have the opposite
parities with respect to the corresponding positive energy
solutions.

2. Point group symmetry of the states originating
from the longitudinal valley

In the previous section we characterized nanowire electron
states, originating from a single valley of a bulk semiconductor,
by the main quantum number n, projection m of the total
angular momentum on the NW axis, and parity. This charac-
terization assumes that the nanowire has an idealized shape of
a circular cylinder, which implies the symmetry group D∞h,
and does not take into account the fact that the symmetry of an
actual nanowire is lower due to the underlying crystal structure.
However, if one formally restricts the symmetry operations
of the idealized nanowire by the symmetry operations of an
actual nanowire point group, then one can assign an irreducible
representation of this group to each electron energy level and
thereby classify the states by their symmetry. In this paragraph
we use this approach to analyze the symmetry of the states
(12). It corresponds to the symmetry of the states originating
from the longitudinal valley of a [111]-grown nanowire, which
are decoupled from the states originating from all the other
valleys.

The highest possible point group of an actual NW, D3d =
D3 ⊗ Ci (cf. Fig. 1), has six spinor representations: �±

4 and
conjugated �±

5 and �±
6 [40]. Therefore, the electron states

of a nanowire can transform either under �±
5 ⊕ �±

6 (below
we denote them as �±

5,6) or under �±
4 . In systems, where the

z axis coincides with the C3 symmetry axis, projection m

of the angular momentum Ĵz is defined modulo 3. One may
check that in our case this leads to the fact that the states (12)
transform according to �±

5,6 if 2mmod3 = 0 and �±
4 otherwise.

This result holds for the D3 point group.
In case of C2h NWs, there are four spinor representations.

Two representations �±
3 are conjugated to �±

4 and the states
transform either under �+

3,4 ≡ �+
3 ⊕ �+

4 or �−
3,4. Parity analysis

requires microscopic consideration and is discussed in the next
section.

C. Effective mass model for combinations of valley states

In this section we extend the effective mass model to
account for the valley structure of the states and classify the
k · p solutions in accordance with the irreducible representa-
tions of the NW point group. In order to do that we introduce
bases in form of Eq. (7) in each Lν, (ν = 0,1,2,3) valley

Eν = (∣∣Lc
ν

〉|↑〉,∣∣Lc
ν

〉|↓〉,∣∣Lv
ν

〉|↑〉,∣∣Lv
ν

〉|↓〉) (20)

and extend the set of solutions Eq. (12) of the isotropic k · p
model by taking the valley index ν into account:

|ν,↑(↓),m〉 = Eν μ̂↑(↓),m. (21)

To analyze the states Eq. (21) let us consider the wave
vectors kν, (ν = 0,1,2,3) of the L valleys Eq. (3). In the bulk
point group Oh they form an irreducible star SL0123 = {kν}3

ν=0,
but lowering the symmetry to the point groups D

[111]
3d or

D
[111]
3 ⊂ Oh (C3 axis points along the [111] direction) one can

find that the star breaks into irreducible ones SL0 = {k0} and
SL123 = {k1,k2,k3}. In the C

[111]
2h ⊂ D

[111]
3d the star SL123 further

breaks into irreducible stars SL2 = {k2} and SL13 = {k1,k3}.
Within an irreducible star S the valley index ν transforms under
rotation ĝ as permutations of the wave vectors in the star, given
by a matrix Tg: ĝ S = S Tg . This allows us to symmetrize the
basis functions, Eq. (21), within the irreducible stars SL0 , SL123

for D3d and D3 NWs and within SL0 , SL2 , SL13 for C2h NWs.
Below we perform the symmetrization procedure only for

the angular momentum m = 1/2, i.e., for the first confined
electron states in each valley and we consider NWs with the
groups D3d and D3 together.

1. Valley structure of states in D3d and D3 NWs

We have already shown in Sec. III B 2 that the states
originating from the longitudinal valley (SL0 star) in D3(d)

NWs transform according to �
(−)
4 , thus we consider only the

star SL123 , The wave vectors from this star transform under the
rotations C3z and C2x according to the matrices:

TC3z
=

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠, TC2x

=
⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠. (22)

This means that the wave vectors of the irreducible star SL123

form the basis of the �
(+)
1 ⊕ �

(+)
3 representation of the group

D3(d). Taking spin into account, we can get a representation
for the states associated with the irreducible star SL123 in D3(d)

wires (�(+)
1 ⊕ �

(+)
3 ) ⊗ �

(−)
4 = �

(−)
5,6 ⊕ 2�

(−)
4 .

