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Full counting statistics of information content and particle number
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We consider a bipartite quantum conductor and discuss the joint probability distribution of a particle number in
a subsystem and the self-information associated with the reduced density matrix of the subsystem. By extending
the multicontour Keldysh Green-function technique, we calculate the Rényi entropy of a positive integer order
M subjected to the particle number constraint, from which we derive the joint probability distribution. For
energy-independent transmission, we derive the time dependence of the accessible entanglement entropy, or the
conditional entropy. We analyze the joint probability distribution for energy-dependent transmission probability
at the steady state under the coherent resonant tunneling and the incoherent sequential tunneling conditions. We
also discuss the probability distribution of the efficiency, which measures the information content transferred by
a single electron.
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I. INTRODUCTION

Entanglement, a nonlocal correlation existing only between
quantum systems [1,2], has been a topic of intensive study due
to its essential role in quantum information processing [3]. The
prototype of an entangled state is a Bell state, e.g., spatially
separated two spin half atoms forming the spin singlet state
[2,4]. About a decade ago, various setups to generate entangled
fermions in mesoscopic conductors were proposed [5]. It has
been pointed out that such an entanglement can be created
by applying a source-drain bias voltage to a tunnel junction:
When the applied source-drain bias voltage raises the chemical
potential of one lead, e.g., the right lead, an electron moves
from the right lead to the left lead and a hole remains in the
right lead. The electron-hole pair spreading between the left
and right leads created in this way can be regarded as a Bell
state [5,6]. Several measures for detecting entanglement have
been proposed. The violation of the Bell inequality [2,7,8] can
be tested experimentally by measuring correlation functions,
i.e., the current noise [9–12]. The entanglement witness is
another measure and is applied to Kondo systems [13].

Theoretically, a tractable measure of bipartite entanglement
is entanglement entropy [5,14,15], or Rényi entanglement
entropy [16–19]. Suppose we partition our system into
complementary subsystems A (the left lead and the quantum
conductor) and B (the right lead) (Fig. 1). Then the partial trace
of the density matrix of the total system ρ̂ over the subsystem
B degrees of freedom,

ρ̂A = TrBρ̂, (1)

defines the reduced density matrix. Rényi entanglement
entropy is given by [20,21]

SM = TrA
[
ρ̂M

A

]
, (2)

where TrA means the partial trace over the subsystem A degrees
of freedom. The operator of the entanglement spectrum
[22,23],

ÎA = − ln ρ̂A (3)

(we choose base e), may be interpreted as the operator of
the self-information associated with an outcome described
by the reduced density matrix. The first derivative of the

Rényi entropy in terms of M produces the average, i.e., the
entanglement entropy,

〈ÎA〉 = −∂MSM |M=1 = TrA[ρ̂AÎA]. (4)

In the present paper, we refer to (4) as “full entanglement
entropy” [15]. The Rényi entanglement entropy of a positive
integer order M is, in principle, measurable by preparing M

copies of the total system [24,25]. In a bosonic optical lattice,
the Rényi entropy of order M = 2, i.e., the purity [3], has been
measured experimentally [26]. Recent studies have revealed
that entanglement entropy and the entanglement spectrum are
useful for characterizing quantum many-body states [27] and
topological states of matter [22,23].

Several early works [5,15,28,29] pointed out that the full
entanglement entropy defined in Eq. (4) does not rule out
superpositions of different particle number eigenstates, which
cannot be created and measured locally. Therefore, such
superpositions are inaccessible as quantum resources [5,28].
To take this “local particle number superselection rule” [28,29]
into account, we consider the reduced density matrix after
measuring the particle number and obtaining the measurement
result NA,

ρ̂A,NA
= �̂NA

ρ̂A�̂NA

P (NA)
, (5)

where �̂NA
is a projection operator onto sectors with electron

number NA in the subsystem A, and

P (NA) = TrA
[
�̂NA

ρ̂A

]
, (6)

is the probability of finding NA particles. “Accessible en-
tanglement entropy” [5,15,28] is the weighted sum of the
entanglement entropy associated with the density matrix (5),

〈J 〉 = −
∑
NA

P (NA)TrA[ρ̂A,NA
ln ρ̂A,NA

]. (7)

We observe that accessible entanglement entropy (7) can be
regarded as a conditional entropy, which quantifies the average
uncertainty associated with the quantum state ρ̂A after the
number of particles NA is known [15,21]. In addition, in
our previous work we considered the probability distribution
of self-information [30]. Therefore, the above observation
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FIG. 1. A quantum conductor (a single-level quantum dot) cou-
pled to left and right leads. We partition the system into subsystems A

and B and trace out the degrees of freedom associated with subsystem
B. Subsystem A consists of the quantum conductor (the dot) and the
left lead. Subsystem B consists of the right lead.

motivated us to consider the interplay between the fluctuations
of self-information and those of the particle number.

In the present paper, we consider the Rényi entanglement
entropy of order M subjected to the particle number constraint,

SM (NA) = TrA[(�̂NA
ρ̂A�̂NA

)M ]. (8)

We will relate this to the information-generating function
[31,32], which is the Fourier transform of the joint probability
distribution of self-information and particle number (12). We
will also demonstrate that the Rényi entanglement entropy
related to the probability distribution of J , Eq. (21), could
be the weighted sum of the Rényi entanglement entropy
associated with the reduced density matrix after measuring
the particle number, Eq. (5), as

RM =
∑
NA

P (NA) TrA
[
ρ̂M

A,NA

]
. (9)

This expression is a derivative of Eq. (8), as we will see
later in Eq. (22). Therefore, our task is to calculate the Rényi
entropy under the particle number constraint, Eq. (8). We will
extend the multicontour Keldysh Green-function technique
[30,33,34] to account for the particle number constraint.
The advantage of this approach is that the discrete Fourier
transform of the multicontour Keldysh Green function [30] is
reduced to the modified Keldysh Green function [35–42] used
in the theory of full counting statistics [43]. Therefore, it is
possible to utilize standard Keldysh field theory techniques
[44–46].

As an example, we will apply our framework to a simple
model, namely the spinless resonant level model. We will
present the time dependence of the accessible entanglement en-
tropy and the joint probability distribution of self-information
and particle number. We will point out that for energy-
independent transmission, there is a perfect linear correlation
between the self-information and the particle number. In this
case, one can deduce the entanglement entropy by counting
the number of transmitted electrons.

We will further consider an analogy between the informa-
tion entropy and the thermodynamic entropy. Recently, the
probability distribution of the efficiency or the coefficient of
performance (COP) defined as the fluctuating output work
divided by the fluctuating input heat have been discussed
[47–53] in the context of stochastic thermodynamics [54].
Motivated by these studies, we consider the probability
distribution of the COP (101), which measures the information
content carried by a single electron. It is analogous to the
COP of the Peltier effect, which is the fluctuating output heart
current divided by the fluctuating input charge current [52]. We

demonstrate the tradeoff between the amount of information
content carried by a single particle and its uncertainty.

The structure of the paper is the following. In Sec. II, we will
introduce the joint probability distribution of self-information
and particle number and the probability distribution of condi-
tional self-information. In Sec. III, we will present the replica
method for calculating the Rényi entropy of integer order
subjected to the particle number constraint. In Sec. IV, we
will introduce the spinless resonant level model as a simple
example. Then we summarize the multicontour Keldysh Green
function modified with the particle number counting field.
In Sec. V, we present an explicit form of the Rényi entropy
subjected to the particle number constraint. We analyze the
time dependence of the accessible entanglement entropy and
the probability distribution of conditional self-information.
In Sec. VI, we analyze the joint probability distribution of
self-information and particle number at the steady state. Then
we discuss the analogy between the thermoelectric effect,
the Peltier effect, and our information transmission setup
in Sec. VII. After a short discussion on a connection to
experiments in Sec. VIII, we summarize our results in Sec. IX.

II. FULL COUNTING STATISTICS

A. Joint probability distribution

After the projection measurement of the number of particles
in subsystem A, the self-information operator (3) can be
modified as

Î ′
A = − ln ρ̂ ′

A, (10)

where

ρ̂ ′
A =

∑
NA

�̂NA
ρ̂A�̂NA

. (11)

The prime indicates that the operator is written with the density
matrix after the projection measurement. The joint probability
distribution to find I ′

A and NA can be written as

P (I ′
A,NA) = TrA[�̂NA

ρ̂A�̂NA
δ(I ′

A − Î ′
A)]. (12)

The information-generating function [31], i.e., the characteris-
tic function of the probability distribution of self-information
subjected to the particle number constraint, is

S1−iξ (NA) =
∫

dI ′
AeiξI ′

AP (I ′
A,NA)

= TrA[(�̂NA
ρ̂A�̂NA

)1−iξ ]. (13)

The information-generating function is obtained from the
Rényi entropy (8) by extending M to 1 − iξ . The Rényi
entropy (8) is related to the probability (6) as

P (NA) = S1(NA). (14)

We perform the Fourier transform in NA and introduce the
information-generating function, which we refer to as the
modified Rényi entropy,

SM (χ ) =
∑
NA

SM (NA) eiχNA = TrA
(
eiχN̂A ρ̂ ′ M

A

)
, (15)

where N̂A is the number operator of electrons in subsystem A.
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A joint moment is calculated by the derivative of the
information-generating function with respect to the counting
fields χ and ξ as〈

Î ′ �
A N̂m

A

〉 = TrA
(
ρ̂ ′

AÎ ′ �
A N̂m

A

)
= ∂iξ

�∂iχ
mS1−iξ (χ )

∣∣
χ=ξ=0. (16)

Since the self-information operator and the particle number
operator commute [Î ′

A,N̂A] = 0, it is a classical correlation
function. Similarly, a joint cumulant is〈〈

I ′
A

�
NA

m
〉〉 = ∂iξ

�∂iχ
m ln S1−iξ (χ )

