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Electrically sign-reversible transverse g-factors of holes in droplet epitaxial GaAs/AlGaAs
quantum dots under uniaxial stress
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We present a theoretical investigation of anisotropic g-factor tensors of single holes confined in droplet epitaxial
GaAs/AlGaAs quantum dots under electrical and mechanical controls using the gauge-invariant discretization
method within the framework of four-band Luttinger-Kohn k- p theory. We reveal an intrinsic obstacle to realize
the electrical sign reversal of the hole g-factors, being a key condition required for a full spin control in the scheme
of g-tensor modulation, for the quantum dots solely with electrical bias control. Constructively, our studies show
that, besides electrical gating, slightly stressing an inherently unstrained droplet epitaxial GaAs/AlGaAs quantum
dot can offset the transverse hole g-factor to be nearly zero and make the electrical sign reversal of the hole

g-factors feasible.
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I. INTRODUCTION

Coherent and dynamical control over a single spin in
a solid is a key feature required in spin-based quantum
information processing [1,2]. In the past decade, various
techniques have been developed in order to realize such
a spin manipulation in solid-state nanostructures, including
the application of continuous-wave oscillating magnetic field
[3], the electrical tunings of exchange interaction [4], spin-
charge couplings [5,6], and spin-orbital interactions [7-9],
and also the electrical g-tensor modulation (g-TM) [10,11].
In particular, the electrical resonant or nonresonant g-TMs
for holes in semiconductor QDs has persistently received
increasing attention because of the advantages for the on-chip
implementation [11-19] and the benefit from the long spin life
and coherence times [19-22].

In the proposed nonresonant g-TM scheme of Ref. [11] a
full spin control (FSC) over a carrier spin could be realized
simply with the application of a static magnetic field and a
local modulating electrical bias as long as the sign of a g-tensor
component of the carrier can be electrically reversed. However,
as reported by the most existing experiments it is technically
quite challenging to make such an electrical sign reversal of
g-factor for a spin carrier in semiconductor QDs. So far, with
moderately high bias fields (~tens of kV/cm) the g-tensor
components for holes confined in QDs can be maximally varied
by ~60%, but the signs of the hole g-factors still cannot be
reversed [12,14,15,19,23,24]. Until very recently, by driving
the applied bias field onto the dots so high as F > 200 kV/cm
Bennett et al. for the first time experimentally demonstrated
the sign reversibility of the g-factors of valence holes confined
in self-assembled InAs QDs [25]. The application of such
an ultrahigh electrical bias control yet requires the delicate
design of derivative barrier-layer structures to prevent the
tunneling out of dot-confined carriers and is still uncommon
in conventional electronics.

In this work, we theoretically study the g-factor tensors of
single holes confined in intrinsically unstrained GaAs/AlGaAs
quantum dots (QDs) [26], grown by droplet epitaxial (DE)
techniques, under an electrical bias and uniaxial stresses
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within the four-band Luttinger-Kohn model in both numerical
and analytical manners [27]. As compared with the more
extensively studied strained InAs/AlGaAs QDs grown in the
Stranski-Krastanov mode [28,29], GaAs/AlGaAs DE-QDs
possess some unique advantageous features, including the
free selection of substrate facet [30], flexible control of QD
geometry [31-34], and the removal of complex inherent
strain [35]. With the benefit from the unique material and
nanostructure properties, advanced photonic devices such
as single-photon and entangled photon sources have been
successfully made of GaAs/AlGaAs droplet-epitaxial quantum
dots (DE-QDs) [30]. Moreover, unlike strained InAs/AlGaAs
QDs, inherently unstrained GaAs/AlGaAs DE-QDs that are
sensitive to any slight external stresses [35,36] enable the use
of mechanical stresses as an additional independent knob to
electrical or magnetic fields for further tuning the material,
electronic, and excitonic properties of QDs [36,37].
Numerically, we employ the gauge-invariant discretization
method to calculate the spin-resolved energy levels of a hole
confined in a QD with a static magnetic field, a uniaxial
stress, and a tuning electrical bias [38—41]. For analysis of
the numerical results, we take the 3D parabolic model for the
QD confining potential and derive the formalisms of g-tensors
of a QD-confined hole in terms of the stress- and electrically
tunable dependent VBM. As a main result, our studies show
that slightly stressing a DE-QD makes the required bias field
for FSC over a hole spin dramatically drop by more than one
order of magnitude, falling in the scales of voltage compatible
to conventional electronics, and gets rid of the long standing
obstacle for realizing the electrical g-TMR scheme. Though
the main physics lying in a hole g-tensor is known related to
the inherent valence band mixing (VBM), our analysis enables
us to identify the components in the overall VBM that are in
charge of sign reversibility of the resulting g-factors and find
out the optimal means for control over them. Alternatively, the
effect of stress on the spin-splitting of the hole energy levels of
a QD with a hole can be regarded as an effective pseudomag-
netic field that essentially involves the intrinsic spin-orbital
coupling for / = 3/2 hole and directly coupled to the hole spin
itself. Analogs between mechanical stress and pseudomagnetic
field have been also made for other emergent materials with
stresses, e.g., graphenes [42] and silica photonic crystals [43].
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This article is organized as follows. Section II presents the
theoretical framework and the methodology for the calcula-
tions of hole g-tensors of DE-QDs with external electric fields
and uniaxial stresses. Section III presents the numerically
calculated results, including the magnetospectra of single
holes in DE-QDs, and the anisotropic g-tensor components
versus the applied electric fields and stresses. In Sec. IV, a
model analysis based on the three-dimensional (3D) parabolic
model is carried out for gaining physical understandings of
the numerical results, and explicitly derives the conditions
for the sign reversibility of hole g-factors of QDs, and predicts
the feasibility of g-tensor modulation scheme for full coherent
control over a hole spin in a DE-QD with appropriate uniaxial
stresses. Section V concludes this work.