The states {|0,↑,1/2〉,|0,↓,1/2〉} are chosen in such a way
that their rotation matrices coincide with the corresponding
spin rotation matrix D1/2(n,ω) = exp [−i ω

2 nσ ], where n is the
rotation axis direction and ω is the rotation angle. Taking into
account the permutation matrices T , the full rotation matrices
D(g) for the states {|ν,↑〉,|ν,↓〉}3

ν=1 are Kronecker products of
the matrices T and D1/2: D(g) = Tg ⊗ D1/2(g).

The symmetrization procedure for D3(d) NWs consists of
a simultaneous diagonalization of the matrices D(C3z) and
D(C2x). This can be achieved using the unitary matrix VL123

via V †DV . This matrix transforms the states as

(|�(−)
4 ↑(↓)〉,|�(−)

4 ↑(↓)〉,|�(−)
5 〉,|�(−)

6 〉)
= (|1,↑(↓)〉,|2,↑(↓)〉,|3,↑(↓)〉)VL123 . (23)
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The explicit form of the matrix VL123 is

VL123 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
3

0 0 i√
3

− i√
6

i√
6

0 1√
3

i√
3

0 i√
6

i√
6

1√
3

0 0 iω2√
3

− iω√
6

iω√
6

0 1√
3

iω√
3

0 iω2√
6

iω2√
6

1√
3

0 0 iω√
3

− iω2√
6

iω2√
6

0 1√
3

iω2√
3

0 iω√
6

iω√
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)

where ω = exp ( 2πi
3 ). The phase choice guarantees that all the

�
(−)
4 states transform as basis spinors {|↑〉,|↓〉}, and �

(−)
5 ,�

(−)
6

are coupled by the time reversal. The structure of the matrix
VL123 enables one to analyze the valley structure of the states
of a given symmetry. From (24) it follows that, for the D3(d)

NWs, all the states with m = 1/2 originating from the inclined
valleys are equally distributed over these valleys.

2. Valley structure of states in C2h nanowires

The states in the third NW type with the point group C2h

are much easier to symmetrize than in the cases of the point
groups D3d and D3. The C2h point group contains only one
nontrivial element: rotation around the x′ axis C2x ′ , which
permutes wave vectors in the star SL13 .

The states originating from the stars SL0 and SL2 can be
symmetrized by the same matrix

(|�−
3 〉,|�−

4 〉) = (|0(2),↑〉,|0(2),↓〉)
(− ω√

2
− ω√

2
ω2√

2
− ω2√

2

)
. (25)

The rest of the states originating from the star SL13 can be
symmetrized as follows

(|�+
3 〉,|�+

4 〉,|�+
3 〉,|�+

4 〉) = (|1,↑〉,|1,↓〉,|3,↑〉,|3,↓〉)VL13 ,

VL13 = 1

2

⎛
⎜⎝

−ω2 ω2 ω2 ω2

−ω −ω −ω ω

1 −1 1 1
1 1 −1 1

⎞
⎟⎠.

(26)

One can see that the parity of the states at the SL13 star is
opposite to the parity of the states at the SL0 and SL2 stars.
The difference in parities arises from the parities of the atomic
orbitals and the parity of the Bloch phase multiplier eikr . In
the case of the C2h NWs, the inversion center is chosen at
the point a( 1

2 , 1
4 , 1

4 ) in the crystallographic coordinates (see
Fig. 1), which changes the parities of the functions |Lc,v

1,3〉 to
the opposite, as compared to the case when the inversion center
is chosen at the (0,0,0) cation (the same as in bulk crystal),
while keeping parities of the Bloch functions |Lc,v

0,2〉 the same.