∣∣
χ=ξ=0. (17)

The explicit form of the first cumulant, the average of the
self-information operator (10), is

〈〈I ′
A〉〉 = 〈Î ′

A〉 = −TrA(ρ̂ ′
A ln ρ̂ ′

A). (18)

This can be regarded as the joint entropy, which measures the
average uncertainty associated with the quantum state ρ̂A and
the particle number NA [3,21]. Expressions of second joint
cumulants, the variance, and the covariance are

〈〈
I ′
A

2〉〉 = 〈
δÎ ′

A

2〉
, (19a)〈〈

NA
2
〉〉 = 〈

δN̂A
2〉
, (19b)

〈〈I ′
ANA〉〉 = 〈δÎ ′

AδN̂A〉, (19c)

where δÎ ′
A = Î ′

A − 〈Î ′
A〉 and δN̂A = N̂A − 〈N̂A〉. The corre-

lation coefficient r , which measures how two fluctuating
quantities I ′

A and NA are linearly correlated, is defined as
[52,55]

−1 � r = 〈〈NAI ′
A〉〉√〈〈

I ′
A

2〉〉〈〈
NA

2
〉〉 � 1. (20)

The correlation coefficient takes the maximum (minimum)
value 1 (−1) when two quantities are linearly dependent, I ′

A =
αNA + const, with positive (negative) slope α [56]. Therefore,
when r = ±1, there exists a one-to-one correspondence
between the self-information and the particle number. In such
a case, one can deduce the entanglement entropy by measuring
the particle number.

B. Probability distribution of conditional self-information

Once we measure the particle number of the subsystem
A and obtain the result NA, the uncertainty is reduced
by − ln P (NA). The conditional self-information J is the
self-information under the condition that NA is known. Its
probability distribution may be defined by utilizing the joint
probability distribution function (12) as

P (J ) =
∑
NA

∫
dI ′

AP (I ′
A,NA)δ(J − I ′

A − ln P (NA)). (21)

Then the information-generating function [31,32] becomes

R1−iξ =
∫

dJ eiξJ P (J ) =
∑
NA

S1−iξ (NA)S1(NA)iξ . (22)

The information-generating function Eq. (22) is obtained from
Eq. (9) after the analytic continuation M → 1 − iξ . The nth

cumulant is calculated as

〈〈J n〉〉 = ∂n
iξ ln R1−iξ |ξ=0. (23)

Here we utilized the normalization condition; see Eq. (33). One
can check that the first derivative reproduces the accessible
entanglement entropy (7), which is also rewritten in the
following form [15]:

〈〈J 〉〉 = 〈〈I ′
A〉〉 − H (NA). (24)

This is the chain rule [3,21] connecting the conditional entropy
to the joint entropy (18) and the Shannon entropy associated
with the probability distribution of the number of particles (6),

H (NA) = −
∑
NA

P (NA) ln P (NA). (25)

We remark that the joint entropy (18) is equivalent to
the full entanglement entropy (4) for certain situations.
For nonsuperconducting leads, the conservation of the total
particle number ensures that the reduced density matrix at time
τ , ρ̂A(τ ), and the local particle number operator N̂A commute
(Appendix A),

[ρ̂A(τ ),N̂A] = 0. (26)

Therefore, the reduced system is always a statistical mixture
of states with different particle numbers. By using Eq. (26),
one can check

ρ̂ ′
A(τ ) =

∑
NA

�̂NA
ρ̂A(τ )�̂NA

=
∑
NA

�̂2
NA

ρ̂A(τ ) = ρ̂A(τ ). (27)

In this case, the joint entropy (18) is equal to the full
entanglement entropy (4),

〈Î ′
A〉 = 〈ÎA〉. (28)

By combining it with Eq. (24), one can relate the accessible
entanglement entropy to the full-entanglement entropy [15] as

〈〈J 〉〉 = 〈IA〉 − H (NA). (29)

Equation (28) is not necessarily valid when the total particle
number is not conserved. For example, when we consider a
superconducting lead within the mean-field approximation,
we break the U(1) gauge symmetry and consequently the
conservation of the total particle number. In general, the
particle number operator and the reduced density matrix do
not necessarily commute,

[ρ̂A(τ ),N̂A] �= 0. (30)

In this case, the joint entropy (18) and the full entanglement
entropy (4) are different,

〈Î ′
A〉 = −

∑
NA

TrA(�̂NA
ρ̂A(τ )�̂NA

ln �̂NA
ρ̂A(τ )�̂NA

)

�= 〈ÎA〉. (31)

C. Universal relations

The modified Rényi entropy (15) and the
information-generating function (22) satisfy the normalization
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condition,

S1(χ = 0) =
∞∑

NA=−∞

∫
dI ′

AP (I ′
A,NA) = 1, (32)

R1 =
∫

dJ P (J ) =
∑
NA

S1(NA) = 1. (33)

There exist universal relations formally similar to the
Jarzynski equality [57,58]. The Rényi entropy (2) satisfies a
universal relation (Eq. (8) in Ref. [30]),

S0 = 〈eIA〉 =
∫

dIAP (IA)eIA = rank(ρ̂A), (34)

which is the size of available states in the Fock space.
There exist universal relations associated with the information-
generating functions (13) and (22). The information-
generating function (13) satisfies

S0(NA) =
∫

dI ′
AeI ′

AP (I ′
A,NA) = rank(�̂NA

ρ̂A�̂NA
), (35)

which is the size of available states in the Fock subspace
containing NA particles. The information-generating function
(22) satisfies

R0 = 〈eJ 〉 =
∫

dJ eJ P (J ) =
∑
NA

S0(NA)P (NA). (36)

If P (J ) � 0, by applying Jensen’s inequality to Eq. (36),
we obtain the “second law of thermodynamics” [57,58] for
accessible entanglement entropy,

〈J 〉 � ln
∑
NA

S0(NA)P (NA). (37)

III. RÉNYI ENTROPY SUBJECTED TO A PARTICLE
NUMBER CONSTRAINT

A. Replica method

In this section, we introduce the multicontour C and express
the Rényi entropy of a positive integer order M subjected
to the particle number constraint (8) by exploiting it. The
particle-number projection operator is

�̂NA
=
∫ π

−π

dχ

2π
ei(N̂A−NA)χ . (38)

By utilizing the property, �̂2
NA

= �̂NA
, the modified Rényi

entropy (15) is expressed as

SM (χ ) =
∫ π

−π

dχM

2π
· · · dχ1

2π
2πδ(χ − χ̄) SM ({χm}), (39)

where χ̄ = ∑M
m=1 χm and

SM ({χm}) = SM (χ1, . . . ,χM ) = TrA[eiχMN̂A ρ̂A · · · eiχ1N̂A ρ̂A].
(40)

Averages over phases between adjacent reduced density
matrices imply the lack of a particular phase reference between
subsystems A and B [29].

The full density matrix at time τ is prepared in the following
manner. Following the standard procedure of nonequilibrium

quantum transport problems (see, e.g., Ref. [59]), we assume
that initially subsystems A and B are decoupled and that
each subsystem is in equilibrium. Then the initial full density
matrix is

ρ̂eq = ρ̂Aeqρ̂Beq. (41)

The full density matrix evolves during time τ as

ρ̂(τ ) = Û (τ )ρ̂eqÛ (τ )†, Û (τ ) = e−iĤ τ , (42)

where Ĥ = Ĥ0 + V̂ . The nonperturbative Hamiltonian is
Ĥ0 = ĤA + ĤB , where ĤA and ĤB are Hamiltonians of
the subsystem A and the subsystem B, respectively. The
perturbation Hamiltonian V̂ describes the coupling between
the two subsystems.

For a positive integer M , the modified Rényi entropy (40)
is calculated [30] by exploiting the replica method [60] and
the multicontour Keldysh Green-function technique [33,34].
We introduce M replicas of the subsystem B and introduce
operators associated with the mth replica (m = 1, . . . ,M) as

ĤB → ĤB,m,

V̂ → V̂m,

ρ̂Beq → ρ̂Beq,m. (43)

The mth full density matrix is ρ̂m = Ûmρ̂eq,mÛ
†
m, where

ρ̂eq,m = ρ̂Aeqρ̂Beq,m. The mth replicated time evolution op-
erator is Ûm = e−iĤmτ , where Ĥm = Ĥ0,m + V̂m and Ĥ0,m =
ĤA + ĤB,m. The mth replicated reduced density matrix is
obtained from the mth full density matrix ρ̂m by tracing out
the degrees of freedom of the mth replicated subsystem B;
ρ̂A,m = TrB,m[ρ̂m]. Then the modified Rényi entropy (40) is

SM ({χm}) = TrA[eiχMN̂A ρ̂A,M · · · eiχ1N̂A ρ̂A,1]

= Tr[eiχMN̂A ρ̂M · · · eiχ1N̂A ρ̂1]. (44)

Here the trace in the second line should be performed over the
total system, the subsystem A, and M replicas of subsystem
B; Tr = TrATrB,M · · · TrB,1. The modified Rényi entropy is
rewritten as

SM ({χm}) = Tr[eiχMN̂AÛMρ̂eq MÛ
†
M · · · eiχ1N̂AÛ1ρ̂eq 1Û

†
1 ],
(45)

which is visualized in Fig. 2. Following Ref. [33], we introduce
the multicontour C, which is a sequence of M standard
Keldysh contours. We set a starting point at t = τ on the lower
branch of the first Keldysh contour C1,− (cross in Fig. 2). The
contour goes to ρ̂eq 1 at t = 0 along C1,− and returns to t = τ

along C1,+. Then it connects to t = τ on the lower branch of
the second Keldysh contour C2,−. The contour goes repeatedly
until it reaches t = τ on CM,+. Then it goes back to the starting
point t = τ on C1,−.