II. THEORETICAL FRAMEWORK

Within the four-band Luttinger-Kohn (LK) & - p model, the
Hamiltonian for a J = % valence hole confined in a DE-QD

with a magnetic field B, an electric field F, and an external
stress oy is expressed as a 4 x 4 matrix,

Hy = H]' + H! + V{plsxs + H} + H, (1

composed of the kinetic energy, strain, QD potential, spin-
Zeeman, and Stark-effect parts, respectively,

In the basis of Bloch functions ordered by
{MI}'Z:3/27M]}Z:1/271’{?2:_1/27”]}2:_3/2} = {|ﬂ>’ | T)’ |\L>v |‘U’>}’ the

Hamiltonian of kinetic energy is expressed by
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where P, = ﬁ SAK: 4K+ kD), Ok = h S2(kI + k2 — 2k2),

Ry = ¥ [ y(k2 k2) + 2iys (ke ky )]

iR - - L ~
(kv ko) — itky,k2}), k=—i(Vi+ifA)=—iD = —i(Dy,
f)),ﬁ ) is the wave vector operator, {k; k;} = ;(k kj+kjk;),
= (x y.z) is the coordinate position of carrier, A(r)
—B x 7 is the B-induced vector potential in the symmetry
gauge e > 0(my) stands for the elementary charge (mass) of
free electron, and y; = 7.1, y» = 2.02, and y3 = 2.91 are the
Luttinger parameters for GaAs [44,45].

The strain Hamiltonian H preserves the same form
as Eq. (2), but with the replacements of the subscript

2
and Sk = —‘/i’fo =

and the operators by k — €, Pc = —a,(€xx + €,y +€;2),
O = _l%(fxx + €yy — 2¢;;), Re= %(Gxx - Eyy) - i\/gbéxy,
and S¢ = —d(ey; — i€,;), respectively, where {¢;;} are the

strain tensor elements, and the strain parameters for GaAs
are a, =1.16eV, b=—1.7¢V, and d = —4.55¢eV [45].
In this work, we consider asymmetric QDs on (001) sub-
strate and elongated along the crystalline axis of [110],
and specify the growth (elongation) axis as the z (x)
axis, as depicted in Figs. 1(a) and 1(b). Applying a uni-
axial stress of magnitude oy along the x axis yields the
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strain tensor elements, €,, = [%(sll + s12) + %344] (O, €yy =
[%(Sll +512) — 411544] 0y, € =512-05, and €,y =€, =
€y =0, where s;; = 0.0082 GPa™', s, = —0.002 GPa™!,
and s44 = 0.0168 GPa~! are the elastic compliances [45]. The
third term in Eq. (1), V(S‘DI4X4, is yielded by the confining
potential, Vé’D(?), of QD for a hole, where 14,4 stands for a
4 x 4 identity matrix.

Following the theory of Flatté et al. [38], the common
effective Zeeman k and ¢ terms in Luttinger-Kohn k - p theory
for semiconductor bulks are disregarded in Eq. (1) for QDs
because of the revealed orbital quenching effect in QDs.
Instead, the bare spin Zeeman term for J = % is included
in Eq. (1), which is given by

2

h n o7
HZ = —gMBB -J
B. %B_ 0 0
1 1 2
SN i o R N
0 2B, 3B.  B-
0 0 }B+ —B.

where B = (By,By,B;), By = B, £iB,, and ug is Bohr
magneton. The last Stark term is given by —eFzlsy4, in
the envelope function approximation, for a vertical bias field
= (0,0, F) acting on a QD.
Within the four-band model, the ith single-hole eigen-
function is expressed as |y) = "y x) that

: 2=t i) 100
is composed of the slowly varying envelope functions,

i{’X(F) (r | ) and the mlcroscop1c Bloch functions of hole
pseudospin ]Z = ;;, — %, — 2, denoted by x = 1,1, 1,4,

Elyl.

respectively, and satisfies the equation Hj,|y") =

III. NUMERICAL METHOD AND RESULTS

In the numerical studies, we consider asymmetric
GaAs/Aly35GagesAs DE-QDs shaped by Gaussian-function
profiles, according to the observations of atomic force micro-
scope [31,32,46], described by the characteristic function

X2 y?

Xop() = Oszs HeXp(_A_% - A_§> )
, elsewhere

[as depicted by Figs. 1(a) and 1(b)], where H is the height of
QD and A, (A,) is defined as the characteristic side length
of QD in the x direction (y direction). Thus the confining
potential for a hole in a QD is expressed as VSD(?) =
VI (1 — Xop(F)), where V' =200 meV is the potential
barrier of the GaAs/Alj35GapesAs QD for a valence hole
[45]. Here, we assume the abrupt GaAs/AlGaAs band-edge
offset, based on the fact that the degree of GaAs/AlGaAs
composition intermixing is very small for the QDs grown in
the droplet epitaxial mode, as evidenced by the measurement
of cross-sectional scanning tunneling microscopy (X-STM)
reported by Keizer et al. [46]. Numerically, the spin-resolved
energy spectrum of a single hole in a QD with an arbi-
trary magnetic field is obtained by solving the four-band
Schrédinger equation, Hh|1pih) = E;’W{’) based on Eq. (1),
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FIG. 1. (a) Schematics of a QD confining a valence hole under an electric bias field F = (0,0, F) and a uniaxial stress oy. (b) Schematics
of a Gaussian-function shaped QD with the geometry parameters, H, A, and A, [see Eq. (4) for the definitions]. In the parabolic model used
in Sec. IV, the spatial extents of the QD-confined hole wave function along the « direction (¢ = x,y,z) are characterized by the parameters /.
With the neglect of the shape elongation of the QD, [, = \/lxilv are defined to measure the averaged lateral extent of the hole wave function.
(c) In an electrical g-TM scheme, a controlled bias field F is applied to the QD to tune the wave function extents and lead to the change of
the g-tensor components with respect to a tilted magnetic field B= B(cos 03,0, sin@p). (d) In the g-tensor modulation scheme, the F'-driven
change of g-tensor components is equivalent to the rotation, by an angle g, of the effective field S that is directly coupled to the hole spin. A

full spin control (FSC) requires that 6 = 7.

using the gauge-invariant discretization method developed by
Refs. [38-41] (see Appendix B for more details).

