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Charged excitons in monolayer WSe2: Experiment and theory
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Charged excitons, or X± trions, in monolayer transition-metal dichalcogenides have binding energies of several
tens of meV. Together with the neutral exciton X0 they dominate the emission spectrum at low and elevated
temperatures. We use charge-tunable devices based on WSe2 monolayers encapsulated in hexagonal boron nitride
to investigate the difference in binding energy between X+ and X− and the X− fine structure. We find in the
charge-neutral regime, the X0 emission accompanied at lower energy by a strong peak close to the longitudinal
optical (LO) phonon energy. This peak is absent in reflectivity measurements, where only the X0 and an excited
state of the X0 are visible. In the n-doped regime, we find a closer correspondence between emission and
reflectivity as the trion transition with a well-resolved fine-structure splitting of 6 meV for X− is observed. We
present a symmetry analysis of the different X+ and X− trion states and results of the binding energy calculations.
We compare the trion binding energy for the n- and p-doped regimes with our model calculations for low carrier
concentrations. We demonstrate that the splitting between the X+ and X− trions as well as the fine structure of
the X− state can be related to the short-range Coulomb-exchange interaction between the charge carriers.
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I. INTRODUCTION

The optical properties of transition-metal dichalcogenides
(TMDC) monolayers are dominated by excitons, electron-hole
pairs bound by the attractive Coulomb interaction [1–10]. In
the presence of additional charges, often due to nonintentional
doping, also three-particle complexes called trions (or charged
excitons) can be observed, with binding energies of the order
of 30 meV [11,12]. Trions in the solid state were originally
reported for quantum wells at low temperature [13], and
their existence is often associated to localization effects. The
first important difference for trions in TMDCs is that their
signature is not just observed at low temperature but up to room
temperature [14–16]. Other important differences compared
to quantum well trions come from the very specific band
structure of TMDC monolayers [17]: The two nonequivalent
valleys in momentum space can be addressed with chiral
optical selections rules [19,20]; this allows to initialize the
valley index. In addition, there exists a spin splitting in the
conduction band (valence band) of several tens (hundreds) of
meV [18,19,21–23]. This gives rise to many different valley
and spin configurations between the three carriers, as for
example in the negatively charged X− the extra electron can
reside either in the same valley or in a different valley as
compared to the photoexcited electron [24].

In this work, we combine optical spectroscopy measure-
ments with a theoretical analysis of the trion transitions. In
order to observe spectrally narrow optical transition linewidth,
that allows to study the fine structure in detail, we encapsulate
the WSe2 monolayer in hexagonal boron nitride (hBN)
[25–30]. To switch electrically between the electron or
hole-doped regimes, we have embedded the encapsulated
monolayer in a charge-tunable structure [31]. We observe the
positively (X+) and negatively (X−) charged trions in reflectiv-
ity, with binding energies of about 20 and 30 meV, respectively.

We measure a clear fine-structure splitting of the X− of 6 meV
in both emission and absorption and we analyze the valley
polarization of the fine-structure components. Theoretical
analysis is performed to provide a symmetry classification
of the trion states, which is rather intriguing as with the valley
index an additional quantum number comes into play, going
beyond the usual classification of trions in spin-singlet and
spin-triplet states. We estimate trion binding energies of 20 to
30 meV for both X+ and X− using an effective mass approach.
We demonstrate that for accepted values of effective masses the
X+ and X− binding energies should be almost identical, which
is in contradiction to our experiments. We therefore argue
that short-range Coulomb-exchange effects provide reasonable
X−/X+ splittings and result in X− fine structure [24,32,33].

Here, both experiment and theory are performed for low
carrier concentrations where effects of screening are weak. A
different, interesting prospect in TMDC monolayers is many-
body physics at high carrier densities [34–38] that can be
probed in optics.

The paper is organized as follows: In Sec. II we describe
the sample and experimental results, in Sec. III the model and
results of calculations are presented, and in Sec. IV the results
are discussed and the theory is compared with the experimental
findings. The conclusion is given in Sec. V.

II. OPTICAL SPECTROSCOPY

A. Samples and experimental setup

The experiments are carried out at T = 4 K in a confocal
microscope build in a vibration-free, closed-cycle cryostat
from Attocube. The excitation/detection spot diameter is
≈1 μm, i.e., smaller than the typical monolayer (ML) di-
ameter. The ML is excited by continuous wave He-Ne laser
(1.96 eV). The photoluminescence (PL) signal is dispersed in
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FIG. 1. (a) Schematics of the charge-tunable van der Waals heterostructure. (b) Typical PL spectrum of an uncapped WSe2 monolayer
sample directly exfoliated onto SiO2 is shown for comparison with our main results. The trion (X−) and neutral exciton (X0) peaks are
indicated. (c) Contour plot of the first derivative with respect to energy of the differential reflectivity. The n- and p-type regimes are clearly
visible. (d) Typical PL response for the neutral regime (top) and the n-type regime (bottom). (e) Gradual evolution of the PL emission from the
neutral to n-type regime. (f) Zoom on the trion PL transition X−, detecting both circular polarization components following circularly polarized
excitation. The inset shows a scheme of the chiral interband optical selection rules.

a spectrometer and detected with a Si-CCD camera. The white
light source for reflectivity is a halogen lamp with a stabilized
power supply.

We have fabricated van der Waals heterostructures by
mechanical exfoliation of bulk WSe2 (commercially available)
and very high-quality hBN crystals [39]. A first layer of hBN
was mechanically exfoliated and transferred onto a SiO2

(90 nm)/Si substrate using polydimethylsiloxane (PDMS)

stamping [40]. The deposition of the subsequent WSe2 ML
and the second hBN capping layer was obtained by repeating
this procedure to complete the full stack. We also transferred
a thin graphite flake between the top surface of the WSe2

ML and a Au prepatterned electrode. Carrier concentration
is varied by applying a bias between this electrode and the
p-doped Si substrate (back gate). The scheme of the structure
is shown in Fig. 1(a).
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B. Optical spectroscopy results