IV. TIGHT-BINDING METHOD

In this section we discuss application of the empirical
tight-binding method to PbSe nanowires. The tight-binding
method is based on the expansion of the electron wave function
�s(r) in the local basis of atomiclike orbitals φσ (r), which are

assumed to be orthogonal [43]:

�s(r) =
∑
nσ

Cs
nσφσ (r − rn), (27)

where n enumerates the atoms and the index σ runs through
different orbitals. For the sp3d5s∗ variant of the method these
are s, s∗, three p, and five d orbitals multiplied by spin-up and
spin-down basis spinors, which results in the total of twenty
orbitals per atom. In this basis, the Schrödinger equation
reduces to the eigenvalue problem for a sparse matrix:∑

n′,ς

Hnσ,n′ςCs
n′ς = EsC

s
nσ . (28)

Here, the eigenvalues Es correspond to the energies of the
electron state s and eigenvectors Cnσ provide the coefficients
in the expansion (27) for this state. We use the nearest neighbor
approximation, thus neglecting the matrix elements of the
tight-binding Hamiltonian between the atoms that are not
directly connected by a chemical bond. The explicit form
of the Hamiltonian matrix elements, Hnσ,n′ς , may be found
in Refs. [44] or [45]. The spin-orbit interaction is introduced
following Chadi [46]. The tight-binding parameters [33] are
chosen to accurately reproduce experimental effective masses
at the L point as well as the electron energies at the high-
symmetry points of the Brillouin zone, which were calculated
in Ref. [37] using the GW approximation.

For a nanowire, we introduce the wave vector Kz along the
growth direction. Its relation to the wave vector kz of Sec. III
will become apparent later, in Sec. IV B. The tight-binding
wave function for a NW takes the form

�s
Kz

(r) =
∑
nσ

eiKzzn Cs
nσ (Kz) φσ (r − rn), (29)

where s is the band index, the index n runs over atoms in the
elementary cell of the nanowire, and zn is the z coordinate of
the nth atom. Therefore, the tight-binding Hamiltonian for a
nanowire is a finite matrix, which depends on the wave vector
Kz and satisfies the equation∑

n′,ς

Hnσ,n′ς (Kz)C
s
n′ς (Kz) = Es(Kz)C

s
nσ (Kz) . (30)

Its matrix elements are related to the matrix elements of
the bulk Hamiltonian via Hnσ,n′ς (Kz) = eiKzδznn′ Hnσ,n′ς , where
δznn′ is the z component of the chemical bond vector between
atoms n and n′.

The nanowire structures used in our tight-binding calcu-
lations can be conceived as being carved out from a bulk
PbSe crystal and inscribed in a circular cylinder with the axis
parallel to the [111] direction and passing through (i) an atomic
site, (ii) the point with the coordinates a/6(1,0,2), or (iii) the
midpoint of a chemical bond, as shown in Fig. 1. We do not use
surface passivation in our calculations. This is justified by the
strong ionicity of the chemical bonds in the lead chalcogenides,
which dramatically reduces the surface impact on the confined
states [24,33,47] as compared to covalent semiconductors such
as Si [48]. In realistic nanowires such passivation might be
necessary to compensate for the unbalanced surface charge
[49], however, its impact on the energy spectrum should be
relatively weak.
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TABLE II. Symmetry assignment for the eight low-energy
conduction-band states obtained in the tight-binding calculations for
NWs of three different symmetry groups.

Point group Representation

D3d 3�−
4 ⊕ �−

5,6

D3 3�4 ⊕ �5,6

C2h 2�−
3,4 ⊕ 2�+

3,4

A. Point group symmetry

In order to analyze the symmetry of the tight-binding wave
function one should determine how the symmetry operations,
in particular rotations, affect the coefficients Cs

nσ (Kz). First, a
rotation causes the atoms to change their positions. Application
of the group element g transforms the atom n with the
coordinates rn into the atom n′ with the coordinates rn′ =
g−1rn. This transformation is described by the permutation
matrix Pg , which accumulates information about rotation of
the atoms inside the NW. This matrix implicitly depends on
the quasiwave vector Kz, as far as the transformations of the
coefficients Cs

nσ (Kz) are concerned.
Second, a rotation also affects the atomic orbitals forming

the basis of the tight-binding Hamiltonian. Indeed, the π/2
rotation of the function px around z results in the function
py which should be reflected in the corresponding change of
the tight-binding coefficients. Formally, this may be described
as follows. In the logic of the Slater-Koster notations [44]
the s, p, and d functions transform as the basis functions
of the momentum 0, 1, and 2, respectively. As a result, the
action of the symmetry element g on these functions can be
represented by Wigner’s D matrices for these momenta. The
tight-binding coefficients before and after a rotation operation
g, are connected by the matrix Dorb(g):

Dorb(g) = D1/2(g)

⊗ T −1

⎛
⎜⎜⎝

D+
0 (g)

D−
1 (g)

D+
2 (g)

D+
0 (g)

⎞
⎟⎟⎠T ,

(31)

where the matrix T transforms the spherical harmonics into the
tesseral ones [50], which are used in tight-binding calculations
[44,45].