For an applied magnetic field B in an arbitrary direction,
we define the hole g-factor of the QD as

gn(B) = (El(B) — EL(B))/us|Bl, ©)

where 1}/ (') labels the lowest VBM hole state with the
up-spin along (down-spin opposite to) the direction of the
magnetic field. Following the definition, the longitudinal
[transverse] component of g-tensor for a VBM hole in a QD is
determined by g. = (B = (0,0,B)) [gx = gn(B = (B,0,0))
org, = gh(f? = (0, B,0))] with respect to a vertical (in-plane)
magnetic field.

Figure 2(a) [2(b)] presents the numerically calculated
magnetoenergy spectra of an unbiased (F' = 0) GaAs/AlGaAs
QDof H =12 nm, A, =29.4 nm, and A, = 19.6 nm, under
vertical [in-plane] magnetic fields and with different uniaxial
stresses along the x direction. Figure 2(c) [2(d)] shows the
corresponding g,-factor [g.-factor] of the VBM hole in the
dot, as a function of oy, to the stress-dependent spin-split
magnetospectra of Fig. 2(a) [Fig. 2(b)]. The values of the
calculated longitudinal and transverse g-factors of a hole in
the GaAs QD fall into the scales close to those measured by
[47]. One sees that the longitudinal g,-factor of the stressed QD
remains roughly constant against the variation of the applied
stress [see Fig. 2(c)] [48], while the transverse g.-factor is
shown stress sensitive [see Fig. 2(d)]. Remarkably, as the
applied stress turns from compressive to tensile, the sign of g,
is switched from positive to negative and crosses over g, = 0
at a tensile stress, o, ~ 65 MPa. As analyzed in more detail

later, such a high stress tunability of the transverse g-factor
is essentially associated with the stress-induced VBM of hole
and is useful for realizing electrical sign reversibility of hole
g-factor [11,25].

In Fig. 3, we present how an external electrical bias can
be employed to tailor the spatial extents of a hole wave
function of a QD, which will be shown essential in the
electrical tunability of the underlying VBM and the resulting
g-tensors by later analysis. Figure 3(a) shows the numerically
calculated lateral and vertical wave function extents, [j"™
and /7"™ [defined in terms of the spatial standard deviations

of wave function, [J'" = V20, where o, =/((a?) — (01)2)
for o = x,y,z, and [j"" = /l}g”ml‘y‘“m] for the major HH
component of the lowest HH-like state of the QD considered
in Fig. 2 under a vertical bias field varied from F = —30 to
+30 kV/cm. The lateral extent of the hole wave function, /"™,
for the tall asymmetric QD (lacking of the up-down mirror
symmetry) is well F-tunable, while the /"™ is shown not so
sensitive to the variation of F. Figure 3(b) shows the significant
relative variation of the lateral extent of the major-HH and
secondary-LH envelope wave functions over a wide range of
Alg"™ /13" = {—=20%, 4+ 20%} made by the electrical bias
varied between F = {—30 kV/cm,+30 kV /cm}. Figures 4(a)
and 4(c) show the numerically calculated charge densities,
oy (x,¥,20) = |f0’fx(x,y,z())|2, of each y component of the
lowest hole state of the QD without and with an electric field,
on the 7 = 7z plane where the maximum of the major HH wave
function is located. The lateral extent of the major HH lateral
wave function, f ﬁ’ (x,y,20), s seen to be shrunk by the positive
bias, as indicated by Fig. 3(b).
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FIG. 2. (a) [(b)] Numerically calculated magnetoenergy spectra of the lowest hole spin-split states of the tall x-elongated GaAs/AlGaAs DE-
QD with H = 12 nm, A, = 29.4 nm, and A, = 19.6 nm, under vertical magnetic fields B= (0,0, B) [in-plane magnetic fields B = (B,0,0)]
and uniaxially stressed by o, = —100, ...0, ...+ 100 MPa along the x direction. (c) [(d)] The calculated longitudinal [transverse] effective
g-factor, g, [g.], of the stressed QD versus o, corresponding to the spin Zeeman splittings of (a) [(b)].

Corresponding to Figs. 3(a) and 3(b), the numerically
calculated g, and g, as functions of F, of the hole in the
F-biased QD without stress (o, = 0) and with the uniaxial
stress oy, = 70 MPa are presented in Figs. 4(a) and 4(b),
respectively. Overall, the longitudinal hole g-factors, g., are
shown insensitive to the variation of F, while the transverse
hole g-factors are significantly F-tunable. For comparison,
the calculated g, of a flat QD of H = 6 nm with the smaller
degree of VBM is also presented [see the black line with square
symbols in Fig. 4(b)]. In Fig. 4(b), a notable feature is that,
in the absence of stress, the signs of the hole g,-factors of the
unstrained QDs cannot be reversed electrically even with the

(a) F1
12, <-lo—>§l: 12,0
o 8 ;-—lgum ] i 102
Lo i °%
S T 10.5
2; oo o0 00000000
-30-20-10 0 10 20 30
F(kV/cm)

high bias field, F = £30 kV /cm (see the black and blue lines
for the flat and tall QDs, respectively) in spite of the significant
F-driven change of the g, by over 50% (from g, = 0.36 to
gx = 0.63) for the tall QD. In contrast, with the uniaxial stress
o, = 70 MPa at the experimentally accessible scale, the sign
of the g.-factor of the tall QD under the tensile stress can be
reversed with a small bias field, F ~ 10 kV/cm [see the red
line in Fig. 4(b)]. The model analysis presented below reveals
an intrinsic obstacle for electrically reversing the sign of the g-
factor for a single hole in a unstressed QD [12,14,15,19,23,24]
and accounts for why in most existing experiments reversing
the sign of a hole g-factor is technically so challenging [25,49].