An overview of the neutral and charged exciton complexes
in our sample is given in Fig. 1(c). We measure differential
reflectivity (RML − Rsub)/Rsub, where RML is the intensity
reflection coefficient of the sample with the WSe2 monolayer
and Rsub is the reflection coefficient of the hBN/SiO2. We then
plot its first derivative with respect to photon energy. Here, our
main target is to indicate the measured transition energies. To
deduce quantitative information on the exact oscillator strength
from reflectivity is very difficult due to possible interference
effects in this van der Waals heterostructure [41]. But, we can
safely assume that transitions that are visible in this plot in
Fig. 1(c) have a considerable oscillator strength for optical
absorption [42]. In the p-type region, where the Fermi level
reaches the valence band, we observe the positively charged
trion X+ at an energy of 1.70 eV, i.e., 21 meV below the
neutral exciton transition. In the neutral regime, where the
semiconductor is nondegenerate as the Fermi level is between
the valence and conduction band, we observe only the neutral
exciton transition X0 at 1.72 eV and an excited neutral exciton
state X0∗, probably related to the 2s state of the A exciton
[2,5]. In the n-doped regime, the negatively charged exciton
X− appears, which shows a very clear fine-structure splitting of
6 meV. The X− transitions are at 29 and 35 meV, respectively,
below the X0 transitions, so both energies are different from the
longitudinal optical (LO) phonon energy ELO = 32 meV [43].

Now, we compare these clear results in reflectivity/
absorption, with the results obtained in photoluminescence
emission. We plot two typical spectra in Fig. 1(d). Surprisingly,
we observe important differences: In the neutral regime, we
observe the X0 in PL at the same energy (within our error bars)
as in reflectivity, indicating only a minor Stokes shift implying
only weak localization of excitons. In addition to the X0 (PL
full width at half maximum, FWHM, down to ≈4 meV) we
observe a very sharp peak at 32 meV lower energy (FWHM
down to ≈1.6 meV). This peak is totally absent in reflectivity,
indicating a negligible oscillator strength. In terms of energy
this peak is very close to the trion position. In contrast, in
the n-type region, the neutral exciton PL emission disappears
and the well-defined double peak of the X− emerges, in
agreement with the reflectivity results. Note that also the X−
is accompanied by a sharp PL peak at lower energy that is not
detected in reflectivity.

In Fig. 1(e) we show how the PL emission gradually
changes as we go from the neutral to the n-type regime.
For intermediate bias values, see for example the pink and
green curve, we have the trion and possibly phonon-related
emission superimposed, giving rise to a broader peak with
two shoulders. This type of emission resembles the PL usually
reported for the trion in ungated, uncapped structures [compare
for instance with Fig. 1(b)], which shows a typical spectrum
for a simple WSe2 monolayer on SiO2 not encapsulated
with hBN.

It has been suggested that the X− fine-structure splitting is
induced by Coulomb exchange between the intravalley trion
(both electrons in the same valley) and the intervalley trion
(electrons in two different valleys) [24]. First observations
of trion PL emission with two components were interpreted
accordingly [32,33]. In Fig. 1(f) we tried to find a difference

in PL polarization between the two X− peaks, as suggested
in [32,33]. Here, we excite with a σ+ polarized laser, and the
X− emission is strongly σ+ polarized. We do not find any
noticeable difference between the high- and low-energy fine-
structure components. Different valley depolarization channels
might in principle exist for each fine-structure peak if they
correspond to intravalley and intervalley trions, because, e.g.,
for the intravalley complex the spin-flip valley-conserving
transition is forbidden, while this process may be allowed
for the intervalley trion (see also Ref. [44]). But, we will
observe no difference in stationary PL if the PL emission
time is considerably shorter than the polarization decay time.
Both times still need to be determined experimentally in hBN
encapsulated samples.

III. THEORY

The main results from the experiments with high spectral
resolution are a clear difference in X+ and X− trion binding
energies and a well-resolved fine-structure splitting of the X−
transition. In this section, we estimate the trion binding energy,
and we discuss why the X+ and X− complexes have different
binding energies and also the origin of the X− fine-structure
splitting. We give a symmetry analysis of the optically active
and inactive trion states in monolayer WSe2 that play a role in
optical spectroscopy experiments.

Below, in Sec. III A we present the general approach to con-
struct the three-particle wave function in the two-dimensional
semiconductor and analyze the requirements imposed by the
symmetry on the permutation of identical particles. Further,
in Sec. III B the effective Hamiltonian model for the envelope
function of trions is introduced, the trial wave functions are
presented and justified, and the trion binding energies are
calculated. Then, we move to the trion fine structure: Sec. III C
presents the results of the symmetry analysis of the X+ and X−
trion states and Sec. III D presents the model of the short-range
exchange interaction in trions responsible for the trion states’
fine structure.

A. Trion wave functions

As a first step towards calculating the trion binding energies,
we need to define their wave function. Owing to a sizable
(�100 meV) spin-orbit splitting of the valence band it is
sufficient to consider the hole states at the topmost valence
band [45], i.e., in a given valley we consider only one possible
hole spin state. The hole Bloch state can therefore be labeled by
a single quantum number τv = ±1, denoting an unoccupied
state at K± valley at the edge of the Brillouin zone. This
corresponds to the electron representation, where the Bloch
function of the hole isUh

τv
(rh) = K̂Uvb

−τv
(rh), withUvb

τ (r) being
the valence band Bloch function and K̂ is the time-reversal
operator [46]. The equation Uh

τv
(rh) = K̂Uvb

−τv
(rh) means that,

under the time inversion, the state in the valley K± is
transferred to the state K∓. In particular, an empty state in
the valley K+ is equivalent to the hole state in the valley
K−. The Bloch state of a conduction band electron U cb

sτ (r) is
labeled by two quantum numbers s = ± 1

2 and τ = ±1, where
τ enumerates the valley and s distinguishes the spin states
within the valley, being the spin projection onto the normal to

085302-3



E. COURTADE et al. PHYSICAL REVIEW B 96, 085302 (2017)

the sample z. In what follows, we present the position vector
r = (ρ,z), with z being its normal components and ρ being
the two-dimensional vector in the plane of the monolayer.