In the interaction picture, the time evolution operator and
its Hermitian conjugate are expanded as Ûm I = eiĤ0 mτUm =
T̂ exp (−i

∫ τ

0 dtV̂m(t)I ) and Û
†
mI = ˆ̃T exp (i

∫ τ

0 dtV̂m(t)I ),

where T̂ ( ˆ̃T ) is the (anti-)time-ordering operator. The per-
turbation Hamiltonian in the interaction picture is V̂m(t)I =
eiĤ0 mt V̂me−iĤ0 mt . By exploiting the multicontour C and the
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M−1,+C

2,−C

ρeq M

t = τ t = 0t 

m

ρeq M−1

ρeq 2

ρeq 1
1,−C

1,+C

2,+C

M−1,−C

M,+C

M,−C

×

exp( )i Aχ1N

exp( )i Aχ2N

exp( )i AχM N

exp( )i AχM-1 N

FIG. 2. Multicontour C consisting of M replicated standard
Keldysh contours. The cross at t = τ on the lower branch of the first
replica C1,− represents the starting point. Shaded boxes are M replicas
of the initial equilibrium density matrix ρ̂eq m (m = 1, . . . ,M). Solid
circles on t = τm+ represent the operator exp(iχmN̂A).

contour ordering operator T̂C , the modified Rényi entropy is
expressed as

SM ({χm})
sM (χ̄)

= 〈T̂Ce−i
∫
C

dt V̂ (t)I +i
∑M

j=1 χj N̂A(τj+)I 〉M, (46)

which is the “Keldysh partition function”. The angular brackets
stand for the expectation value,

〈Ô〉M = Tr[Ôρ̂eq M · · · ρ̂eq 1]/sM (χ̄), (47)

normalized by the modified Rényi entropy of decoupled
subsystems,

sM (χ̄) =TrA
[
eiχ̄N̂A ρ̂M

A,eq

]
. (48)

In Eq. (46), the integral over t is performed along the
multicontour C. We wrote the time τ defined on Cm,± as τm±.
The contour-ordering operator T̂C also acts on ρ̂eq m residing
on t = 0m±.

B. Global constraint

To perform the multiple integral in Eq. (39), we
transform integration variables from dχ1 · · · dχM−1dχM

to dδχ1 · · · dδχM−1dχ̄ , where δχm = χm − χ̄/M(m =
1, . . . ,M − 1). The Jacobian of this transformation is 1.
Because of the discreteness of electrons, the integrand is
expected to be 2π periodic in χ in Eq. (39). Then the modified
Rényi entropy (39) can be written as

SM (χ ) =
∫ π

−π

dδχ1

2π
· · · dδχM−1

2π

× SM

⎛
⎝ χ

M
+ δχ1, · · · χ

M
+ δχM−1,

χ

M
−

M−1∑
j=1

δχj

⎞
⎠.

(49)

The local constraint, the multiple integral over δχj (j =
1, . . . ,M − 1), removes the coherence between Fock sub-
spaces with different particle numbers. This can be done easily
for nonsuperconducting leads, since by exploiting Eq. (26) one
immediately sees that the modified Rényi entropy (40) depends
only on χ̄ and is independent of δχj . Thus we only take the
global constraint χ̄ = χ into account,

SM (χ ) = SM ({χ/M}) = Tr[eiχN̂A/Mρ̂M · · · eiχN̂A/Mρ̂1].
(50)

IV. MODIFIED MULTICONTOUR KELDYSH
GREEN FUNCTION

A. Spinless resonant level model

We will consider a simple Hamiltonian, the spinless
resonant level model, and introduce the multicontour Keldysh
Green function. Figure 1 is a schematic picture of our setup.
We bipartite the system and regard the dot and the left lead
as subsystem A and the right lead as subsystem B. The
Hamiltonians of the two subsystems are ĤA = ĤL + ĤD and
ĤB = ĤR . The quantum dot is represented by a localized
level with the energy εD , ĤD = εDd̂†d̂ , where d̂ is an electron
annihilation operator. The left (r = L) and right (r = R) leads
are described by the free-electron gas, Ĥr = ∑

k εrkâ
†
rkârk ,

where ârk annihilates an electron with the wave number k in the
lead r . The coupling between the two subsystems is described
by the tunneling Hamiltonian, V̂ = ∑

r=L,R

∑
k Jr d̂

†ârk +
H.c. The initial density matrices of subsystems A and B are
ρ̂A,eq = ρ̂L,eqρ̂D,eq and ρ̂B,eq = ρ̂R,eq, where the density matrix
of each region is

ρ̂s,eq = e−β(Ĥs−μsN̂s )

Trs[e−β(Ĥs−μsN̂s )]
(s = L,D,R). (51)

We set the chemical potentials as μA = μL = μD and μB =
μR . The number operators of particles in subsystems A and
B are N̂A = N̂L + N̂D and N̂B = N̂R , respectively. Here the
number operators of particles in the lead r and the dot are N̂r =∑

k â
†
rkârk and N̂D = d̂†d̂ , respectively. Replicated operators

(43) are introduced by replacing âRk with âRkm.
The modified Rényi entropy of decoupled subsystems V̂ =

0 (48) is sM (χ̄) = sD M (χ̄) sL M (χ̄ ), where the dot part is

sD M (χ̄) = TrD
[
eiχ̄N̂D ρ̂M

D,eq

] = f −
D (εD)M + f +

D (εD)Meiχ̄ .

(52)

The electron and hole distribution functions are

f +
L (ε) = 1

1 + eβ(ε−μL)
, f −

L (ε) = 1 − f +
L (ε). (53)

Similarly, the left lead part is sLM (χ̄) =∏
k [f −

L (εLk)M + f +
L (εLk)Meiχ̄ ]. The order between

taking the zero-temperature limit and performing an
analytic continuation matters, since 00 is indeterminate
[30] (Appendix B). In the present paper, we first take the
zero-temperature limit for a positive integer M , and then we
extend M to a complex number. Then the modified Rényi
entropy of decoupled subsystems is

sM (χ̄) = eiχ̄NA,0 , (54)

085304-5



YASUHIRO UTSUMI PHYSICAL REVIEW B 96, 085304 (2017)

where NA,0 is the number of electrons in the subsystem A at 0
K; NA,0 = θ (μD − εD) + ∑

k θ (μL − εLk).

B. Modified multicontour Keldysh Green function

To perform a perturbation expansion of the Keldysh parti-
tion function (46), we introduce the subsystem A multicontour
Keldysh Green function modified with the particle number
counting field χm. In the following, we consider the left
lead Green function. The dot Green function is introduced in
the same manner. The modified multicontour Keldysh Green

function of â
†
Lk on Cm′,s ′ and âLk on Cm,s is defined as

g
{χj }
Lk (tms,t

′
m′s ′ ) = g

{χj },ms,m′s ′

Lk (t,t ′)

= −i〈TCei
∑M

j=1 χj N̂A(τj+)I âLk(tms)I â
†
Lk(t ′m′s ′ )I 〉M.

(55)

This is a component of a 2M × 2M Keldysh Green-function
matrix gLk(t,t ′). A 2 × 2 submatrix of a 2M × 2M multi-
contour Keldysh Green-function matrix connecting branches
Cm, ± and Cm′ ± reads (Appendix C)

[
g{χj }

Lk (t,t ′)
]
m,m′ =

[
g

{χj },m+,m′+
Lk (t,t ′) g

{χj },m+,m′−
Lk (t,t ′)

g
{χj },m−,m′+
Lk (t,t ′) g

{χj },m−,m′−
Lk (t,t ′)

]
= −ie−iεLk (t−t ′)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e
i
∑m−1

j=m′ δχj

[
f

χ̄

L,m−m′ (εLk) f
χ̄

L,m−m′+1(εLk)e−iχ̄/M

f
χ̄

L,m−m′−1(εLk)eiχ̄/M f
χ̄

L,m−m′ (εLk)

]
(m > m′)[

f
χ̄

L,0(εLk)θ (t − t ′) − f
χ̄

L,M (εLk)θ (t ′ − t) f
χ̄

L,1(εLk)e−iχ̄/M

−f
χ̄

L,M−1(εLk)eiχ̄/M f
χ̄

L,0(εLk)θ (t ′ − t) − f
χ̄

L,M (εLk)θ (t − t ′)

]
(m′ = m)

e−i
∑m′−1

j=m δχj

[
−f

χ̄

L,M+m−m′ (εLk) −f
χ̄

L,M+m−m′+1(εLk)e−iχ̄/M

−f
χ̄

L,M+m−m′−1(εLk)eiχ̄/M −f
χ̄

L,M+m−m′ (εLk)

]
(m < m′)

,

(56)

where the modified Fermi distribution function is

f
χ̄

L,m(εLk) = em[iχ̄/M−β(εLk−μL)]

1 + eiχ̄−Mβ(εLk−μL)
. (57)

For χm = 0 (m = 1, . . . ,M), Eq. (56) is reduced to Eq. (B3)
in Ref. [30].