(b)
F>0

g 20+ —=—Heavy Hole A P
= 1o ---e-- Light Hole =g
Bo
.. 0 ;

S /./

Ze -10+ -*

q /./' F<0

I 204 ,-* A

-30-20-10 0 10 20 30
F(kV/cm)

FIG. 3. (a) Numerically calculated lateral and vertical wave function extents, /5" and /"™, and (b) the inverse of the relative variation of
the lateral wave function extent, (—A[§"™/[;"™), of the major HH and the secondary LH components of the lowest hole state of the biased tall
DE-QD considered in Fig. 2, versus the applied vertical electric fields F. One sees that the F'-driven variations of the lateral extents of the HH-

and LH-envelope functions are roughly proportional to F.
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FIG. 4. (a) Numerically calculated longitudinal g, and (b) transverse g, factors versus the bias field F' of a single hole in the biased tall QD

of H =

12 nm without (blue triangles) and with (red circles) the uniaxial stress o, = 70 MPa. To highlight the VBM effect, the calculated g, of

aflat QD of H = 6 nm with the smaller degree of VBM is also presented [the back line with square symbols in (b)]. One notes that the sign of the
g, factor of the tall QD under the tensile stress can be reversed with a small bias field, F ~ 10 kV/cm. (¢) The g, and (d) the g, factors calculated
using Eq. (C6) and Eq. (9) based on the parabolic model for a single hole in a tall (flat) QD without and with the uniaxial stress o, = 78 MPa.
The parameters of the hole wave function for the tall (flat) QD are /; = 9.3 nm x (1 £ 20%), [, = 3.3 nm (I, = 1.65 nm), where the relative
lp variation, (—Aly/lp) = {—20%, + 20%]}, corresponds to the variation of the electric field between F = {—30 kV/cm, + 30 kV/cm} [see

Fig. 3(b)].

IV. ANALYSIS AND DISCUSSION
A. Model

For more analysis, we use the harmonic oscillation (HO)
wave functions in the asymmetric 3D parabolic model to
expand the undetermined envelope functions of the hole eigen-
states of elongated DE-QDs, i.e., fi{’x(f) =y, Ci,X,,,qﬁ,f(?),
where ¢ (¥) denotes the HO basis labeled by n = (ny,ny,n;)
with n, =0,1,2,3,... in the spin-y component of hole.
The validity of the simple parabolic model for describing
the low-lying states of DE-QDs has been confirmed by the
previous theoretical and experimental studies [31]. Similar
theoretical model was also adopted in Ref. [19] for studying
the hole g-factors of electrically biased self-assembled InGaAs
QDs but without applied stresses. Owing to the unequal
effective masses of HH and LH, the spatial extents of the
HH- and LH-envelope wave functions of finite-barrier QDs
differ. We thus take the distinctive basis sets for expanding
HH and LH wave functions, which are {gbn } = {(;5n R
and {¢}}) = {¢}} = {#L}, centered at Ry = (0,0,z4) and

RL = (0,0,zL), respectively. Throughout this work, we take
the symbol of composite index, n = (ny,n,,n;), without
a prime superscript [n" = (ny,n,,n,) with a prime super-
script] to specify the HO basis functions for HH [LH]
wave functions. In the model, the lowest HO wave func-
tion for HH/LH is explicitly given by ¢0,(F) = (F|000) =

/ 1 l 2 2 Z \2 :
n;/le/LlH/LlH/L ex P{ 2 ( I-;C/L) + (lHy/L) + (IH/L) ]}7 In terms
y Z

of the parameters of wave function extent, {lf:/f{,y, -}. The other
excited HO wave function can be generated by successively
applying the raising ladder operators onto the lowest state, as
detailed in Appendix A.

By using the Lodwen perturbation theory and treating
the HH-LH couplings as perturbations, the effective 2 x 2
Hamiltonian matrix for the lowest HH-like states of a QD with
arbitrary B is derived and formulated as (see Appendix C for
details)

Hy = =155 -gn- B, (©6)
which is in the VBM-hole basis given by

1) ~ |¢g")I) +Zy,, 65N — Zﬁ BN, (D)
W)~ [og )14 — Zﬁn —me 1) ®)
where 8, = i,,, and y,y = are the (complex) coefficients

for the n’th HO basis in the correspondmg LH components
of a HH-like state, So,,» = (0|S|n’) = [ d°r ¢(000) S¢(nx,n\<,n;)”
Ro.nw = (0|R|n), AS{WL/EE,,L, —Ell= E(ﬁ Y —El, Ell=

((000)| P+Q+Vp|(000)), Ef=((000)'| P—Q+V,p|(000)),
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(a)
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F =20kV/cm
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FIG. 5. (a) Numerically calculated charge densities, p, (x,y,z0) = | f)f(x, v,20)|%, of each x component of the lowest hole state of the
elongated QD for Figs. 2 and 3 without external electric field, on the 7 = zo plane where the maximum of the major HH wave function is
located. (b) Charge densities yielded by the formalisms of the parabolic model in Sec. IV and Table I, with the appropriately fitted parameters
{lf /L} (see text in Sec. IV). (c) [(d)] Charge densities that are calculated numerically [yielded by the model] of each x component of the lowest

hole state of the QD with a vertical electrical field F = 20 kV/cm.

and 0 = (0y,0y,0;) represents the Pauli matrices; gp =
diag(gx,gy,8-) is defined as the effective g-tensor for the hole
doublet. Here, for brevity we take n = 0 (n’ = (') to label the
lowest pure-HH (pure-LH) HO basis function, d)éi L= ¢(%é).