Generally, the trion wave function can be written as

�i,j ;k(r i ,rj ,rk) = ei K R

√
S

ϕ(ρi ,ρj )U (2)
ij (r i ,rj )U (1)

k (rk), (1)

where the subscripts i and j denote the two identical carriers,
namely, two electrons e1 and e2 for the X− trion or two
holes h1 and h2 for the X+ trion, k denotes the unpaired
carrier. In Eq. (1), R = [mi(ρi + ρj ) + mkρk]/M is the trion
center-of-mass in-plane coordinate, K is the wave vector of
the center-of-mass translational motion, S is the normalization
area, mi (mk) is the mass of one of the identical (unpaired)
carriers, M = 2mi + mk is the total trion mass, ϕ(ρ1,ρ2) is
the envelope function describing the in-plane relative motion
of the charge carriers in the trion with ρ1,2 = ρi,j − ρk being
the relative in-plane coordinates, and U (2)

ij (r i ,rj ) [U (1)
k (rk)] are

the two identical particles (unpaired particle) Bloch function.
The form of the trion wave function (1) is general and is not
restricted to any particular mass ratio of electrons and holes;
it implies only that the trion as a whole is free to move in the
monolayer plane, so that its envelope function can be recast
as a function of the center of mass R and relative coordinates
ρ1 and ρ2. The three-particle Bloch function is recast as a
combination of products of the individual charge carrier wave
functions because the binding energy of the trion is much
smaller than the band gap. The wave function [Eq. (1)] must be
antisymmetric with respect to the permutation of two identical
particles i and j [47]. In the representation (1) we disregard
the antisymmetrization of the functions of the electron and
hole [48–50], and the effects of the exchange interaction are
addressed below (see Secs. III D and IV).

In order to fulfill the antisymmetry requirement for the
trion wave function (1) we recast the basis two-particle Bloch
functions U (2)

ij (r i ,rj ) either as an antisymmetric or symmetric
combinations of the single-particle Bloch functions

U (2)
ij (r i ,rj ) = 1√

2

{Ui(r i)Uj (rj ) − Ui(rj )Uj (r i),

Ui(r i)Uj (rj ) + Ui(rj )Uj (r i).
(2)

Correspondingly, the envelope function ϕ(ρ1,ρ2) describing
the relative motion of the identical particles is symmetric with
respect to the permutation ρ1 ↔ ρ2 for the Bloch function in
the top line of Eq. (2) and it is antisymmetric for the Bloch
function in the bottom line of Eq. (2). Hereafter we denote
the trions as symmetric or antisymmetric in accordance with
the symmetry of the envelope function ϕ(ρ1,ρ2). As a result,
for symmetric trions, two identical carriers cannot occupy the
same Bloch state, i.e., spin and/or valley index must differ. In
conventional III-VI and II-VI quantum wells, the symmetric
trions are also known as the (spin-) singlet trions, while
antisymmetric trions are denoted as triplet trions [51,52].

B. Calculation of the exciton and trion binding energies

Using the trion wave functions defined above, we can
now calculate the binding energies. The envelope functions

ϕ(ρ1,ρ2) are the eigenfunctions of the effective mass two-
particle Hamiltonian

Htr = − h̄2

2μ

[
�1 + �2 + 2σ

σ + 1
∇1∇2

]
+V (ρ1) + V (ρ2) − V (|ρ1 − ρ2|), (3)

where �l and ∇l are the Laplacian and gradient operators
acting on functions of relative motion ρ l (l = 1,2), μ =
memh/(me + mh) is the reduced mass of the electron-hole
pair, σ = mi/mk is the ratio of effective mass of one of the
identical carriers to the effective mass of the nonidentical one,
i.e., σ = me/mh for the X− trion, and σ = mh/me for the X+
one. Equation (3) is written in terms of the relative motion
coordinates ρ1 and ρ2 of identical carriers with respect to
the unpaired one, the term ∝∇1∇2 accounts for a finite mass
ratio σ and known as Hughes-Eckart term in the theory of
atoms and molecules. The kinetic energy h̄2K2/2M of the
trion translational motion does not appear anymore in Eq. (3).

In Eq. (3), V (ρ) is the effective interaction potential taken
in the form [2,53–57]

V (ρ) = − πe2

2r0ε∗

[
H0

(
ρ

r0

)
− Y0

(
ρ

r0

)]
, (4)

where r0 is the effective screening radius, ε∗ is the effective
dielectric constant being the average one of the dielectric
constants of the substrate and cap layer, H0 and Y0 are the
Struve and Neumann functions. Note that in some works, e.g.,
in Ref. [58], the parameter r0 is introduced in a different way
with the factor ε∗ explicitly introduced in the arguments of
the H0 and Y0 functions rather than in the prefactor of V (ρ),
namely, V (ρ) = πe2/(2r0)[H0(ρε∗/r0) − Y0(ρε∗/r0)]; this is
simply equivalent to the rescaling r0 → r0/ε

∗. In Eq. (4),
we neglect a difference of interaction potentials of different
charge carriers. The difference, if any, is minor due to the
atomic thickness of the TMDC MLs. We assume that the
screening parameters r0 and ε∗ are independent of frequency.
We note that due to the significant binding energies of excitons,
∼102 meV, and of trions, ∼10 meV, the screening of the
Coulomb interaction in both cases may not be static, in
general. Therefore, we treat below r0 and ε∗ as parameters of
the theory (see Sec. IV for discussion of particular values).
Equations (3) and (4) correspond to direct electron-hole
Coulomb interaction only, and in Sec. III A we disregard
the short-range contributions to the electron-electron and
the electron-hole interactions, discussed below in Sec. III D.
We also neglect the possible lateral localization of trions
in TMDC ML plane extensively studied theoretically and
experimentally in conventional semiconductor quantum well
structures [59–61]. The in-plane localization can contribute to
the inhomogeneous broadening of the trion lines in the spectra.

The trion binding energy is the difference between the
energies of the trion, i.e., the eigenenergy of the Hamiltonian
(3), and the energy of the neutral exciton [62]. The latter is
found by minimizing the energy given by the effective exciton
Hamiltonian in the form

HX = − h̄2

2μ
� + V (ρ), (5)
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with ρ being the relative electron-hole coordinate. The exciton
energy minimization is carried out using (i) the hydrogenic trial
function

ϕex(ρ) ∝ exp (−αρ), (6a)

with the single variational parameter α, and (ii) a more
advanced trial function in the form

ϕex(ρ) ∝ exp (−αρ) + δρ exp (−βρ), (6b)

with two more parameters δ and β. The normalization
constants are omitted in the trial functions. Equation (6a)
has been used previously to calculate the binding energies
of excitons in transition-metal dichalcogenides monolayers
[2,56]. We have also tested that the calculation with the
advanced trial function gives the same binding energies as
found by quantum Monte Carlo calculations in Ref. [57].