As we discussed, when the reduced density matrix and
the particle number operator of subsystem A commute [see
Eq. (26)], the modified Rényi entropy (50) is independent
of δχm. Therefore, we can set δχm = 0. Then the (m,m′)
component of the modified multicontour Keldysh Green

function depends only on m − m′, and we utilize the following
discrete Fourier transform [30] (Appendix D):

gλ�−χ/M

Lk (t,t ′) =
M−1∑

m−m′=0

[
g{χ/M}

Lk (t,t ′)
]
m,m′e

i(π−λ�)(m−m′),

(58a)

λ� = π

(
1 − 2� + 1

M

)
. (58b)

Then the 2M × 2M Green-function matrix is reduced to the 2 × 2 Green-function matrix defined on the standard Keldysh
space,

gλ
Lk(t,t ′) =

[
g

λ,++
Lk (t,t ′) g

λ,+−
Lk (t,t ′)

g
λ,−+
Lk (t,t ′) g

λ,−−
Lk (t,t ′)

]

= −ie−iεLk (t−t ′)

[
f −

L,λ(εLk)θ (t − t ′) − f +
L,λ(εLk)θ (t ′ − t) f +

L,λ(εLk)eiλ

−f −
L,λ(εLk)e−iλ f −

L,λ(εLk)θ (t ′ − t) − f +
L,λ(εLk)θ (t − t ′)

]
. (59)

The modified electron and hole distribution functions are

f +
L,λ(ε) = 1

1 + eβ(ε−μL)+iλ
, f −

L,λ(ε) = 1 − f +
L,λ(ε). (60)

Equations (59) and (60) are equivalent to Eqs. (35) and (36)
in Ref. [30]. The particle number counting field χ shifts the
discretized counting field by −χ/M ,

λ� → λ� − χ/M; (61)

see the left-hand side of Eq. (58a).
The multicontour Keldysh Green function for an electron

in the subsystem B is defined as (see Eq. (37) in Ref. [30])

g
ms,m′s ′
Rk (t,t ′) = −i〈T̂CâRk(tms)I â

†
Rk(t ′ms ′ )I 〉M. (62)

The 2 × 2 submatrix of the 2M × 2M Keldysh Green-
function matrix is [gRk(t,t ′)]m,m′ = gRk(t,t ′)δm,m′ ,where
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(see Eq. (38) in Ref. [30])

gRk(t,t ′) = −ie−iεRk (t−t ′)
[
f −

R (εRk)θ (t − t ′) − f +
R (εRk)θ (t ′ − t) f +

R (εRk)

−f −
R (εRk) f −

R (εRk)θ (t ′ − t) − f +
R (εRk)θ (t − t ′)

]
. (63)

V. RÉNYI ENTROPY OF THE SPINLESS RESONANT
LEVEL MODEL

The modified Rényi entropy (50) can be calculated by
performing the linked cluster expansion of the Keldysh
partition function (46) using the multicontour Keldysh Green
function. The detailed calculations are almost the same as
those in Sec. V A in Ref. [30]. The result is Eq. (42) in
Ref. [30] (without the spin index) modified with the shift of
the discretized counting field (61),

ln
SM (χ )

sM (χ )
=

M−1∑
�=0

Wτ (λ� − χ/M). (64)

In the limit of long measurement time τ , we consider the scaled
cumulant-generating function (Eqs. (53) and (54) in Ref. [30]),

FG(λ) = lim
τ→∞ lnWτ (λ)/τ

= 1

2π

∫
dω ln

f̃ +
L (ω) + f̃ −

L (ω)eiλ

f +
L (ω) + f −

L (ω)eiλ
. (65)

Here we subtracted a trivial constant in order to satisfy the nor-
malization condition FG(0) = 0. We introduced the effective
electron (hole) distribution function f̃ ±

L (ω) = T (ω)f ±
R (ω) +

R(ω)f ±
L (ω), where T (ω) is the transmission probability and

R(ω) = 1 − T (ω) is the reflection probability. The explicit
form is

T (ω) = �L�R

(ω − εD)2 + �2/4
, � = �L + �R. (66)

The coupling strength between the quantum dot and the
lead r , �r = 2π

∑
k |Jr |2δ(ω − εrk), is assumed to be energy-

independent. In the following, we raise the right chemical
potential μ = μR − μL > 0, so that electrons are emitted
from the right lead, i.e., subsystem B. In the zero-temperature
limit, FG becomes the scaled cumulant-generating function of
the number of transmitted particles, i.e., the Levitov-Lesovik
formula [43],

FG(λ) = 1

2π

∫ μR

μL

dω ln[1 + T (ω)(e−iλ − 1)]. (67)

By substituting it into Eq. (64), we obtain

ln SM (χ ) ≈τ

∫ μR

μL

dω

2π
ln[T (ω)Meiχ + R(ω)M ] + iχNA,0,

(68)

where the second term of right-hand side is the modified Rényi
entropy of initial decoupled systems (54).

A. Energy-independent transmission

In the generalized wide-band limit [61], � 	 μ or |εD −
μr | 	 �,μ, the transmission and reflection probabilities are

energy-independent. The modified Rényi entropy (68) reads

SM (χ ) ≈ (T Meiχ + RM )NatteiχNA,0 . (69)

Here Natt = τμ/(2π ) is the number of particles injected from
the right lead. The Rényi entropy (8) is obtained by the inverse
Fourier transform of Eq. (69). For a non-negative integer Natt,
we obtain

SM (NA) ≈
(

Natt

�NA

)
(T �NARNatt−�NA )M, (70)

where �NA = NA − NA,0 = 0, . . . ,Natt is the number of
transmitted particles. The probability of finding NA particles
(14) obeys the binomial distribution,

P (NA) = S1(NA) ≈
(

Natt

�NA

)
T �NARNatt−�NA. (71)

The “Jarzynski equality” (35) results in the binomial coeffi-
cient,

S0(NA) ≈
(

Natt

�NA

)
. (72)

The joint probability distribution (12) is obtained from
Eq. (70) by the analytic continuation M → 1 − iξ and the
inverse Fourier transform,

P (I ′
A,NA) ≈ P (NA)δ(I ′

A + ln T �NARNatt−�NA ). (73)

By substituting it into Eq. (21), we obtain the probability
distribution of the conditional self-information,

P (J ) ≈
Natt∑

�NA=0

P (NA)δ(J − ln S0(NA)), (74)

which implies that the conditional self-information measures
the size of available states in the Fock subspace containing NA

particles (35).

1. Time dependence of the accessible entanglement entropy

Figures 3(a) and 3(b) show the conditional entropy, i.e.,
the accessible entanglement entropy, as a function of the
measurement time Natt = τμ/(2π ). At τ = 0, i.e., Natt = 0,
we have trivially P (J ) = δ(J ), where we used 0! = 1. At
τ = π/μ, i.e., when only one electron is injected, Natt = 1,
we obtain

P (J ) ≈ Rδ(J ) + T δ(J ) = δ(J ). (75a)

Therefore, a single particle cannot create the accessible entan-
glement entropy 〈〈J 〉〉 = 0 [Fig. 3(a)], as is consistent with
the local-particle number superselection rule [5,15,28,29].
At Natt = 2, when two electrons participate, the probability
distribution is

P (J ) ≈ (T 2 + R2)δ(J ) + 2T Rδ(J − ln 2). (75b)
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FIG. 3. The time dependence of the conditional entropy, i.e., the
accessible entanglement entropy, forT = 0.1. Panels (a) and (b) show
results in the short-and long-time regimes, respectively. The dashed
lines represent the approximation in the long-time regime (76). The
dot-dashed lines indicate the full entanglement entropy.

The accessible entanglement entropy is 〈〈J 〉〉 = 2T R ln 2
[Fig. 3(a)], which is consistent with the previous theory [5].
The second term of Eq. (75b) is associated with a single EPR
pair. Since we consider spinless fermions, the entanglement is
attributed to the orbital degree of freedom.

When three particles participate, Natt = 3, we obtain

P (J ) ≈ (T 3 + R3)δ(J ) + 3T Rδ(J − ln 3). (75c)

The accessible entanglement entropy is 〈〈J 〉〉 = 3T R ln 3. In
the short-time regime, the accessible entanglement entropy
depends nonlinearly on time [Fig. 3(a)]. The result is different
from that with the previous theory [5], which predicted
that accessible entanglement entropy increases linearly as a
function of measurement time. The difference arises because
we consider the measurement of the total particle number in
subsystem A, while the previous theory [5] considered the

measurement of the particle number of each energy level in
subsystem A.

In the above discussions, for simplicity, we applied the
scaled cumulant-generating function (65) to the short-time
regime. We neglected corrections due to finite measurement
time [62], which induces fluctuations in the number of injected
particles Natt.

In Fig. 3(b) we observe that, as the measurement time in-
creases, the conditional entropy increases and approaches full
entanglement entropy 〈〈IA〉〉 = NattH2(T ) (dot-dashed line).
Here the binary entropy is H2(x) = −x ln x − (1 − x) ln(1 −
x). Since the full entanglement entropy is proportional to
the measurement time τ ∝ Natt, from the chain rule (24), we
conclude that the nonlinear time dependence observed in Fig. 3
is attributable to the time dependence of the Shannon entropy
H (NA) (25) of the binomial distribution (71).

In the limit of long measurement time, when many particles
participate, Natt 	 1, we perform the Gaussian approximation,
ln S1(χ ) ≈ iχ (NA,0 + NattT ) + (iχ )2NattT R/2!, and we ob-
tain the Shannon entropy, H (NA) ≈ ln

√
2πeNattT R. This

is the ln τ subleading correction derived in Ref. [15]. For
Natt 	 1, the electron number is most probably 〈〈NA〉〉 =
NA,0 + NattT . The remaining uncertainty, which is the origin
of this Shannon entropy, is attributable to the width of the
distribution 〈〈N2

A〉〉 = NattT R. The dotted lines in Fig. 3
represent the approximation

〈〈J 〉〉 ≈ NattH2(T ) − ln
√

2πeNattT R. (76)

The dotted line fits the result in the long-time regime
[panel (b)]. Deviations are observed in the short-time regime
[panel (a)].