The tight-binding coefficients before and after application
of the symmetry operation g are connected by the matrix
DT B(g), which is constructed as Kronecker’s product of the
permutation matrix Pg and the matrix Dorb(g):

DT B(g) = Pg ⊗ Dorb(g) . (32)

In the basis where the tight-binding Hamiltonian,
Hnσ,n′ς (Kz), is diagonal, the transformation matrix (32) has
a block-diagonal form, with the blocks corresponding to
irreducible representations of the nanowire symmetry group.
This allows us to associate the tight-binding wave functions
with the irreducible representations of the NW symmetry
group. The results of this procedure are presented for the eight

low-energy conduction-band states in Table II. These results
are in agreement with the symmetry analysis of Sec. III C.

B. Fourier analysis

In order to analyze how various states of the nanowire are
related to different valleys of the bulk PbSe in the framework
of the tight-binding method, we introduce the function

F s
Kzω

(κ) =
∑
m

ei(Kzzm−κ rm)Cs
mω(Kz), (33)

where s is the state index, the composite index ω labels both
the sublattice (anions or cations) and the atomic orbitals, m

enumerates atoms from one of the sublattices (specified in ω)
within the elementary cell, rm are the coordinates of these
atoms, and zm is the z component of rm. If the radius of the
nanowire tends to infinity, R → ∞, then the function (33)
forms δ-like peaks near the projections of valley extrema onto
the (111) plane and equivalent points in the reciprocal space.
For NWs of finite radius, the width of the peaks depends on
the NW radius as ∝R−1.

The elementary cell of a nanowire contains six atomic layers
in the planes perpendicular to the growth direction (cf. Fig. 1).
The z coordinates of these layers, zm, are 0, a/

√
3, and 2a/

√
3

for the cation layers and a/2
√

3,
√

3a/2, and 5a/2
√

3 for the
anion layers. Taking this into account and substituting

κ = Kz ẑ + κρ + n bk, (34)

where κρ ⊥ z and n = 0,1,2, one can rewrite Eq. (33) as

F s
Kzω

(κρ,n) =
∑
m

e−i(κρ+bk n)rmCs
mω(Kz). (35)

Here, Kz can assume any value within a one-dimensional
Brillouin zone of the nanowire.

We further introduce the local density of states (LDOS) in
the reciprocal space:

nS
Kz

(κρ,n) =
∑
s∈S

∑
ω

∣∣F s
Kzω

(κρ,n)
∣∣2

, (36)

where the index S refers to the set of states within one
degenerate energy level. As in Sec. III C, we will be primarily
interested in the states near the extrema of the nanowire energy
sub-bands in the conduction and valence bands. Therefore,
we set Kz = k0 [cf. Fig. 1(d)]. and distinguish the three
functions nS

k0
(κρ,0), nS

k0
(κρ,1), and nS

k0
(κρ,2) corresponding to

the three [111] planes in Fig. 1(d). We note that the quasi-wave-
vectors Kz, used in this section, and kz, used in Sec. III, are
related by kz = Kz − k0. Therefore, the assignment of Kz = k0

corresponds to kz = 0.
As explained in Sec. II, the wave vectors from the first

Brillouin zone of the bulk crystal, parallel to the [111]
direction, which fill the interval (−k0,k0] in the nanowire
should be mapped onto the first Brillouin zone of the NW,
which is three times smaller: (−bk/2,bk/2] (zone folding). The
number n in (35) allows for the unfolding of the band structure
of the wire (see, e.g., Ref. [51]) onto the band structure of the
bulk crystal. The use of all the three functions is superfluous,
as they are connected by the translations

nS
k0

(κρ,0) = nS
k0

(κρ − b1 + bk,1) = nS
k0

(κρ + b1 − bk,2).

(37)
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ground state first excited state

(a) (b)

FIG. 3. LDOS in reciprocal space for the ground (a) and the first
excited (b) conduction state in the D3d NW with the 29.9 Å diameter.

Therefore, one can use only one of the planes in the valley
analysis.