To calculate the binding energies of symmetric trions over
a whole range of the mass ratio σ we used the sophisticated
trial function suggested in Refs. [61,63]:

ϕs(ρ1,ρ2)

∝ exp (−ρ1/a1 − ρ2/a2) + exp (−ρ1/a2 − ρ2/a1)

1 + d(|ρ1 − ρ2| − R0)2

×(1 + c|ρ1 − ρ2|)exp (−s|ρ1 − ρ2|), (7)

with the trial parameters a1, a2, c, d, R0, and s. The choice
of the trial function is motivated by the following: First,
it contains the symmetrized combination of the excitonlike
functions exp (−ρ1/a1 − ρ2/a2) for two carriers interacting
with the unpaired one, the parameters a1 and a2 are the effective
localization radii, and such combinations can be viewed as
wave functions for an exciton with another carrier bound to
it. The factor 1 + c|ρ1 − ρ2| accounts for the polarization of
the complex and describes the repulsion of the paired carriers.
This part of the wave function is known as Chandrasekar wave
function used to describe H− ion with two light carriers bound
to a heavier one [64,65]. Finally, the factors exp (−s|ρ1 − ρ2|)
and [1 + d(|ρ1 − ρ2| − R0)2]−1 are included to describe the
opposite limiting case of two heavy particles bound to a lighter
one, i.e., the H+

2 -like case. This function has been shown
to produce high accuracy for conventional two-dimensional
semiconductor systems based on III-V and II-VI quantum
wells [63]. We have compared the results of calculations using
Eq. (7) with the quantum Monte Carlo results in Ref. [57]
and found good accuracy of the suggested wave functions. For
example, at me = mh, r0/aB = 3

2 we have Eb
tr ≈ 0.06 Ry and

in Fig. 1 of Ref. [57] one has Eb
tr ≈ 0.075 Ry, at r0/aB = 1

4 we
have Eb

tr = 0.17 Ry as compared with 0.2 Ry in Ref. [57], at
r0/aB = 1

9 we have Eb
tr ≈ 0.24 Ry and Ref. [57] gives 0.26 Ry.

For different masses, me = 2mh and r0 = aB/4 for the X−
trion we obtain 0.19 Ry as compared with 0.22 Ry in Ref. [57].
Here, the dimensionless units corresponding to the exciton
in a bulk system with the reduced mass μ and the dielectric
constant ε∗ are introduced: the energy is measured in excitonic
Rydbergs Ry = μe4/[2(h̄ε∗)2] and the length is measured in
the excitonic Bohr radii aB = ε∗h̄2/(μe2).

We have also calculated the binding energy of the anti-
symmetric trion where the envelope function is antisymmetric
with the replacement ρ1 ↔ ρ2. These are excited states and a

FIG. 2. Ratio of the trion binding energy Eb
tr to the exciton

binding energy Eb
ex as a function of the screening radius r0 at equal

electron and hole effective masses. The inset shows the exciton
binding energy vs the screening radius. Units of energy and length
are Ry = μe4/[2(h̄ε∗)2] and aB = ε∗h̄2/(μe2), respectively.

reasonable trial function, being orthogonal to that in Eq. (7),
takes the form [51]

ϕa(ρ1,ρ2) ∝ |ρ1 − ρ2|eiϑ12ϕs(ρ1,ρ2), (8)

where ϑ12 is the angle of vector ρ1 − ρ2 with an in-plane axis
and ϕs(ρ1,ρ2) in introduced in Eq. (7). Again, the parameters
of ϕs(ρ1,ρ2), namely, a1, a2, c, d, R0, and s, serve as the
variational parameters.

The calculated ratio of trion Eb
tr and exciton Eb

ex binding
energies as functions of the screening parameter r0 for equal
electron and hole effective masses is shown in Fig. 2. The inset
shows the exciton binding energy Eb

ex . The screening radius
r0 = 0 corresponds to the strictly two-dimensional limit of a
Coulomb problem where the exciton binding energy is 4 Ry,
while the trion binding energy is about 0.12Eb

ex [46,63,66,67].
With an increase in r0 the Coulomb potential becomes more
shallow and both the exciton and trion binding energies
decrease with r0. For the same reason, the ratio Eb

tr/E
b
ex also

decreases.
Figure 3 demonstrates the results of calculation of the

trion binding energies (main panel) and the exciton binding
energy (inset) as a function of the screening radius r0 in
dimensional units. Here, we took for simplicity ε∗ = 1, the
reduced mass μ = 0.16m0 with m0 being the free-electron
mass, and considered two ratios of the effective masses
me/mh = 1 and me/mh = 0.3. We obtain the exciton binding
energies in the range of ∼102 . . . 103 meV and the trion binding
energies on the order of 10 . . . 100 meV in agreement with
previous calculations for exciton and symmetric trion binding
energies [2,56,57]. Note that the X± trion binding energies are
not very sensitive to the effective mass ratio me/mh. In Fig. 3
we also show the X+-antisymmetric trion binding energy (red
points) calculated for the electron-to-hole effective mass ratio
me/mh = 0.3.

It is already seen from Fig. 3 that the trion with two
heavier carriers, X+ one in our case, has within the suggested
model a higher binding energy. In order to study this effect in
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FIG. 3. Binding energies of the X+ and X− trions for several
effective mass ratios at a fixed reduced mass μ = 0.16m0, ε∗ = 1.
Inset shows the exciton binding energy as a function of the screening
radius r0.

more detail, we performed the calculations for fixed values
of μ = 0.16m0 and r0 = 40 Å, which corresponds to the
exciton binding energy for WSe2 of 500 meV. The results of
calculations are summarized in Fig. 4. At σ = me/mh → 1
the binding energies of X+ and X− trions become equal,
with the decrease in the mass ratio, σ → 0, the binding
energies of trions increase. While the increase in the X−
trion binding energy is quite minor, the increase in the X+
trion binding energy is quite significant. Moreover, at a
certain critical mass ratio σcr ≈ 0.5 the antisymmetric X+
trion state with the antisymmetric envelope function [Eq. (8)]
appears and becomes energetically stable. Its binding energy
monotonously increases with a decrease in me/mh. At small
mass ratio σ � 0.1 the binding energy of the antisymmetric

FIG. 4. Trion binding energies as a function of the effective mass
ratio σ at a fixed reduced mass μ = 0.16m0 and the screening radius
r0 = 40 Å, ε∗ = 1.

state of X+ trion exceeds that of the X− trion and approaches
the binding energy of the symmetric X+ trion at σ → 0.