2. Probability distribution of the conditional self-information

Here, we analyze the distribution of the conditional self-
information in the limit of a long measurement time, τ ∝
Natt 	 1. In this case, the inverse Fourier transform of the
information-generating function (22) can be done within
the saddle-point approximation, i.e., the Legendre-Fenchel
transform [63],

P (J ) =
∫

dξ

2π
e−iξJ R1−iξ

≈ exp

[
Natt min

iξ∈R
(
ln R1−iξ − iξJ

)]
. (77)

Therefore, we can assume that ξ is a pure imaginary number.
In the rest of this section, we regard iξ = 1 − M as a real
number. By substituting Eq. (70) into Eq. (22), we obtain the
information-generating function,

RM ≈
Natt∑

�NA=0

T �NARNatt−�NA

(
Natt

�NA

)2−M

. (78)

For Natt 	 1, we can replace the summation with the
integral and utilize Stirling’s formula. Then we obtain

RM ≈
∫ Natt

0
dn exp [−Natt DM (n/Natt)], (79a)

DM (p) = −p ln T − (1 − p) lnR + (M − 2)H2(p). (79b)
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FIG. 4. The information-generating function (a) and the proba-
bility distribution of the conditional self-information (b). The dashed
lines in panel (b) indicate the probability distribution of the self-
information P (IA) taken from Fig. 5(b) of Ref. [30].

Within the saddle-point approximation, we obtain

ln RM

Natt
≈ − min

0�p�1
DM (p)

=
{

ln(T 1/(2−M) + R1/(2−M))2−M (M � 2),
min(ln T , lnR) (M > 2).

(80)

The first and second cumulants of the conditional self-
information calculated by the derivative (23) are compatible
with those of the full entanglement entropy, 〈〈J 〉〉 = 〈〈I ′

A〉〉 =
NattH2(T ) and 〈〈J 2〉〉 = 〈〈I ′

A
2〉〉 = NattT R[ln(R/T )]2. How-

ever, the skewness is different, 〈〈J 3〉〉 = 〈〈I ′
A

3〉〉 − 3〈〈J 2〉〉,
where 〈〈I ′

A
3〉〉 = 〈〈I ′

A
2〉〉(R − T ) ln(R/T ). Figures 4(a) and

4(b) show the information-generating function and corre-
sponding probability distribution obtained from the Legendre-
Fenchel transform (77). The Legendre duality [63] implies
that the maximum (minimum) value of fluctuating J is the
slope of the logarithm of the information-generating function

at iξ → ∞ (−∞) [Fig. 4(a)],

Jmax = lim
iξ→∞

ln R1−iξ

iξ
= Natt ln 2, (81a)

Jmin = lim
iξ→−∞

ln R1−iξ

iξ
= 0. (81b)

The dashed lines in Fig. 4(b) depict the probability distri-
butions of the full entanglement entropy P (IA) taken from
Fig. 5(b) of Ref. [30]. Although the peak positions coincide,
the minimum and maximum values differ. In Ref. [30],
we obtained IAmax = Natt max(− ln T , − lnR) and IAmin =
Natt min(− ln T , − lnR).

The minimum and maximum values of J are also de-
duced from the probability distribution function (74). The
maximum value Jmax (81a) corresponding to the maxi-
mum S0(NA) is obtained when half of the injected elec-
trons are transmitted, �NA ≈ Natt/2. One can check that
− ln S0(NA) = − ln

(
Natt

Natt/2

) ≈ Natt ln 2 is the maximum value.
The probability of finding the maximum value is P (Jmax) ≈(

Natt

Natt/2

)
(T R)Natt/2 ≈ (4T R)Natt/2. The minimum value Jmin = 0

(81b) is achieved when all injected electrons are transmitted
�NA = Natt or reflected �NA = 0. One can check that both
cases result in the minimum value − ln S0(NA) = − ln

(
Natt

0

) =
− ln

(
Natt

Natt

) = 0. The probability of finding the minimum

value is P (Jmin) = T Natt + RNatt . The mode corresponds to
events when �NA ≈ NattT electrons are transmitted, Jmode ≈
ln
(

Natt

NattT
) ≈ NattH2(T ). The probability to find this value is

almost 1, P (Jmode) ≈ (
Natt

NattT
)
T NattT RNattR ≈ 1.

VI. JOINT PROBABILITY DISTRIBUTION

For the energy-independent transmission probability, sec-
ond joint cumulants are calculated from Eqs. (17) and (69) as
〈〈N2

A〉〉 = NattT R, 〈〈I ′
A

2〉〉 = 4NattT R[tanh−1(R − T )]2, and
〈〈I ′

ANA〉〉 = 2NattT R tanh−1(R − T ). Then the correlation co-
efficient (20) is

r = sgn(R − T ). (82)

Since |r| = 1, there exists a perfect linear correlation between
the self-information and the particle number. The two quan-
tities are negatively (positively) correlated for large (small)
transmission probability T > R (T < R). The perfect linear
correlation can be also deduced from Eq. (73). The argument
of the δ function is zero when two quantities are linearly
correlated, I ′

A = �NA ln(R/T ) − Natt lnR. The correlation
coefficient (82) implies that when the transmission probability
is energy-independent, one can determine the self-information
and consequently the entanglement entropy by counting the
number of electrons.

The energy dependence of the transmission probability
spoils the perfect linear correlation. In the following, we
will analyze the joint probability distribution for such a case
in the limit of long measurement time τ → ∞. We will
limit our discussion to the symmetric case, �L = �R and
μR − εD = εD − μL = μ/2. The transmission probability is

T (ω) = 1

1 + z2
, z = ω − εD

�/2
. (83)
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A. Small bias voltage: Coherent resonant tunneling

For a small bias voltage 0 < v = μ/� < 1 and for a
positive integer M , an analytic expression of the modified
information-generating function can be obtained. By noting
that |eiχ | = 1, we first expand the integrand of Eq. (68) in
powers of z (83) and then perform the integral. The result is

ln SM (χ ) = Natt[iχ + FM (χ ) − MF1(0)] + iχNA,0,

FM (χ ) = ln(1 + v2Me−iχ ) + �( − v2Me−iχ ,1,1/(2M)),
(84)

where � is the Hurwitz-Lerch ζ function [64],

�(z,s,a) =
∑
k=0

zk

(k + a)s
(|z| < 1 ,a �= 0, − 1, − 2, . . . ).

(85)

The scaled cumulant-generating function of the particle
number is obtained from Eq. (84) by setting M = 1. Up to
the third order in v, and noting that Natt = vτ�/(2π ) is also
proportional to v, the result is

ln S1(χ ) ≈ iχ (Natt + NA,0) + Natt
v2

3
(e−iχ − 1). (86)

The first term is attributable to the bulk electrons in the left lead
and electrons injected from the right lead without scattering.
The second term is caused by uncorrelated backscattering
events. The strength of the backscattering is proportional to
v3, which is a property of the Fermi liquid [65–67]. The first
and second cumulants are analytic in v as

〈〈�NA〉〉 = Natt

(
1 − v2

3

)
, (87a)

〈〈
N2

A

〉〉 = Natt
v2

3
. (87b)

The information-generating function (2) is obtained from
Eq. (84) by setting χ = 0,

ln SM (0) = Natt[ln(1 + v2M )/(1 + v2)M

+ �( − v2M,1,1/(2M)) − 2M(tan−1 v)/v],
(88)

and by analytically continuing M to a real number1 − iξ .
The range is limited to iξ = 1 − M < 1, since the Hurwitz-
Lerch ζ function diverges at iξ = 1 − M = ∞,1 + 1/2,1 +
1/4, . . . ,1 + 0. We note that it still satisfies the “Jarzynski
equality” (34), limM→+0 ln SM (0) = Natt ln 2. The solid lines
in Fig. 5 are the information-generating function (68) for small
(v = μ/� = 0.5) and large (v = 5 and 100) bias voltages.
They are well fitted by the analytic expression (88) depicted
by dotted lines even for large bias voltages v = μ/� > 1.

The first and second cumulants of the self-information and
the covariance are nonanalytic in v,

〈〈I ′
A〉〉 ≈ Natt

v2

9
(5 − 6 ln v), (89a)

〈〈
I ′
A

2〉〉 ≈ Natt
4v2

27
{1 + [ln(ev−3)]2}, (89b)
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FIG. 5. The information-generating function for various bias
voltages (v = μ/� = 0.5,5,100). Dotted lines show the analytic
expression for v < 1 (88) applicable to the range iξ < 1. They almost
overlap with the solid lines. The dot-dashed line indicates the analytic
expression in the limit of v → ∞ (94).

〈〈I ′
ANA〉〉 ≈ −Natt

2v2

9
ln(ev−3). (89c)

They vanish in the limit of zero bias voltage v → +0. Since
the covariance 〈〈I ′

ANA〉〉 is negative, the correlation coefficient
(20) is also negative,

r ≈ − ln(ev−3)√
1 + [ln(ev−3)]2

≈ −1 + 1

2[ln(ev−3)]2
. (90)

In the limit of small bias voltage v → +0, it approaches −1,
since the transmission probabilities of electrons inside the
Fermi window μL < ω < μR are almost 1; Eq. (82) implies
that, for the perfect transmission, the correlation coefficient
is −1. A finite bias voltage induces a nonvanishing reflection
probability, which results in (ln v)−2 correction and spoils the
perfect linear correlation.

B. Large bias voltage: Incoherent sequential tunneling

For 0 < eiχ ∈ R, the integral in Eq. (68) can be done in the
limit of large bias voltage v → ∞,

ln SM (χ ) ≈ τ�

2

[
eiχ/(2M) csc

( π

2M

)
− M

]
+ iχNA,0. (91)

The scaled cumulant-generating function of the particle
number is then

ln S1(χ ) ≈ iχNA,0 + τFseq(−χ ), (92a)

Fseq(λ) = �

2
(e−iλ/2 − 1). (92b)

Here Eq. (92b) reproduces the scaled cumulant-generating
function of the incoherent sequential tunneling, which was
derived based on the master equation approach of full counting
statistics [68]. One can check that Eq. (91), except for the bulk
contribution iχNA,0, can be obtained by substituting Eq. (92b)
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into Eq. (64),

M−1∑
�=0

τFseq(λ� − χ/M) = τ�

2

[
eiχ/(2M) csc

( π

2M

)
− M

]
.