The analysis of the reciprocal space LDOS allows one to
distinguish states of the same symmetry but with different
main quantum numbers [52,53]. The reciprocal space LDOS
for two levels with similar valley structure, but different main
quantum numbers is illustrated in Fig. 3. Each reciprocal space
maximum for the ground electron state corresponds to two
maxima for the first excited state.

V. RESULTS

We have performed tight-binding calculations of energy
spectra for NWs grown along [111] and having different
symmetries. We will first present our results for the states
at the extrema of the nanowire sub-bands as functions of the
nanowire diameter. We will limit our consideration by the 24
states in the conduction and 24 states in the valence band.
These states correspond to the three multiplets in each of the

bands most close to the nanowire Fermi level (cf. Fig. 2).
Each of the multiplets originates from an eightfold spin-
and valley-degenerate level. These levels are first split into
twofold and sixfold degenerate levels due to the effective mass
anisotropy. When the valley mixing at the nanowire surface is
taken into account then each of the eightfold degenerate levels
is split into four doublets, see Fig. 2.

A. Valley structure

1. D3d and D3 NWs

First we discuss the D3d nanowires. The states originating
from the lowest-energy eightfold degenerate multiplet in the
conduction band (see Fig. 2) form bases of �−

5,6 and three
�−

4 irreducible representations. As discussed in Sec. III C, all
the �−

4 pairs of states have different LDOS in the reciprocal
space. One pair has a significant amount of density near the
longitudinal valley L0 and the others have their densities
mostly at the inclined valleys L1,L2,L3 (see Fig. 5). Other
multiplets are split into the states that transform according to
the irreducible representations, see Table I.

The results of the calculations for six multiplets (three in
the conduction and three in the valence band) are presented in
Fig. 4. States transforming according to different irreducible
representations are shown by crosses of different colors. This
allows one to separate unambiguously the states originating
from the k · p levels with n = 1,m = 1/2 from the pair of
levels n = 1,m = −1/2,3/2 since these levels have different
parities (see Table I). An additional analysis is needed to reveal
the valley structure of the levels because there are several
sublevels with the same symmetry in all multiplets.

One can see that the valley splitting can exceed the energy
distance between different multiplets for nanowire diameters
below 40 Å. For instance, from the k · p theory one expects to
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FIG. 4. Energy of the first 24 energy levels in the conduction and valence bands in D3d nanowire as a function of the NW diameter.
Tight-binding calculations are represented as colored symbols +’s and ×’s, encoding irreducible representations of states. The results of k · p
calculations are shown by solid lines, purple for the inclined states, and yellow for the longitudinal ones. Eg is the band gap energy, arrangement
of the k · p states is listed in Table I. Left panel shows a blow up of the region corresponding to large NW diameters.
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FIG. 5. Reciprocal space LDOS for four lowest-energy doublets
of states in the conduction band of D3d nanowire with the 29.9 Å
diameter. The positions of the longitudinal valley L0 are indicated by
the cross and black circles (solid, dashed, dotted) show positions
of the inclined valleys (L1,L2,L3), see Sec. IV B. We also give
the estimation (in percent) of L0 valley contribution obtained by
integration of the LDOS near the peaks (within the areas enclosed in
red circles).

find in the conduction band four odd-parity doublets followed
by eight even-parity doublets (see Table I). However, for some
diameters, the highest-energy states shown in Fig. 4 have
the odd parity and, therefore, originate from the odd-parity
multiplets, which correspond to the top three lines of Table I.
Thus, the intervalley coupling is comparable to the quantum
confinement energy.

The strong intervalley coupling makes it impossible to track
the origin of the states from the simple comparison with the
k · p approximation, especially for the excited states. In order
to resolve the valley structure of the ground-state multiplet,
we use the analysis of reciprocal space LDOS explained in
Sec. IV B.

In Fig. 5 we show the reciprocal space LDOS for the first
four levels in the conduction band of a nanowire with the
diameter 29.9 Å. In accordance with the symmetry analysis
of Sec. III C, the level with the symmetry �−

5,6 shows almost
100% fraction of the inclined valleys. This is expected because
the corresponding states can mix only with the states of the
same symmetry and there are no states of the same symmetry
within the energy range ∼1 eV. There are also two levels of the
symmetry �−

4 , which are combinations of the states of inclined
valleys with a small admixture of the longitudinal valley L0

and one level of the symmetry �−
4 with a strong admixture

of the state from the longitudinal valley. The decomposition
of the confined states over different valleys is clearly seen in
Fig. 5.
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FIG. 6. Valley splittings for lowest conduction band states in (a)
D3d , (b) D3, and (c) C2h NWs as a function of the NW diameter.
The colors of the dots encode the fraction of the longitudinal valley
contribution L0 to the confined state extracted from the k-LDOS
Eq. (36).