We also note that for close values of the electron and hole
masses me ≈ mh one can use the simplified trial function
where the parameters d, c, and s are fixed to be zero
[56]. Just like in quantum well structures with pure 1/r

potential, it provides a reasonable accuracy of several percent
to 10% . . . 20% due to a weak dependence of the trion binding
energy on the mass ratio at σ → 1, but gives the same values
of X+ and X− binding energies (see Sec. IV for details). In
contrast, the limit of σ → 0 corresponds to the case of the
donor-bound exciton. The wave function (7) is similar to the
wave functions used to describe this situation [68,69].

C. Trion fine structure: Symmetry analysis

As we so far included direct Coulomb terms only, the
fact of having a valley index in addition to spin for each
carrier did not impact our calculations. Analyzing now the
exact nature of the trion states will allow us to distinguish
between optically active and inactive trions, that will contribute
with their different recombination times to very complex
emission and spin/valley polarization dynamics. Here and in
what follows, we consider the symmetric trions only because,
as demonstrated above, the state with symmetric envelope
is the ground state of the trion within the effective mass
approximation. Moreover, the symmetric trions are stable at
arbitrary electron-to-hole mass ratio. To analyse the trion
fine-structure, we apply group-theory analysis. Note that for
the symmetric trions where the envelope function ϕs(ρ1,ρ2)
is invariant under all transformations of the D3h point group,
the trion wave-function symmetry is given by the symmetry
of the Bloch function, which transforms according to the
representation

Dtr = Di × Dj × Dk,

where Di , Dj , and Dk are the representations related with the
Bloch functions, respectively, of two identical carriers i and j ,
and of the unpaired one k.

1. X+ trion

The X+ trion is formed of two holes occupying the topmost
valence band subbands and the unpaired electron. In the wave-
vector group C3h the valence band states transform according
to the �7 and �8 irreducible representations in notations of
Refs. [50,70]. These two representations are compatible with
�7 representation of the D3h point group of the WSe2 also
relevant at the � point. The product �7 × �7 = �1 + �2 + �5

in D3h is reducible. The antisymmetric combination of the
hole Bloch function in the top line in Eq. (2) forms spin and
valley singlet and transforms according to the �1 irreducible
representation, i.e., it is invariant. The symmetry of the X+
trion is, therefore, determined by the symmetry of the unpaired
electron.

In WSe2 the bottom conduction subbands and topmost
valence subbands have opposite spins and the direct transitions
at the normal incidence of radiation between these states
are forbidden in the no-phonon processes. The transitions
between the topmost valence subband and bottom conduction
subband are possible in z polarization within the same valley
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TABLE I. Symmetric X+ trion states.

State

# se τe Representation of D3h

1 +1/2 +1 σ+
�92 −1/2 −1 σ−

3 −1/2 +1
�8 dark

4 +1/2 −1

or with account for the electron-phonon interaction which
changes the carriers’ valley. These processes were studied in
Refs. [71–73] and are disregarded here. In the wave-vector
group C3h, the possible representations are �11 and �12 for
the top subbands, where the optical transitions are possible,
they are compatible with the �9 irreducible representation of
the D3h point group. These two states form the bright doublet,
states 1 and 2 in Table I. The two remaining states 3 and 4
in Table I are formed with electrons in the bottom subbands
of the conduction band: representations �9 and �10 of the
C3h point group or �8 of the D3h point group. These states
are dark at normal light incidence in the no-phonon processes
because the direct interband transitions are forbidden between
the topmost valence and bottom conduction subbands due to
spin conservation law. The states 3,4 can be activated in the
phonon-assisted processes (involving, e.g., fully symmetric
phonon, A′ in the wave-vector group C3h, with the wave vector
K at the Brillouin zone edge) or due to the localization of
the trions. In such a case, the wave-vector conservation law is
relaxed and the processes where the electron changes the valley
(but not spin) during the optical transition become possible.
The examples of the bright and dark X+ trion states are given
in Fig. 5.

Note that the optical selection rules are determined by both
the symmetry of the initial state (valence band hole) and the
final state (trion). At the normal incidence the components of
the electric field transform according to the �6 representation
and, indeed, �6 × �7 = �8 + �9. The presence of the �8

representation demonstrates the possibility mentioned above to
activate the dark X+ trions in the �1-phonon-assisted process.

FIG. 5. Schematic illustration of the symmetric X+ trions: (a)
state No. 1 and (b) state No. 3 in Table I. Blue circles denote
conduction band electron and open circles denote empty states in
the valence band. The order of conduction subbands corresponds to
WSe2.

FIG. 6. Examples of the symmetric X− trions: (a)–(c) optically
active states, (d) dark state. Blue circles denote conduction band
electrons and open circles denote empty states in the valence band.
The order of conduction subbands corresponds to WSe2.

2. X− trion

By contrast to the X+ trions, for the negatively charged trion
12 symmetric states are possible due to the moderate splitting
between the conduction band spin states. Hence, the situation
is more involved as compared with the X+ case because there
are six possible two-electron states using all spin and valley
permutations. The relevant irreducible representations of the
D3h point group can be found in a way described above using
the following compatibility rules for the representations of D3h

and C3h point groups:

�
(D3h)
7 → �

(C3h)
7 + �

(C3h)
8 , (9)

�
(D3h)
8 → �

(C3h)
9 + �

(C3h)
10 , (10)

�
(D3h)
9 → �

(C3h)
11 + �

(C3h)
12 . (11)

Here, the left-hand sides of equalities correspond to D3h, while
the right-hand sides correspond to C3h point group. The bright
and dark X− states are exemplified in Fig. 6. All 12 symmetric
X− states are listed in Table II. By contrast to Ref. [74], here
we use the representations relevant for the point symmetry
group of TMDC ML. For completeness, we also present in the
table the irreducible representation of the two-electron Bloch
function U (2)

s1τ1,s2τ2
corresponding to the top line of Eq. (2).