(93)

This implies that even in the incoherent sequential tunneling
regime, the entanglement entropy is attributable to the particle
fluctuations at the boundary.

The information-generating function (2) is derived from
Eq. (91),

ln SM (0) ≈ τ�

2

[
csc

( π

2M

)
− M

]
. (94)

It diverges at M = 1 − iξ = 1/2 (dot-dashed line in Fig. 5).
The expression implies that all cumulants are proportional to
the coupling strength �. The first cumulants and second joint
cumulants are

〈〈I ′
A〉〉/2 = 〈〈�NA〉〉 = τ�/4, (95a)

(2/π2)
〈〈
I ′
A

2〉〉 = 2
〈〈
NA

2
〉〉 = 〈〈I ′

ANA〉〉 = 〈〈�NA〉〉. (95b)

Then the correlation coefficient (20) is positive and is inde-
pendent of �,

r = 2

π
≈ 0.636. (96)

C. Contour plot

The three panels in Fig. 6 show contour plots of the joint
probability distribution of self-information and the particle
number obtained within the Legendre-Fenchel transform
[63] of the information-generating function derived from the
modified Rényi entropy (68),

P (I ′
A,NA) =

∫
dξ

2π

∫ π

−π

dχ

2π
e−iξI ′

A−iχNAS1−iξ (χ )

≈ exp
[

min
iξ,iχ∈R

[−iξI ′
A − iχNA + ln S1−iξ (χ )]

]
.

In each panel, the peak is at O = (〈〈I ′
A〉〉,〈〈NA〉〉). We observe

that fluctuations in NA and I ′
A are bounded. The support, which

is the region in the (I ′
A,NA) plane with positive probabilities

[55], is surrounded by a dashed line.
Panel (a) shows a plot for a small bias voltage v = μ/� =

0.2. We observe a negative linear correlation. Let us derive the
maximum of NA. For iχ → ∞, the modified Rényi entropy
behaves as

ln SM (χ ) ≈ τ

2π

∫ μR

μL

dω ln T (ω)Meiχ + iχNA,0

= Natt[iχ − MF1(0)] + iχNA,0. (97)

Then the Legendre duality [63] implies that a boundary point
of support with maximum NA is

P = lim
iχ→+∞

(∂iξ ln S1−iξ (χ ),∂iχ ln S1−iξ (χ ))

= (NattF1(0),Natt + NA,0) . (98)
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FIG. 6. Contour plots of the logarithm of the joint probability
distribution ln P (I ′

A,NA) for (a) a small bias voltage v = μ/� =
0.2, (b) an intermediate bias voltage v = 2.72, and (c) a large
bias voltage v = 10. In each panel, the support, the region with
positive probabilities, is surrounded by a dashed line. P and P′

indicate boundary points of support with maximum and minimum
NA, respectively. Q and Q′ indicate boundary points of support
with maximum and minimum I ′

A, respectively. Minimum values
of P (I ′

A,NA) are minI ′
A,NA

ln P (I ′
A,NA)/Natt = −5.20 (a), −1.74

(b), and −3.11 (c).
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A boundary point of support with minimum NA is derived
from the Rényi entropy for iχ → −∞,

ln SM (λ) ≈ τ

2π

∫ μR

μL

dω lnR(ω)M + iχNA,0

= − NattM[F1(0) − ln(v/e)2] + iχNA,0, (99)

and the Legendre duality,

P′ = lim
iχ→−∞

(∂iξ ln S1−iξ (χ ),∂iχ ln S1−iξ (χ ))

= (Natt[F1(0) − ln(v/e)2],NA,0). (100)

The point P (P′) corresponds to a rare event when all injected
Natt electrons are transmitted (reflected). For a small bias
voltage, v < 1, the transmission probability of an electron
inside the Fermi window is larger than the reflection proba-
bility T (ω) > R(ω). Therefore, at the point P (P′), electrons
carry minimum (maximum) self-information I ′

A, as shown in
Fig. 6(a). In Appendix E, we calculate a boundary point of
support with maximum (minimum) I ′

A, Q (Q′), and we checked
that Q = P′ (Q′ = P).

For a large bias voltage v > 1, electrons with energy |ω −
εD| > �/2 also participate in transmission processes. Since
the reflection probability of such electrons is larger than the
transmission probability T (ω) < R(ω), the event with Natt

electron transmission (reflection) does not necessarily carry
the minimum (maximum) self-information. Figures 6(b) and
6(c) are joint probability distributions for v > 1. The boundary
point with maximum (minimum) NA, P (P′), does not coincide
with the boundary point with minimum (maximum) I ′

A, Q′ (Q)
(Appendix E). For a large bias voltage, we observe a positive
linear correlation [Fig. 6(c)].

VII. PROBABILITY DISTRIBUTION OF EFFICIENCY

It would be interesting to consider the similarity between
information entropy and thermodynamic entropy. Here, we
examine an analogy to a thermoelectric effect, namely the
Peltier effect. By raising the right chemical potential relative
to the left chemical potential by μ, n electrons move from
the right lead to the left lead. Since electrons also carry
the heat q from the right lead to the left lead, our setup
works as a heater. Its efficiency is characterized by the
coefficient of performance (COP) [52], φ = q/(nμ). When
the measurement time τ is short, both n and q fluctuate and
thus the COP also fluctuates. This problem has been discussed
recently [47–53] in the context of stochastic thermodynamics
[54]. It was demonstrated that the Carnot limit corresponds
to the rarest event [47–50]. In our context, the number of
transmitted electrons is n = �NA, and we want to relate the
thermodynamic entropy βq to the self-information I ′

A. The
corresponding (dimensionless) COP η ≡ βμφ may be

η = I ′
A

�NA

. (101)

It measures the information content carried by a single
electron.

At the steady state, which is achieved in the limit of long
measurement time, the average COP would be the average
self-information divided by the average number of transmitted

electrons 〈〈η〉〉 = 〈〈I ′
A〉〉/〈〈�NA〉〉. At a short measurement

time, the COP fluctuates and the (unnormalized) probability
distribution of the COP may be expressed by using the joint
probability distribution (12) as [52]

P (η) =
∫

dI ′
A

∑
NA �=NA,0

P (I ′
A,NA) δ(η − I ′

A/�NA)

=
∑

�NA �=0

|�NA|Pτ (η�NA,NA). (102)

For the energy-independent transmission probability, there
is a perfect linear correlation between I ′

A and NA; see Eq. (82).
By substituting Eq. (73) into Eq. (102), we obtain

P (η) =
Natt∑

�NA=1

P (NA)δ(η + ln T RNatt/�NA−1), (103)

where P (NA) is the binomial distribution function (71). We
observe that the minimum COP, ηmin = − ln T , is achieved
when all electrons transmit �NA = Natt. The maximum COP,
ηmax = − ln T RNatt−1, is realized when only one electron
transmits �NA = 1. The probabilities to find these rare events
are P (ηmin) = T Natt and P (ηmax) = NattT RNatt−1.

For long measurement time, Natt 	 1, the probability
distribution, is calculated as [47,48]

ln P (η) = max
�NA

[ln P (η�NA,�NA + NA,0)]

= max
�NA

{
min
iξ,iχ

[ln S1−iξ (χ ) − i(ξη + χ )�NA

− iχNA,0]
} = min

iξ

(
ln

S1−iξ (−ξη)

s1−iξ (−ξη)

)
. (104)

By plugging Eqs. (69) and (54) into the above equation, we
find the solution

ln P (η) = −NattD1(p∗), p∗ = − lnR
ln(T eη/R)

(105)

for η > ηmin. Here D1 is defined in Eq. (79b) and is the relative
entropy, the Kullback-Leibler divergence, of p = {p∗,1 − p∗}
with respect to q = {T ,R}; D1(p∗) = p∗ ln(p∗/T ) + (1 −
p∗) ln[(1 − p∗)/R]. The mode minimizing D1(p∗) is realized
at p∗ = T . The mode is equal to the average at the steady
state,

ηmode = −T ln T − R lnR
T = 〈〈η〉〉. (106)

Figure 7(a) shows the transmission probability dependence
of the average COP (106). It vanishes at T = 1 and diverges
at T = 0. Figure 7(b) shows the probability distribution of
the COP for various transmission probabilities. For large η,
the probability distribution approaches ln P (ηmax) ≈ Natt lnR.
When η approaches the lower bound ηmin, the probability
distribution approaches ln P (ηmin) ≈ Natt ln T = −Natt ηmin.
As the transmission probability decreases, the peak position
corresponding to the average value shifts rightwards, as we
can expect from panel (a). At the same time, the tail of the
probability distribution grows. This implies a tradeoff between
the amount of information content carried by a single electron
and its uncertainty.
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FIG. 7. (a) The transmission probability dependence of the
average of the COP in the limit of long measurement time Natt 	 1
(106). (b) The probability distribution of the COP for various
transmission probabilities (T = 0.1,0.5,0.9). The dot-dashed line
indicates ln Pτ (η) = −Nattη. The dashed lines indicate ln Pτ (ηmax) ≈
Natt lnR.

Equation (104) is applicable to the energy-dependent
transmission case; see Sec. VI. Figure 8(a) is the average
COP as a function of bias voltage. At small bias voltages,
v = μ/� � 1, by using Eqs. (87a) and (89a), the average
COP at the steady state is approximately calculated as [dashed
line in the inset of panel (a)]

〈〈η〉〉 ≈ v2(5/3 − 2 ln v)/(3 − v2), (107)

which increases as ∼−v2 ln v. As the bias voltage increases,
the average COP increases and becomes saturated at

〈〈η〉〉 = 2, (108)

which can be derived by using Eq. (95a). This �-independent
value is the information content carried by a single electron in
the incoherent sequential tunneling regime. Figure 8(b) is the
probability distribution of the COP for various bias voltages.
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FIG. 8. (a) Average of the COP as a function of the bias voltage
for the symmetric case; �L = �R and μR − εD = εD − μL = μ/2.
The inset shows a magnification close to the zero bias voltage. The
dashed line indicates the approximate expression (107). At a large
bias voltage, the COP becomes saturated at 〈〈η〉〉 = 2. (b) Probability
distributions of the COP for various bias voltages (v = μ/� =
0.2,2.72,10).