By diagonalizing Eq. (6) for a single hole in a QD with
a B-field, we solve the spin-split energy levels, the wave
functions and the g-tensor of the hole, explicitly in terms of S,
and y,y. As aresult, one can show that the longitudinal g,-factor
is mainly associated with y,, while the transverse one is associ-
ated with §,,, as detailed in Appendix C. For the QD considered
in Figs. 2, 3, 5(a), and 5(c), we take the fitted parameters,
I7'=10.6 nm, /' =82 nm, I =33 nm,[f =9.1 nm,I} =
7.0 nm, lL =4. 5 nm, and the misalignment of the HH- and
LH- envelope wave functions, Azyr = zg — zz = 1 nm. The
parameters of HH wave function extent {{¥} for the QDs
studied in this work are determined by the best fitting of the
numerically calculated envelope wave functions of the major
HH component of the lowest HH-like states. The parameters
{IE} for the LH wave functions are inferred from {//} via the
relationship, L = (mf /mL)!V/* . 1H where o = x,y,z. With
the fitted parameters we calculate the few leading HO terms
in Egs. (7) and (8) using the formulations for 8, and y,/ in
Table I and the algebraic method of HO in Appendix A. Then,
from the solved eigenvector for Eq. (6) in the HO basis, we
obtain the wave functions of each y component of the lowest
VBM hole state of the QD without and with a bias field, whose
charge densities are plotted in Figs. 5(b) and 5(d), showing an
excellent agreement with the fully numerical ones.

B. Sign reversibility of hole g-factors

For the purpose of g-TMR control, the transverse g,-factor
that shows sign reversible with tuning stresses is of interest and
the main focus in our analysis. Taking the HO basis functions
up to the d-shell and preserving the most leading terms in
Egs. (7) and (8), the transverse hole g, -factor of a stressed QD
under an in-plane magnetic field, B = (B,0,0), is derived as

&x ~ ao00Booo + boooBooo + Po20B020. 9
where agg = —%, booo = 2\/6)/3()»(000),(200)' — A(000),(002 )

and bo = —2v/6(y3 — ¥2)A000),00075 A = (91 |@L) is the
overlap between the HO basis functions for HH and LH.
The nonorthogonality of ¢/ and ¢% leads to A, # 0 even
for n # n’ (see Appendix C). For brevity of formalisms, we
neglect the anisotropy of QD and redefine the parameter
lp =117 (=93 nm) to measure the average lateral extent of
wave function hereafter. The explicit formalisms of the leading
B, and y,, in terms of wave function extents, {/,}, and
effective masses, mg / L, are listed in Table 1. Equation (9)
shows the correlation between the transverse hole g-factor
and the VBM terms, Byoo and Bgyo. The first term in Eq. (9)
(aoooBooo) 1s due to the weak spin Zeeman term of Eq. (3).
The latter two terms involving ,3000 and Bopo are induced by
the B-induced vector potential A and dominate the electrical

and strain-field-dependent features of the transverse g-factor.
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TABLE I. Formulations of the leading 8, and y, in Eqgs. (7) and (8), which are derived in the 3D parabolic model under the approximation

ly =171 51.=12". The anisotropic HH (LH) effective masses are m{ =m[ =m{ = 5, and mf = = 2y2 (my =mli =mj = ynlyz and
L __ 1 — H| L
7 = m) )\nn’ = <¢n |¢n’>'
n= (nxnynz) Bn
(000) Booo = 111814952000, 000' «/>
H(E) ) (£) V=t
(110) Bio = l«[(ﬁ)ﬁozo
mk m
(020) Bozo = { - (L- )2 o/t 2000,000 — 2v/2A000,200
y1—2y2 \o ﬁ \/> m”
n= (nxnynz) Vn
L L 1 m
(100) oo = 3285 (5) P (50 () honsor
(010) Yoo = (— 1)7/100
mL 1
(101) Yiol = —V:[Jz/f,z (ﬁ)g\/m\*/i/*(m )4 (m ) (000,000 — v/22000,200 — /2 X000,002')
011) Yo = (—)Y1o01
Analytically, one can show that To illustrate how the g-TMR scheme functions, let us
reformulate Eq. (6) as
1 1d|Sss051 . N , 1 . - o -
Booo(os) = 1918445 Aooo, 000 — = o oy, (10) H;, = ~5HB0 " 8n- B= _EE - Q, (13)
(o) G (1) V/mt =/
2 B where a VBM hole in a QD under a magnetic field can be
Box(F) = _“/_6 73 <l2> _vmy viewed as a pseudospin 7 that is coupled to an effective field
2 y1—2p ymi — ,/mL defined by
= “B
mb 1 Q=(2.92,.9)" = —=(2:Bu.g)Byg:B)',  (14)
N —7 (X000,0000 — 2/ 2 000,200') Z (11)
I

The above equations show that Byy is tunable by stress oy

while By is stress irrelevant but dependent on the electrically
tunable /. From Egs. (9) and (11), it is predicted that g, -factor
increases with increasing the vertical electrical field F acted on
a QD (since greater F smaller /). The predicted F' dependence
of the g.-factor is consistent with the analysis and computed
results in Ref. [19]. Notably, the inverse quadratic dependence
of Bpao on electrically tunable [y indicates that, without any
external stress oy = 0, it is hard to make the sign reversal of
g» by simply using electrical field. This accounts for why,
in most existing experiments, electrically reversing the signs
of hole g-factors for semiconductor nanostructures remains a
challenging task [12,14,19,25].