D. Short-range electron-electron exchange interaction

The trion states listed in Tables I and II which transform
according to the different irreducible representations of the
D3h point group have, in general, different energies. The
states which transform according to the same irreducible
representations, e.g., the X− states (1,2), (7,8), and (11,12)
or (3,4) and (9,10) can be mixed. In the effective mass model
used above in Sec. III B for binding energy calculations the
envelope function ϕs(ρ1,ρ2) is not sensitive to the trion Bloch
function, i.e., includes only the direct Coulomb terms [75].
Hence, to understand splittings and possible mixing of states,
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TABLE II. Symmetric X− trion states. In parentheses, the
irreducible representations describing the transformation rule of the
two-electron Bloch function are given. Superscript distinguishes
equivalent representations of the two-electron Bloch function. The
irreducible representation of the hole state is �7. For intervalley trions
τ1 �= τ2, for intravalley trions τ1 = τ2.

State

No. s1 τ1 s2 τ2 τv Representation of D3h

1 +1/2 +1 −1/2 −1 +1 σ+
�7 (U (2)

ij : �
(1)
1 )

2 +1/2 +1 −1/2 −1 −1 σ−

3 +1/2 +1 −1/2 +1 +1 σ+
�9 (U (2)

ij : �6)
4 +1/2 −1 −1/2 −1 −1 σ−

5 +1/2 +1 −1/2 +1 −1
�8 (U (2)

ij : �6) dark
6 +1/2 −1 −1/2 −1 +1
7 +1/2 −1 +1/2 +1 +1 σ+

�7 (U (2)
ij : �5)

8 −1/2 −1 −1/2 +1 −1 σ−

9 +1/2 −1 +1/2 +1 −1
�9 (U (2)

ij : �5) dark
10 −1/2 −1 −1/2 +1 +1
11 −1/2 +1 +1/2 −1 +1

�7 (U (2)
ij : �

(2)
1 ) dark

12 −1/2 +1 +1/2 −1 −1

the short-range electron-electron and electron-hole Coulomb-
exchange interaction needs to be included in our analysis. The
effective Hamiltonian of the short-range exchange interaction
between the electron and the hole is a matrix in the space of
spin/valley states of the electron-hole pair with the elements

V̂ eh(ρ) = δ(ρ)Heh
exch, (12)

where the nonzero matrix elements 〈s ′,τ ′; τv
′|Hexch|s,τ ; τv〉

can be evaluated via the Bloch functions of the electron and
hole [48,76].

Similarly, the short-range part of the electron-electron
interaction can be recast in the form

V̂ ee(ρ1 − ρ2) = δ(ρ1 − ρ2)Hee
exch, (13)

where the matrix elements of the operator 〈s ′
1,τ

′
1; s ′

2,τ
′
2|

Hexch|s1,τ1; s2,τ2〉 can be expressed via the Bloch functions

〈s ′
1,τ

′
1; s ′

2,τ
′
2|Hee

exch|s1,τ1; s2,τ2〉

= −
∫

d re1d re2U (re1 − re2)

× [Us ′
1τ

′
1
(re2)Us ′

2τ
′
2
(re1)]∗Us1τ1 (re1)Us2τ2 (re2). (14)

Here, Usτ (r) is the electron Bloch function normalized per unit
cell area s0: ∫

v0

d r|Usτ (r)|2 = s0, (15)

and U (re1 − re2) is the potential of the electron-electron inter-
action. It is noteworthy that at small distances |re1 − re2| ∼ a0,
where a0 is the lattice constant, the electron-electron interac-
tion is strongly different from the effective potential (4) and
U (re1 − re2) ∝ e2/|re1 − re2| at |re1 − re2| → 0 because the
screening is inefficient at atomic scales. Note that the details
of the static screening of the short-range interaction in crystals
are discussed in Refs. [77–79]. The integration in Eq. (14) is

carried out over the volume of the unit cell, so that re1, re2 are
the three-dimensional position vectors.

Equation (14) can be presented in the alternative form
decomposing the products of the Bloch functions as [48][

Us ′
2τ

′
2
(r)

]∗Us1τ1 (r)

= e
i(K τ1 −K τ ′

2
)ρ

∑
M

BM (z; s ′
2τ

′
2; s1τ1)e−ibMρ, (16)

where K τ is the wave vector of the valley τ = ±1, bM

are the reciprocal lattice vectors, and BM (z; s ′
2τ

′
2; s ′

1τ
′
1) are

the coefficients, and introducing the Fourier components
of the Coulomb interaction Uq(z) = ∫

dρ exp (iqρ)U (r) with
the result

〈s ′
1,τ

′
1; s ′

2,τ
′
2|Hee

exch|s1,τ1; s2,τ2〉
= −

∑
L,M

δq,K τ1 −K τ ′
2
−bM

δ−q,K τ ′
1
−K τ2 −bL

×
∫

dz1dz2BM (z2; s ′
2τ

′
2; s ′

1τ
′
1)

×BL(z1; s1τ1; s2τ2)Uq(z1 − z2). (17)

Two-electron states |s1,τ1; s2τ2〉 = U (2)
s1τ1;s2τ2

(r1,r2) form a
basis of the reducible representation which is decomposed into
the irreducible representations �

(1)
1 ,�

(2)
1 ,�5,�6 (see Table II).