It exhibits a tendency similar to that observed in Fig. 7(b),
i.e., the tradeoff between the amount of information content
carried by a single electron and its uncertainty.

VIII. CONNECTION TO EXPERIMENTS

By testing the Bell inequality [9–12], one can determine
whether entanglement exists. The entanglement entropy is
more interesting since it can quantify the amount of entangle-
ment. However, in general, in order to obtain the entanglement
entropy, one needs to measure experimentally the reduced
density matrix, which would be demanding especially for
many-particle systems.

Therefore, it is also important to develop experimental
methods for measuring the entanglement entropy. For non-
interacting electrons, the entanglement entropy and the Rényi
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entanglement entropy can be determined by measuring the
particle current cumulants, by exploiting exact relations con-
necting these quantities [14,17,30]. The Rényi entanglement
entropy of a positive integer order M can be measured by
preparing M copies of subsystems [24,25].

In Sec. VI, we pointed out a condition in which fluctuations
of the self-information and those of a particle number are
perfectly and linearly correlated; see Eq. (82). When the
transmission probability is energy-independent, the probabil-
ity distribution of self-information is obtained directly from the
probability distribution of the number of transmitted electrons
P (�NA) by shifting and rescaling the argument as

�NA → I ′
A + Natt lnR

ln(R/T )
;

see Eq. (73). In this simple way, one can connect the
self-information I ′

A directly to an experimentally observable
quantity �NA.

Here we also comment that once the probability distribution
of self-information is obtained, the entanglement spectrum
[18,22] P̃ (IA) can be derived by exploiting the following
relation:

P̃ (IA) = TrA[δ(IA − ÎA)] = TrA[eIA−ÎAδ(IA − ÎA)]

= eIATrA[ρ̂Aδ(IA − ÎA)] = eIAP (IA). (109)

IX. SUMMARY

In the present paper, we extended the multicontour Keldysh
Green-function technique and calculated the Rényi entropy
for a positive integer order M subjected to the particle
number constraint. By extending M to a complex number,
we related the Rényi entropy to the information-generating
function, which is the Fourier transform of the joint probability
distribution of self-information and particle number.

We applied our framework to the spinless single-resonant
level model. For the energy-independent transmission prob-
ability, we calculated the time dependence of the accessible
entanglement entropy, i.e., the conditional entropy. We found
the nonlinear time dependence of the accessible entanglement
entropy, which is attributable to the time dependence of the
classical Shannon entropy of the probability distribution of
the particle number. Although the averages of the accessible
entanglement entropy and the full entanglement entropy coin-
cide at the steady state, their fluctuations behave differently.

We analyzed the joint probability distribution. For energy-
independent transmission, there exists a perfect linear correla-
tion between the self-information and the particle number;
for R > T (R < T ), they are positively (negatively) and
perfectly correlated. This implies that one can determine the
self-information and the entanglement entropy by counting
the number of electrons. The energy dependence of the
transmission probability spoils the perfect linear correlation.
For a symmetric condition, when the bias voltage is smaller
than the coupling strength, μ � �, the coherent resonant
tunneling process is dominant and the full entanglement
entropy increases as −(μ/�)3 ln(μ/�). For a large bias
voltage, μ 	 �, when the incoherent sequential tunneling
process is dominant, the full entanglement entropy becomes
τ�/2. A negative (positive) linear correlation between the

self-information and the number of particles is observed for
μ � � (μ 	 �).

We also considered an analogy to the Peltier effect and
analyzed the efficiency of information transmission. We
calculated the probability distribution of the COP, which
measures the information content carried by a single electron.
Our results demonstrated that when the average of the COP
increases, the fluctuation also increases. This implies a tradeoff
between the amount of information content carried by a single
particle and its uncertainty.

In the present paper, we have limited our discussion
to the case when the reduced density matrix commutes
with the local particle number operator of the subsystem.
Then the accessible entanglement entropy is trivially the full
entanglement entropy subtracted by the Shannon entropy. It
would be interesting to apply our method to quantum circuits
including superconducting leads, in which the local particle
number superselection rule would be nontrivial.
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APPENDIX A: PROOF OF EQ. (26)

Superselection rules are due to some underlying symmetry
of the system. Here we consider the following conditions:
(i) The total particle number is conserved,

[Ĥ ,N̂A + N̂B] = 0. (A1)

(ii) The initial state (41) is diagonal in the particle number
sector,

[ρ̂eq,N̂A + N̂B] = 0. (A2)

These conditions are fulfilled for nonsuperconducting leads.
The left-hand side of Eq. (26) is calculated as

[ρ̂A(τ ),N̂A] = TrB([e−iĤ τ ρ̂eqe
iĤ τ ,N̂A + N̂B])

− TrB([e−iĤ τ ρ̂eqe
iĤ τ ,N̂B]). (A3)

By exploiting Eqs. (A1) and (A2), one can check that the first
line of the right-hand side of Eq. (A3) is zero. The second line
of the right-hand side of Eq. (A3) is also zero because of the
cyclic property of the partial trace over subsystem B;

TrB(N̂Be−iĤ τ ρ̂eqe
iĤ τ ) = TrB(e−iĤ τ ρ̂eqe

iĤ τ N̂B). (A4)

These discussions prove Eq. (26).
It would be straightforward to generalize the above proof to

any conserved quantity. We point out that the proof generalizes
a known property of the real-time diagrammatic technique
[69–71]; if the initial reduced density matrix is diagonal in
the space of a conserved quantity, e.g., the spin space, the
reduced density matrix will be diagonal at all times in this
space [70]. Obviously, the proof is applicable to both fermions
and bosons. However, the proof is not valid when the initial
state is a superposition of different particle number states, such
as the BCS state [5], and the boson coherent state [2,72].
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APPENDIX B: RÉNYI ENTROPY FOR
DECOUPLED SUBSYSTEMS

Here we analyze the modified Rényi entropy for the dot (52)
in the limit of zero temperature. The modified Rényi entropies
of leads can be treated in the same way. By substituting Eq. (52)
into Eq. (39), and by exploiting Eq. (15), the Rényi entropy for
the dot is calculated as SD M (NA) = δNA,0f

−
D

M + δNA,1f
+
D

M
.

In the following two procedures, let us calculate the sizes of
available states in the Fock subspace containing NA particles
(35) in the limit of zero temperature.

(i) First, we fix a finite temperature and extend M → 1 −
iξ . The joint probability distribution becomes

PD(I ′
A,NA) =

∫
dξ

2π
e−iξI ′

ASD 1−iξ (NA)

= f −
D δNA,0 δ(I ′

A + ln f −
D ) + f +

D δNA,1

× δ(I ′
A + ln f +

D ). (B1)

Thus the “Jarzynski equality” (35) indicates that the size of the
available states for fixed NA is SD 0(NA) = δNA,0 + δNA,1 = 1,
which is temperature-independent.

(ii) We first take the zero-temperature limit for a positive
integer M , and then we extend M to a complex number. The
joint probability distribution is

PD(I ′
A,NA) = δ(I ′

A) [δNA,0θ (εD − μD) + δNA,1θ (μD − εD)].

(B2)

From the “Jarzynski equality” (35), we obtain the size of
the available states for fixed NA as SD 0(NA) = δNA,0θ (εD −
μD) + δNA,1θ (μD − εD).

The sizes of available states in the Fock subspace for
fixed NA obtained in the two procedures are different; the
former is greater than or equal to the latter. The difference is
attributable to a δ peak of Eq. (B1) at I ′

A ≈ β|εD − μD| → ∞
with exponentially small weight ∼e−β|εD−μD |, which continues
to contribute even in the limit of zero temperature.

APPENDIX C: DERIVATIONS OF THE MULTICONTOUR KELDYSH GREEN FUNCTION

We calculate the components of the matrix multicontour Keldysh Green function (56). Here, we present detailed calculations
of a particular component, m > m′, s = −, and s = +. Other components can be calculated in the same manner. Noting
that the contour ordering operator TC also acts on the replicated equilibrium density matrices ρeq,m (m = 1, . . . ,M), we
obtain

g
{χj },m−,m′+
Lk (t,t ′) = −iTr

[
T̂CâLk(tms)I â

†
Lk(t ′m′s ′ )I e

i
∑M

j=1 χj N̂L(τj+)I ρ̂eq,M · · · ρ̂eq,1
]/

sL,M (C1)

= −i
Tr
[
eiχMN̂L ρ̂eq,M · · · ρ̂eq,mâLk(tm)I eiχm−1N̂L · · · eiχm′ N̂L â

†
Lk(t ′m′)I ρ̂eq,m′ · · · eiχ1N̂L ρ̂eq,1

]
sL,M

(C2)

= −i
TrL

[
ei(

∑M
j=m +∑m′−1

j=1 )χj N̂L ρ̂M−m+m′+1
L,eq âLk(tm)I e

i
∑m−1

j=m′ χj N̂L ρ̂m−m′−1
L,eq â

†
Lk(t ′m′)I

]
TrL

[
eiχ̄N̂L ρ̂M

L,eq

] . (C3)

In the following, we will omit the subscripts k and L. By using the relation

Tr
[
ei(χ̄−�χ)N̂ρeq

M−nâei�χN̂ ρ̂n
eqâ

†]
Tr
[
eiχ̄N̂ ρ̂M

eq

] = ei�χ−nβ(ε−μ)