According to the strong (weak) F' dependence of the [ (/,)
shown in Fig. 3(a), we shall consider /j as the sole F-tunable
parameter and treat [, in the model analysis presented below.
With a bias field varied from F to F' = F + AF, leading to
lo = Iy = lp + Aly, the g,-factor of a hole in a biased QD
under a constant stress is varied by Ag, = g.(lj) — gx(lo)
[Bo2o0(() — Bo2o(lo)] according to Eqgs. (9) and (11). Thus the
electrical tunability of g,-factor is measured by

Bozoy _ . 2
aly

08x
dlo

=tp = —1—,3(020), (12)
0

being proportional to Bp0).

whose orientation is determined not only by that of the external
B field but also by the anisotropy of the g-tensor components.
In other words, if each of the g-tensor components could be
changed, say from {go— .} to {g,_, .}, equivalently the

resulting effective field is rotated from Qo & by a phase
angle 6g, as illustrated by Fig. 1(d). Following Ref. [11], a
FSC is achievable if the effective field € could be rotated
by 90°, ie., - Q' =0 or 6 = 7. Considering a magnetic
field lying on the x — z plane, B = (By,0,B;), the condition
of FSC over the spin of the QD-confined hole under the B field
is fulfilled with

8- 8 = —lg.I*tan’6p <0, (15)

where g = tan™ B— and that g} ~ g is taken.

According to Eqs (C6), (C8), (9), and Table I, we calculate
the g.- and g,-factors of a hole in the biased tall [flat]
QDs with the electrically varied [y = 9.3 nm x (1 £ 20%)
as presented in Fig. 4(c) [4(d)], where Aly/ly = £20%
correspond to F = F30 kV /cm according to Fig. 3, and the
parameters o = 9.3 nm and /, = 3.3 nm [1.65 nm] are taken.
To reproduce the numerical data of the stressed QD presented
in Figs. 3(c) and 3(d), the applied stress to the QD is set to be
05,0p ~ 78 MPa that enables the sign reversal of the g,-factor
at the same small bias. Compared with the numerical results
of Figs. 4(a) and 4(b), the model calculations well produce
the F-dependent features of the longitudinal and transverse
g-factors of the stressed and unstressed QDs, but slightly
overestimate the magnitude of the critical stress, o ,,, that
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makes the g,-factor nearly vanishing and the optimal control
over the sign of the g,-factor.

To make a g.-factor well tunable so as to reverse its sign,
one naturally attempts to raise the electrical tunability, ¢5.
According to Eq. (12), this can be achieved by increasing the
magnitude of |Bpy|, which is greater in a taller QD [since
| Bozo| o 12 according to Eq. (11)]. In Figs. 4(b) and 4(d),
however, no such sign reversal of the g.-factor happens for
the un-stressed tall QD even as the applied bias field is driven
over the wide range of F = +30 kV/cm. This is because the
greater |Bgyo| of a taller QD leads to the greater magnitude of
gx-factor (g, o< Boo) as well and makes the sign switch even
harder [see Egs. (9), (11), and (12)].

To decrease the magnitude of g.-factor and to make the
sign reversal easier, we turn to considering a flat QD with
H = 6 nm and the same side lengths. Indeed, as one expects,
the numerically calculated g,-factor [shown by the black
line in Fig. 3(d)] of the flat QD is overall smaller than that
of the tall QD but still cannot reverse its sign even with
F ~ £30 kV/cm (correspondingly, Aly/ly ~ F20%). This is
because the degree of VBM in the flat QD is small and so is
the resulting electrical tunability of g,-factor, 15 o B [see
Eq. (12)]. The predicted size dependence of the transverse hole
g-factor of the QD is consistent with the theoretical analysis
for Fig. 4 in Ref. [19]. The simple analysis above accounts for
why it is so difficult in most experiments to achieve the sign
reversal of transverse g-tensor components by pure electrical
means [14,16,17,19,25].

In turn, according to Egs. (9) and (10), imposing a uniaxial
stress onto a QD creates a stress-tunable component of Bygo
and can offset the transverse g-factor to be nearly zero if
the applied stress is appropriate. Importantly, the application
of a uniaxial stress can decrease the magnitude of the g,-
factor but does not affect the F' tunability of g,, fr, which is
associated with only the stress-irrelevant VBM, By, as shown
in Eq. (12). The red line with filled circles in Fig. 4(b) shows
the numerically calculated g,-factor versus the applied F for
the tall QD under a tensile uniaxial stress of 70 MPa. One sees
that the g,-factor of the unbiased QD is mechanically offset
to nearly zero and, with keeping the same high F tunability,
the sign of g,-factor can be reversed by a small bias field F' ~
10 kV /cm [corresponding to a slight wave function variation,
[ALG"™ /13| ~ 5%, as seen in Fig. 3(b)].

C. Stress-assisted full spin control

Finally, we shall extend the model analysis to explicitly
derive the general FSC condition, in terms of F-driven wave
function variation and the strength of stress, for a hole spin
in a DE-QD. Following Eq. (14), the condition for a FSC
over a hole spin in a F-bias QD under which the two F-
switchable effective fields, $ and €/, are perpendicular to

each other (i.e., 0 = cos™! I?i%z_l = 1 /2) is derived as
—1 gxg;/c + |gz|2tan 98

g = cos

=x/2,

Vgt + lg.|* tan? 0p./g? + | g.|* tan? O

where a tilted magnetic field, B=
0p =tan~' 2 and g, = g/ is taken.