The reciprocal space LDOS analysis can be used to trace
the dependence of the valley splittings on the NW diameter.
This dependence is highly oscillating, which is explained by
the fact that even a small variation in the NW radius results
in substantially different arrangements of the surface atoms,
similar to the quantum dot case [32,33,54]. In Figs. 6(a)–6(c)
we show only the first four double degenerate states in the
conduction band for the NW diameters 16 ÷ 70 Å for D3d

(a), D3 (b), and C2h (c) NWs. The energies in Fig. 6 are
counted from the mean energy of the multiplet and are shown
as functions of the nanowire diameter. The color of the points
in Fig. 6 encodes the contributions of the longitudinal (L0)
and inclined (L1,2,3) valleys to a given energy level. The red
(blue) color corresponds to the predominant contribution of
the longitudinal (inclined) valleys.

It is clearly seen that the valley composition strongly
correlates with the levels repulsion. The more pure are the
states of the �−

4 symmetry originating from the longitudinal
and inclined valleys, respectively, the lower is the splitting
between these valleys in Fig. 6(a). This correlation is somewhat
obscured by the presence of the two levels originating from
the inclined valleys. Below we will see that, for the NWs of
the C2h symmetry, it is more pronounced.

Next we briefly discuss the D3 NWs, which have no
inversion center. The dependences of energies of the confined
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FIG. 7. Same as in Fig. 5, but for C2h NW of diameter D =
30.2 Å.

states on the NW diameter are quite similar to these of the
D3d case presented in Fig. 4 and are not shown here. The
valley splittings, shown in Fig. 6(b), oscillate with a somewhat
smaller amplitude than in the D3d case. This is probably due
to a more symmetric surface of the D3d NWs.

2. C2h nanowires

The C2h NWs are substantially different from the D3d and
D3 NWs. The group C2h has four spinor representations, �±

3
and �±

4 , and all of them appear in the decomposition of the
ground conduction (or valence) band state. The representations
�±

3 and �±
4 are conjugate, and, therefore, the corresponding

levels are doublets �±
3,4. The fact that states of different parities

originate from a single k · p level can be explained by the
change in the position of the inversion center as compared to
a bulk crystal. As shown in Sec. III C, the odd-parity states
are formed by the states from the L0 and L2 valleys, while the
even-parity states are formed by the states from the L1 and L3

valleys. This result can be also obtained in the framework of
the tight-binding method, see Sec. IV A.

In Fig. 7 we show the reciprocal space LDOS for the first
four levels in the conduction band of a nanowire with diameter
30.2 Å. Neglecting the valley mixing, the even-parity states
�+

3,4, originating from the valleys L1 and L3, are degenerate,
while the odd-parity states �−

3,4, originating from the L0 and
L2 valleys, are split due to the valley anisotropy. Thus, it is
natural to expect that the states originating from the k · p level
n = 1,m = 1/2 with the symmetry �+

3,4 are evenly distributed
between the two valleys while each of the split �−

3,4 levels
are predominantly contributed by the states from either L0 or
L2 valley. This qualitative analysis is in agreement with the
calculated reciprocal space LDOS of the states presented in
Fig. 7. The dependence of the first four levels in the conduction

band on the nanowire diameter is shown in Fig. 6(c). For
the odd-parity levels �−

3,4, the valley composition strongly
correlates with the levels repulsion. The larger is admixture
of the L2 valley to the state dominated by the L0 valley (and
vice versa), the stronger is the levels repulsion. Both levels
exhibit strong oscillations with an amplitude up to 100 meV
for small radii and decreasing with the NW radius. The strong
correlation between the splitting of the levels and the degree of
the valley admixture, encoded by the color in Fig. 6(c), clearly
indicates that these oscillations are caused by the valley mixing
at the interface.