1 + eiχ̄−Mβ(ε−μ)
= ei(�χ−nχ̄/M)f χ̄

n (ε), (C4)

we obtain

g{χj },m−,m′+(t,t ′) = −if
χ̄

m−m′−1(ε)e−iε(t−t ′)+i
∑m−1

j=m′ δχj +iχ̄/M
. (C5)

Three other components for m > m′ are calculated in the following:

g{χj },m+,m′−(t,t ′) = −i
Tr
[
ei(

∑M
j=m+1 +∑m′−1

j=1 )χj N̂ ρ̂M−m+m′−1
eq â(tm)I e

i
∑m−1

j=m′ χj N̂ ρ̂m−m′+1
eq â†(t ′m′)I

]
Tr
[
eiχ̄N̂ ρ̂M

eq

]
= −if

χ̄

m−m′+1(ε)e−iε(t−t ′)+i
∑m−1

j=m′ δχj −iχ̄/M
, (C6)

g{χj },m±,m′±(t,t ′) = −ie−iε(t−t ′) Tr
[
ei(

∑M
j=m +∑m′−1

j=1 )χj N̂ ρ̂M−m+m′
eq âe

i
∑m−1

j=m′ χj N̂ ρ̂m−m′
eq â†]

Tr
[
eiχ̄N̂ ρ̂M

eq

]
= −if

χ̄

m−m′ (ε)e−iε(t−t ′)+i
∑m−1

j=m′ δχj . (C7)
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Four components for m < m′ are

g{χj },m−,m′+(t,t ′) = ie−iε(t−t ′) Tr
[
ei

∑m′−1
j=m χj N̂ ρ̂m′−m+1

eq âei(χ̄−∑m′−1
j=m )χj N̂ ρ̂M−m′+m−1

eq â†]/Tr
[
eiχ̄N̂ ρ̂M

eq

]
= if

χ̄

M−m′+m−1(ε)e−iε(t−t ′)−i
∑m′−1

j=m δχj +iχ̄/M, (C8a)

g{χj },m+,m′−(t,t ′) = ie−iε(t−t ′) Tr
[
ei

∑m′−1
j=m χj N̂ ρ̂m′−m−1

eq âei(χ̄−∑m′−1
j=m χj )N̂ ρ̂M−m′+m+1

eq â†]/Tr
[
eiχ̄N̂ ρ̂M

eq

]
= if

χ̄

L,M−m′+m+1(ε)e−iε(t−t ′)−i
∑m′−1

j=m δχj −iχ̄/M, (C8b)

g{χj },m±,m′±(t,t ′) = ie−iε(t−t ′) Tr
[
ei

∑m′−1
j=m χj N̂ ρ̂m′−m

eq âei(χ̄−∑m′−1
j=m χj )N̂ ρ̂M−m′+m

eq â†]/Tr
[
eiχ̄N̂ ρ̂M

eq

]
= if

χ̄

M−m′+m(ε)e−iε(t−t ′)−i
∑m′−1

j=m δχj . (C8c)

Four components defined on the same replica m = m′ are

g{χj },m+,m−(t,t ′) = ie−iε(t−t ′) Tr
[
eiχ̄N̂ ρ̂M−1

eq âρ̂eqâ
†]/Tr

[
eiχ̄N̂ ρ̂M

eq

] = −if
χ̄

1 (ε)e−iε(t−t ′)−iχ̄/M, (C9a)

g{χj },m−,m+(t,t ′) = ie−iε(t−t ′) Tr
[
eiχ̄N̂ ρ̂M−1

eq â†ρ̂eqâ
]
/Tr

[
eiχ̄N̂ ρ̂M

eq

] = if
χ̄

M−1(ε)e−iε(t−t ′)+iχ̄/M, (C9b)

g{χj },m+,m′+(t,t ′) = −ie−iε(t−t ′) {θ (t − t ′)Tr
[
eiχ̄N̂ ρ̂M

eq ââ†] − θ (t ′ − t)Tr
[
eiχ̄N̂ ρ̂M

eq â†â
]}

/Tr
[
eiχ̄N̂ ρ̂M

eq

]
= −ie−iε(t−t ′)[θ (t − t ′)f χ̄

0 (ε) − θ (t ′ − t)f χ̄

M (ε)
]
, (C9c)

g{χj },m−,m′−(t,t ′) = −ie−iε(t−t ′)[θ (t ′ − t)f χ̄

0 (ε) − θ (t − t ′)f χ̄

M (ε)
]
. (C9d)

APPENDIX D: DISCRETE FOURIER TRANSFORM

Here we present detailed calculations on the discrete Fourier transform (58a) for δχj = 0. In the following, we set x� =
eiπ(2�+1)/M = −e−iλ� and use the same notations as in Appendix C. The discrete Fourier transform of the “greater” component
is calculated as follows:

M∑
m=1

g{χ/M},m−,m′+eiπ 2�+1
M

(m−m′) = −ie−iε(t−t ′)+iχ/M

(
M∑

m=m′+1

f
χ

m−m′−1(ε)xm−m′
� − f

χ

M−1(ε) −
m′−1∑
m=1

f
χ

M+m−m′+1(ε)xm−m′
�

)

= −ie−iε(t−t ′)+iχ/M

M∑
j=1

f
χ

L,j−1(ε)xj

� = ie−iε(t−t ′)−i(λ�−χ/M)f −
L,λ�−χ/M (ε)

= gλ�−χ/M,−+(t,t ′). (D1)

The discrete Fourier transform of the “lesser” component is

M∑
m=1

g{χ/M},m+,m′−eiπ 2�+1
M

(m−m′) = −ie−iε(t−t ′)−iχ/M

(
M∑

m=m′+1

f
χ

m−m′+1(ε)xm−m′
� + f

χ

1 (ε) −
m′−1∑
m=1

f
χ

M+m−m′+1(ε)xm−m′
�

)

= −ie−iε(t−t ′)−iχ/M

M−1∑
j=0

f
χ

j+1(ε)xj

� = −ie−iε(t−t ′)+i(λ�−χ/M)f +
λ�−χ/M (ε)

= gλ�−χ/M,+−(t,t ′). (D2)

The discrete Fourier transform of the causal (anticausal) component is

M∑
m=1

g{χ/M},m±,m′±eiπ 2�+1
M

(m−m′) = −ie−iε(t−t ′)

(
M∑

m=m′+1

f
χ

m−m′ (ε)xm−m′
� + f

χ

0 (ε)θ ( ± (t − t ′))

− f
χ

M (ε)θ ( ± (t ′ − t)) −
m′−1∑
m=1

f
χ

M+m−m′ (ε)xm−m′
�

)

= −ie−iε(t−t ′)

⎛
⎝θ ( ± (t − t ′))

M−1∑
j=0

f
χ

j (ε)xj

� + θ ( ± (t ′ − t))
M∑

j=1

f
χ

j (ε)xj

�

⎞
⎠
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= −ie−iε(t−t ′)[f −
λ�−χ/M (ε)θ ( ± (t − t ′)) − f +

λ�−χ/M (ε)θ ( ± (t ′ − t))
]

= gλ�−χ/M,±±(t,t ′). (D3)

APPENDIX E: BOUNDARY POINTS

For v < 1, the asymptotic form of the Rényi entropy (68) for iξ → ±∞ (M → ∓∞) is

ln SM (λ) ≈ M
τ

2π

∫ μR

μL

lnR(ω) + iχNA,0 = −NattM[F1(0) − ln(v/e)2] + iχNA,0, iξ → ∞ (M → −∞), (E1a)

ln SM (λ) ≈ M
τ

2π

∫ μR

μL

dω ln T (ω)eiχ/M + iχNA,0 = Natt[iχ − MF1(0)] + iχNA,0, iξ → −∞ (M → ∞). (E1b)

Then, by exploiting the Legendre duality [63], boundary points of support with maximum and minimum IA, Q and Q′, for v < 1,
are obtained as

Q = lim
iξ→+∞

(∂iξ ln S1−iξ (χ ),∂iχ ln S1−iξ (χ )) = (Natt[F1(0) − ln(v/e)2],NA,0), (E2a)

Q′ = lim
iξ→−∞

(∂iξ ln S1−iξ (χ ),∂iχ ln S1−iξ (χ )) = (NattF1(0),Natt + NA,0). (E2b)

For v > 1, we have to pay attention to the condition that T (ω) > R(ω) for |ω − εD| < �/2 and T (ω) < R(ω) for |ω − εD| >

�/2; see Eq. (83). The asymptotic form of the Rényi entropy (68) is

ln SM (χ ) ≈ M
τ

2π

∫ εD+�/2

εD−�/2
dω lnR(ω) + M

τ

2π

(∫ μR

εD+�/2
dω +

∫ εD−�/2

μL

dω

)
ln T (ω)eiχ/M + iχNA,0

= iχNatt(1 − 1/v) − MNatt[F1(0) + 2/v] + iχNA,0, iξ → ∞ (M → −∞), (E3a)

ln SM (χ ) ≈ τ

2π

∫ εD+�/2

εD−�/2
dω ln T (ω)Meiχ + M

τ

2π

(∫ μR

εD+�/2
dω +

∫ εD−�/2

μL

dω

)
lnR(ω) + iχNA,0

= iχNatt/v − NattM[F1(0) − ln(v/e)2 − 2/v] + iχNA,0, iξ → −∞ (M → ∞). (E3b)

Then the Legendre duality [63] implies that boundary points of support with maximum and minimum I ′
A, Q and Q′, are

Q = lim
iξ→+∞

(∂iξ ln S1−iξ (χ ),∂iχ ln S1−iξ (χ )) = (Natt[F1(0) + 2/v],Natt(1 − 1/v) + NA,0), (E4a)

Q′ = lim
iξ→−∞

(∂iξ ln S1−iξ (χ ),∂iχ ln S1−iξ (χ )) = (Natt[F1(0) − ln(v/e)2 − 2/v],Natt/v + NA,0). (E4b)
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