(By,0,B,), is considered,
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FIG. 6. (a) Contour plot of the calculated rotation angle 6 of
the effective field  for a biased and stressed DE-QD within the
parabolic model as a function of F-driven Aly/ly and the magnitude
of the applied uniaxial stress o;. The condition for a full spin control
(FSC) is g = m/2. It is shown that a FSC is feasible only as the
biased QD is stressed. (b) The calculated angles 6, as functions of
Aly/ Iy for the QD without stress (o, = 0) and with the optimal stress
(05,0p = 78 MPa) that requires only a small wave function variation,
|Aly/ly| 2 2.5%, for FSC (the regime highlighted in yellow).

In Fig. 6(a), the calculated angle 6 of the F-rotated
effective field for a hole spin in a stressed QD with 85 = 0.1°
by electrical bias F is presented as a function of the F'-induced
Aly/ly and the stress o,. In the absence of stress (o; = 0,
marked by the black horizontal arrow), the rotation angle of
the effective field induced by F remains always too small
(fq <« m/2) to make a FSC. By contrast, a FSC (the yellow
region where 0g = m/2) is shown achievable with a small
F-induced minimal wave function variation, |Aly/lo| < 5%
(corresponding to F ~ 10 kV/cm, far below the applied
bias in the most existing experiments controlling g-factors),
under the optimal stress oy ,, = 78 MPa (marked by the red
horizontal arrow) [25]. The constructive effect of mechanical
stress on the controllability of the g-tensor and the resulting
effective field is illustrated in Fig. 6(b) by the comparison of the
calculated 6q’s as a function of the Aly/ [y for the QD without
stress (o, = 0) and with the critical stress (o5 = 05,.p). It is
apparently seen that only the latter can make a FSC feasible.

V. SUMMARY

In summary, we have carried out a theoretical investigation
of the g-factor tensors of single holes confined in droplet
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epitaxial GaAs/AlGaAs QDs under electrical and mechanical
controls within the four-band Luttinger-Kohn k - p model in
both numerical and analytical manners. Our studies reveal and
identify an intrinsic obstacle for a hole spin in a QD solely with
electrical control to realize the scheme of electrical g-tensor
modulations for a full spin coherent control. As a main
constructive result, we show that, besides electrical gating,
slightly stressing a QD can dramatically drop the magnitude of
the required electrical bias for the sign reversal of the g-factor
and makes feasible the full spin control over the QD-confined
hole.
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APPENDIX A: 3D PARABOLIC MODEL

In the 3D parabolic model for a DE-QD, the confining
potential for a pure HH or a pure LH in the dot is

para 1 H/L, H/L\2 2

modeled by  Vjp (x,y,2) = Boamyy3Ma’ (0o’ 7) 0,

H_ H _ _1 H_ _1 L _ L _ _1_

where mx1 =my = oo M= S, My = my = S
L _ H¢, HY2 _ o L¢, LY

my =5, and m) (v, )" = m;(w,)” is fulfilled to make

same the confining potential for HH and LH. In the model,
the HO wave functions of a pure HH or a pure LH in a
QD are solvable and taken in this work as basis functions
for expanding the undetermined VBM hole states of QDs
with the HH-LH couplings in the four-band k - p scheme.
The lowest HO wave function for a pure HH/LH in the

parabolic model is explicitly given by qbgéé)(?) = (F]000) =

1 1 2 ) \2 2 .
| 7372 7L 7L L eXP{_Q[(Iff/L) + (IH}/L) + (IHZ/L) 1}, mn
X y Z X y z

terms of the parameters of wave function extent, {lf:/f,y,z},
that are implicitly defined by wi/" = mf,/L W Defining
—thg’“mf“ Bl 2 i)
with @ = x,y,z, the other excited HO wave function can be
generated by successively applying the operators onto the
lowest HO state, i.e., [@, .n,.n)) = (@)™ (a;“)"v"(a;“)”f |000),
which follows the simple algebra a}|n,) = /ng + 1|ng + 1)
and aq|ny) = \/nglne — 1). Reformulating the operators of

the ladder operators, aX =

. .. . L L
linear momentum and position as ke = i/ "4 (a;} — a,) and

h
Lol
2mlwk

o= (af + aq), the full Hamiltonian of Eq. (1), as a

function of 7 and E, for a hole in a QD can be expressed in
terms of ¢, and enables us to carry out the analysis using the
algebraic method.
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APPENDIX B: GAUGE-INVARIANT
DISCRETIZATION METHOD

To solve the multiband Schrodinger equation, Hh|1p}’> =
E!"|y!), based on Eq. (1) for a single hole in a QD with a
magnetic field, we employ the gauge-invariant discretization
method established by Refs. [38—41]. In the implementation of
the theory, we first discretize the hole envelope wave in the real
space functions in a set of uniform rectangular grids, denoted
by {(xi,yj,zx)} with i =0,1,2,...,N,, j=0,1,2,...,N,,
and k = 0,1,2, ...,N,, uniformly spaced by x;+; — x; = Ax,
Yj+1 — ¥ = Ay, and zx41 — 2 = Az, respectively. For high
accuracy of the numerical method, the number of the grids
should be set great enough to ensure the wave functions
approaching nearly zero at the terminal grids (i, j,k = 0, N,,
Ny, or N;), and the spacings between grids as small as possible
to minimize the interpolation errors. In the computations for
the elongated QDs, we take the rectangular grids 80 x 60 x 96
for a rectangular volume, 80 nm x 60 nm x 24 nm, which
contains the computed QD at the center position. Following
the theory in the finite difference scheme, an envelope wave
function under the successive action of generalized differential
operators is approximated by