Here, the superscript (1) or (2) distinguishes equivalent
irreducible representations relevant for the pairs (1,2) and
(11,12). It is convenient to transform the matrix elements (17)
from the basis |s1,τ1; s2,τ2〉 to the irreducible representations
ν = �

(1)
1 ,�

(2)
1 ,�5,�6. To establish the transformation rules for

the two-electron Bloch functions from the basis s1τ1; s2τ2 to the
basis ν = �

(1)
1 ,�

(2)
1 ,�5,�6, we introduce the two sets of basic

Pauli matrices σ (i) = (σ (i)
x ,σ (i)

y ,σ (i)
z ) and τ (i) = (τ (i)

x ,τ (i)
y ,τ (i)

z )
acting in the spin and valley spaces of the ith (i = 1,2) electron.
Here, the eigenstates of σz operator with the eigenvalues ±1
correspond to the spin-up and down electrons and the eigenval-
ues τz = ±1 of the corresponding valley operator correspond
to the electron occupying the K± valley, respectively. The
expressions for the projection operators Pν to the trion states
where the two-electron Bloch function transforms according
to the irreducible representation ν can be recast as

P�5 = 1 − τ (1) · τ (2)

2

1 + σ (1)
z σ (2)

z

2
,

P�6 = 1 − σ (1) · σ (2)

2

1 + τ (1)
z τ (2)

z

2
,

P
�

(1)
1

= 1√
2

(
P

�
(S=0)
1

+ P
�

(T =0)
1

)
,

P
�

(2)
1

= 1√
2

(
P

�
(S=0)
1

− P
�

(T =0)
1

)
, (18)

where

P
�

(S=0)
1

= 1 − σ (1) · σ (2)

2

1 + τ (1) · τ (2) − 2τ (1)
z τ (2)

z

4
,

P
�

(T =0)
1

= 1 − τ (1) · τ (2)

2

1 + σ (1) · σ (2) − 2σ (1)
z σ (2)

z

4
.
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In this basis, one has

Hee
exch = a2

0

⎛
⎜⎜⎝

E
�

(1)
1

V�1 0 0
V�1 E

�
(2)
1

0 0
0 0 E�5 0
0 0 0 E�6

⎞
⎟⎟⎠, (19)

where the parameters Eν , V�1 have the dimension of energy
and typically correspond to atomic energies, i.e., range from
units to tens of eV. It immediately follows from the form of
the exchange matrix elements in Eq. (17), which are nothing
but the matrix elements of the Coulomb interaction calculated
over the Bloch functions within the unit cell. Accounting
for the Bloch function normalization [Eq. (15)], one can
crudely estimate 〈s ′

1,τ
′
1; s ′

2,τ
′
2|Hee

exch|s1,τ1; s2,τ2〉 as ∼s0e
2/a0.

The splittings between the trion states are sensitive to the
shape of the envelope function [cf. Eq. (13)] and are smaller
(see Sec. IV for discussion) because the exchange splitting is
also proportional to the probability to find the electrons within
the same unit cell. Note that V�1 is nonzero because it mixes
the states �

(1)
1 and �

(2)
1 of the same symmetry.

IV. DISCUSSION

We now compare our experimental findings on trion
binding energies in WSe2 monolayers (Fig. 1) with the
model calculations presented in Sec. III. First of all, let us
establish which of the X± trion states listed in Tables I and II
can manifest themselves in the reflectivity (absorption) or
photoluminescence spectra.

The situation is straightforward for the trions with two
holes, X+ trions. Here, only two states, Nos. 1 and 2 [see
Table I and Fig. 5(a)], are optically active in, respectively,
σ+ and σ− circular polarizations at the normal incidence of
radiation. Hence, in absence of magnetic field the X+ trion
produces a single line in absorption or PL spectra in agreement
with experimental data shown in Fig. 1.

Out of 12 symmetric X− trions, 3 Kramers-degenerate pairs
of trion states are optically active: (1,2), (3,4), and (7,8).
However, in WSe2 the order of spin states in the conduction
and valence band states is reversed [17], therefore, the bright
states 1 and 2 of the X− trion involve charge carriers from the
topmost conduction subbands (Fig. 6). The conduction band
splitting is significant and amounts to about 37 meV [21]. As a
result, for the reasonable electron densities ne � 4×1012 cm−2

and low temperatures of several Kelvin the occupancy of the
excited subbands is negligible. Hence, the trion states 1 and 2
are not active in absorption/reflection as they cannot be formed
in the process of the single-photon absorption [80]. Hence,
in the conditions of our experiment only two pairs of states
(3,4) and (7,8) [Figs. 6(b) and 6(c)] are responsible for the
two observed lines in the reflectivity [Fig. 1(c)]. Similarly,
this doublet is seen in the PL spectra [Fig. 1(d), bottom
panel].

In accordance with our symmetry analysis, the pairs of
bright (1,2) and dark (11,12) states form two bases of the same
�7 irreducible representation and thus can be mixed by the
parameter V�1 in Eq. (19). This can result in a small but nonzero
oscillator strength of dark states (11,12) [74]. In accordance
with our observations, this mixing is negligible because we do

not observe a third line related with X− trion neither in the
reflectivity nor in PL, where, in principle, the small oscillator
strength could be compensated by the significant occupancy
of the trion state.

Next, let us discuss the spectral positions of the observed
X+ and X− lines. Using the effective masses me = 0.28m0,
mh = 0.36m0 [17], ε∗ = 1 and the screening parameter r0 =
40 Å to reproduce the experimental exciton binding energy of
about Eb

ex = 500 meV [1,2,5], we obtain almost equal binding
energies of the X+ and X− trions Eb

X− ≈ Eb
X+ = (26 ± 1) meV

(see Fig. 4). This value is in agreement with experimental data
[Fig. 1(c)], which correspond to slightly smaller X+ binding
energy of 21 meV and slightly larger X− binding energy of
32 meV measured from average position of two observed
X− lines for very low n-type doping. Before addressing the
difference of the positive and negative trion binding energies
as well as the splitting of the X− doublet, let us briefly analyze
the role of dielectric environment described by the effective
dielectric constant ε∗ on the trion binding energies. Our WSe2

monolayer sample is encapsulated in hBN [see Fig. 1(a)],
whereas the results in particular for the exciton binding energy
Eb

ex measurements were obtained for monolayers directly in
contact with the SiO2/Si substrate. To investigate the influence
of the dielectric environment, we performed calculations using
the parametrization of WSe2 hBN heterostructure determined
in Ref. [58] on the basis of analysis of excitonic diamagnetic
shifts in this system: μ = 0.18m0, r0 = 13.6 Å, ε∗ = 3.3.
The exciton binding energy is Eb