B. Spin splitting

In Sec. V A we discussed the valley structure of different
electron levels at the sub-band extrema for nanowires of
different point groups. From the k · p analysis one could
expect, that due to the spatial inversion in the bulk lead
chalcogenides, it is impossible to obtain the fine spin structure
of the energy levels in the nanostructures in the absence of
magnetic field. We remind that the time-reversal symmetry
together with the spacial inversion symmetry leads to the spin
degeneracy of all levels

E↑(↓)m,n(Kz) = E↑(↓)m,n(−Kz). (38)

However, the atomistic texture near the surface may break the
spacial inversion, even in centrosymmetric materials [30,55]
and this is the case of the NWs with the point group D3. This
group has no inversion center and Eq. (38) no longer holds
for Kz �= 0. Therefore, spin-dependent splittings of the states
become possible. The spin splittings are linear in the wave
vector Kz,

�ES
spin = αS(Kz − k0) ≡ αSkz, (39)

where αS is the splitting constant for the Sth couple of states. In
Fig. 8 we show the energy dispersion curves for several lowest
conduction band states for a D3 NW of the diameter ≈40 Å.
The �4 (�5 ⊕ �6) states are shown by the green (black) lines.
In agreement with Eq. (39), the states exhibit linear-in-k spin
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FIG. 8. Spin splittings of the ground conduction states in the D3

NW with the 40 Å diameter. By green (black) lines we show �4 (�5,6)
states. Wave vector kz is measured from the band edge.
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FIG. 9. Spin splittings of four conduction band doublets in NWs
of D3 symmetry as a function of the NW diameter. Color of the dots
encodes the contribution of the longitudinal valley to the confined
state.

splittings. The absolute values of αS , extracted from the disper-
sion calculated in tight-binding technique, are shown in Fig. 9
as functions of the NW diameters for four lowest conduction
band levels. Similar to the intervalley splittings, the constants
of the spin splitting strongly oscillate with the NW radius.

Due to large atomic spin-orbit interaction constants [33]

�Pb = 2.38 eV, �Se = 0.42 eV,

and a narrow band gap, the spin splitting constants may be
huge (up to 1 eV Å), as compared with typical values for A3B5

quantum wells [28,29,56,57]. Although a special design of
A3B5-based nanowires [58] might lead to the same order of
magnitude for the spin splitting, we stress that in our case we
consider ideal nanowire of cylindrical shape based on material
without bulk inversion asymmetry.

To make the spin splitting analysis complete, in Fig. 9
we show the spin splitting constants αS as functions of the

nanowire diameter. Each panel corresponds to a particular
pair of states. The panels are sorted by the longitudinal valley
contributions, encoded by the color of points in Fig. 9. One
may note that the spin splitting is larger for the states with
higher fractions of the inclined valleys.

VI. CONCLUSION

In this paper, we have calculated the energy spectrum of the
[111]-grown PbSe nanowires in the framework of the empirical
tight-binding method. By comparing the atomistic results with
the k · p theory we demonstrated that the boundary scattering
leads to the valley-orbit splitting of the confined states. The
valley splitting of the energy levels is very sensitive to a
particular arrangement of atoms in the nanowire. We have
considered PbSe nanowires grown along the [111] direction
with D3d ,D3, and C2h point group symmetry. Analysis of
the local density of states in the reciprocal space allowed
us to resolve the valley composition of the tight-binding
wave functions. The strong correlation between the valley
composition and the valley-orbit splittings shows that the main
origin of the valley splitting is the intervalley mixing at the
surface of the NW.

For relatively large nanowires with the diameters exceeding
40 Å the energy spectrum can be fairly well approximated
in the framework of the k · p method, but for the diameters
less than 40 Å the valley splittings of confined states become
comparable with the energy distance between the unperturbed
states from independent valleys and k · p theory should be
modified to account for combinations of valley states.

The [111]-grown nanowires of the D3 symmetry group
represent a special case, as they lack inversion center and have
a screw axis. For this reason they exhibit linear in wave vector
spin-dependent splittings of energy levels. Our tight-binding
calculations reveal giant spin splitting constants α up to 1 eV Å.
This reflects the relativistic nature of electron spectrum in lead
atoms and shows that the lead-chalcogenide nanowires are
unexpectedly promising candidates for the spintronic devices.
We believe that the intricate nature of the valley and spin
splittings in small nanowires opens new opportunities in the
control of spin and valley degrees of freedom.
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