A2 ~ S
Dy, fijx = W[Ui,j,k Sajaos. — 20k

+U 5% faim-s.]s
1 4
m[%’jkm

B

Dy Dg fijx ~ Uk fiin+sas,

—Sp Se o
- U(ijk)+§a Ui, Jak f(l/k)+sa—-ws

55 S £
- U(ijk)—fa Ui.j,k f(uk)—swf;s

—% —8,
+ Uiy, Ui i Jiitr—sa—ss ) (B2)

where ﬁi,j,k) = f(xivijzk)s avﬂ =X,¥,2, §X = (17070)’ §y =
(0,1,0), 8. = (0,0,1), and

; el
Uiii = exp[—z gE(Aa,(i,j,k) + Aa,(i,j,k)ifa)(:bAa):|~ (B3)

As examples of Eqs. (B1) and (B2), D? f;;; and
D, ﬁy fi.jx are, respectively, approximated by

N 1
2 ~ (1,0,0)
D fijux = m[U(i,j,k) S+t — 2 fi.jho

(=10,

+USY fimrin)s (B4)

A 1
N 01,00 71,00 »
DD,y fi 3AxAy [U(i+1,j,k)U(i,j,k) Jat1,j+1.0

(0,—1,0) 77(1,0,0)
- U(i+1,j,k)U(i,j,k) f(i+1,j71,k)
(0,1,0) (=1,0,0)
_U(i—l,j,k)U(i,j.,k) f<l'—1v1'+1»k>

(0.~1,0) 7,(~1,0,0)
+U i oUi e fi-1j-10].  (BS)

Figures 7(a) and 7(b) schematically illustrate the first terms in
Egs. (B4) and (BS5), respectively.
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(@) (b)
(1,0,0) (1,0,0)77(0,1,0)
U(z 4.k) f;+1 9.k U(t J.k) U (i+1,45,k )f;—O—l,j—&-l,k
fovt ek
@
E (xi+1’yj+1vzk )
i {7 (0.L0)
i (7+1,J~,k}‘
i
(1,0,0) i 1,0,0
(mi,yj,zk) (mHl,yj,zk) (xwyj"zk,) (:cz-H,yj,zk)

FIG. 7. Schematic illustration for computing the first term, (a) ﬁf fi+1,j.k» in Eq. (B4) and (b) D, ﬁ). fi+1,j+1.¢ in Eq. (BS) in the gauge-

invariant discretization method [38—41].

APPENDIX C: MODEL ANALYSIS FOR HOLE
EIGENSTATES AND g-FACTORS

Using the Lowden perturbation theory, one can reduce the
Hamiltonian matrix of Eq. (1) in the complete product basis
of HO functions and the Bloch functions to an effective 2 x 2
Hamiltonian matrix for the lowest hole doublet of a QD with
a magnetic field, as derived as

H/ — HT/T " HT,T s C]
h — H/ H ’ ( )
vy Ay
with
1S0.i71* + | Ro.iv|*
R
o2 o2
[So 0 1° + IRy |
Hjy = E{' + ugB. — ZOT (C3)
0,n’
, wp(Bx —iBy) Rooy + (RMoo
Hyy = HL
V3 AflE
—Sow(RY )* + Row (S50
o Z . HL > - (CH
n' A() n'

Under the perturbation treatment, the HH-like basis, |{}) and
|1}, for the effective hole Hamiltonian Eq. (C1) are expanded
as Egs. (7) and (8), with the VBM coefficients given by

By = i‘},”L and y, = iOH"L. In the 3D parabolic model, the

matrix elements of Egs. (C2) (C4), and the VBM coefficients
in Egs. (7) and (8) can be derived as functions of the QD
parameters, {/,}, the hole effective masses, and the magnetic
field. Taking only the few leading terms in Eqgs. (7) and (8) (as
listed in Table I), the eigenstates, energies, and the resulting g-
factor of a hole in a QD with a magnetic field can be computed
seminumerically or even analytically, as presented below.

1. Longitudinal magnetic field

Substituting (E = (0,0, B,)) into Egs. (C1)—(C4), one de-
rives the effective Hamiltonian for the lowest hole doublet of

a QD in a longitudinal magnetic field,

o Hi 0 o,
H,(B =(0,0,B,)) = 0 H = _gzMBBZE’
Y

((O))

from which the effective g,-factor is implicitly defined, and
after some algebra derived as

wreasin(4)(25) ()

X [A(000),(001y Y100 — (A(000), 000y
+ \/5)»(000),(20())’ - \/5)»(000),(002)')1/101],

where Ag, = (d)OH |¢>L) is the overlap between the HO-wave
functions for HH and LH. In the derivation of the g-tensor for
a hole in a QD with B we expand B, and y, as functions
of B up to the linear term of B,, neglect the other higher
order terms of B, and take the approximation that [, =/, = Iy
and [, <« ly. Under the simplifications, the few leading §,, and
¥, as functions of /y and /, are summarized in Table 1. For
the QDs studied in this work, we consider the misalignment
of the HH and LH wave functions, Azy; = zy — z;, = 1 nm,
which leads to nonvanishing Aow = [ d°r ¢y, @ . .y for

n #0.

(Co)

2. Transverse magnetic field

For B = (B,,0,0), we derive the effective hole Hamiltonian
as
» How \_ . oo
Hy(B = (B,,0,0)) = Hy,, 0 = _gx/LBBx?
(C7)

from which the effective g,-factor is derived as

4
&~ | ——= + 2v/6y3(A000).200y — A000).002y) | Booo

V3
+ 2¢/62 000y, 000y (75 — ¥2)(—B(020y)s

where [, =1, =l and [, < [y is assumed. Equation (C8) is
rewritten as Eq. (9) in the main text.

(C8)
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