ex = 206 meV in reasonable
agreement with reported in Ref. [58] value of 221 meV, while
the binding energy of X+ and X− trions is 13 meV, using
me = mh, which is somewhat lower than our experimental
values shown in Fig. 1(c). One can obtain better agreement
with the experiment with the same value of ε∗ = 3.3 tak-
ing μ = 0.16m0, r0 = 6.4 Å to obtain Eb

ex = 283 meV and
Eb

tr = 20.6 meV.
Our next aim is to analyze the role of the effective mass

difference on the trion binding energies. Within the effective
mass approximation (3), the specific details of the band struc-
ture and Bloch states of individual carriers are reduced to the
effective mass values me and mh. Experimentally, we observe
that the X+ trion has a smaller binding energy as compared to
X− in Fig. 1(c). For the commonly used values me < mh from
theory [17] this is in contrast with the effective Hamiltonian
calculations in Sec. III B and Fig. 4. In the framework of
this simple and practical model, it is predicted that the trion
with two heavier carriers has a larger binding energy. This
is because the coefficient 2σ/(σ + 1) in the “correlation” or
Hughes-Eckart term in the kinetic energy [Eq. (3)]

− h̄2

2μ

2σ

σ + 1
∇1∇2 (20)

increases monotonously with an increase in σ . Thus, if
one takes an optimal trial function of the system with
lighter identical carriers (e.g., for X− trion with me < mh) and
calculates the binding energy of the trion with heavier identical
carriers, this correlation term will produce a larger energy
shift downwards. Hence, the binding energy of the trion with
two heavier identical carriers is indeed expected to be larger.
Since the effective conduction and valence band effective
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masses in WSe2 are not precisely known, one may speculate
that in this material me > mh and that is why the X− trion has
a larger binding energy. However, to obtain the difference of
about 10 meV in the X+ and X− binding energies, one has to
take an unrealistically large ratio me > 10mh. The difference
of effective masses cannot also explain the splitting between
two X− trions observed experimentally.

Hence, we resort to the assumption that me and mh are close
in magnitude in WSe2 monolayers. Therefore, the difference of
the X+ and X− binding energies, as well as the splitting of the
X− trion states, is provided by the short-range contributions
to the exchange interaction analyzed in Sec. III D, which is
particularly sensitive to the Bloch functions form. In order to
estimate these contributions, we disregard the correlation term
(20) in Eq. (3) and use the simplified trial function [56,64,65]

ϕs(ρ1,ρ2) ∝ [exp (−ρ1/a1 − ρ2/a2)

+ exp (−ρ1/a2 − ρ2/a1)], (21)

with only two variational parameters a1 and a2. For the
effective masses relevant for WSe2 this trial function provides
accuracy of several percent as compared to the more complex
trial function (7). This is because, as shown in Fig. 4, in
the mass ratio range from σ ≈ 0.6 to 1 the binding energies
of the X+ and X− practically merge. The evaluation of the
short-range contribution to the trion energy after Eqs. (13) and
(19) using the trial function (21) yields

δEsr = 1

2π

Eνa
2
0

2
(

a1a2
a1+a2

)2 + (a1+a2)2

8

= Eνa
2
0

2πa2
eff

. (22)

Here,

aeff =
√

2

(
a1a2

a1 + a2

)2

+ (a1 + a2)2

8
.

For a0 = 3 Å relevant for WSe2, the estimates show that a
reasonable difference of |E�5 − E�6 | ≈ 2 eV Å2 is sufficient
to produce the difference of the trion binding energies by
≈6 meV in agreement with the fine-structure splitting of
the X− trion observed in the experiment. In a similar way,
the short-range effects may produce the relative shift of
the X+ trion and the X− doublet in the optical spectra.
The precise determination of parameters Eν in Eq. (19)
is beyond the scope of this paper. Here, we just stress
that the short-range Coulomb-exchange contributions to
the trion energies and fine-structure splittings provided by the
exchange interaction give an order of magnitude of the
X− fine structure and X+ – X− trions energy separation.
Moreover, these estimates are consistent with the atomistic
calculations of the bright and dark trion mixing matrix ele-
ment [Eqs. (19) and (22)] ∼V�1a

2
0/(2πaeff) ≈ 20 . . . 30 meV

presented in Ref. [74]. These contributions are expected to be
particularly important in the two-dimensional transition-metal
dichalcogenides because of the small exciton and trion radii,
as compared with the conventional semiconductor quantum
wells.

In this work, we focused on the case of WSe2 monolayer.
The theoretical analysis presented above is quite general and
can be applied to other TMDC material systems including both
WS2 and Mo-based monolayers. In the latter case of MoS2 and
MoSe2 MLs the order of spin subbands in the conduction band
is reversed. Hence, the X− state where both electrons occupy
the bottom subband becomes optically active. This state is
expected to dominate the reflectivity or absorption spectrum.
Other active states where one electron occupies the excited
spin subband either in the same or in the different valley
can play a significant role in the reflectivity or absorption
provided that the carrier density or temperature is high
enough to produce the non-zero occupation of the excited spin
subband.

V. CONCLUSIONS

In this work, we have presented the results of experimental
and theoretical study of the positively X+ and negatively X−
charged excitons in tungsten diselenide WSe2 monolayer.
These Coulomb-correlated complexes comprising two holes
and electron or two electrons and a hole are clearly observed
in PL and reflectivity measurements performed in the van
der Waals heterostructure based on the WSe2 monolayer
encapsulated in hexagonal boron nitride layers. The X+ trion
has a binding energy of 21 meV, while the X− trion appears
in the spectra as two peaks related with its energy spectrum
fine structure at 29 and 35 meV below the exciton resonance.

The model describing the experimental findings is pre-
sented. Within the effective mass approach we evaluate the
binding energies of the trions by means of the variational
method using the trial functions which have previously proven
to be reliable in conventional III-V and II-VI quantum well
structures. We obtain the binding energies of the trions close
to the experimentally observed values. We also provide the
detailed symmetry analysis of the X+ and X− trion states
and identify the optically active and inactive configurations.
The fine-structure Hamiltonian for the X− trion is derived and
the relation of its matrix elements with the Bloch functions
is presented. We demonstrate that the fine structure of the
observed X− emission as well as the splitting between the
X+ and X− trions is related with the short-range Coulomb-
exchange interaction between the charge carriers.
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