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We adopted the time-dependent density functional theory (TDDFT) within the linear augmented Slater-type
orbitals basis and the cluster averaging method to compute the excitation spectra of III-V ternary alloys with
arbitrary concentration x. The TDDFT was carried out with the use of adiabatic meta-generalized gradient
approximation (mGGA), which contains the 1/q2 singularity in the dynamical exchange-correlation kernel
[fXC,00(q)] as q → 0. We found that, by using wave functions obtained in local density approximation while
using mGGA to compute self-energy correction to the band structures, we can get good overall agreement between
theoretical results and experimental data for the excitation spectra. Thus, our paper provides some insight into
the theoretical calculation of optical spectra of semiconductor alloys.
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I. INTRODUCTION

The III-V ternary alloys are important materials because
of their wide applications in various photovoltaic devices.
InxGa1−xAs alloys can potentially outperform GaAs in elec-
tron transport properties and their room-temperature band
gaps are particularly well suited for applications in infrared
emitting diodes and detectors [1]. Improved dc current gain and
increased mobilities and saturation velocities make InAsxP1−x

a good material for heterojunction bipolar transistors [2].
Modulation-doped InAsxP1−x quantum wells show excellent
performance in semiconductor lasers [3]. High single-mode
yield makes InAsxP1−x competitive in laser diode applications
[4]. Thus, it is highly desirable to have a better understanding
of the electronic properties of these alloys. Kim et al. [5] and
Choi et al. [6] reported dielectric functions of InxGa1−xAs and
InAsxP1−x, respectively, for various compositions x including
the end-point values x = 0 and 1, which can be used as the
database for analyzing these alloys with arbitrary composition
x. Many theoretical methods, such as the Bethe-Salpeter
equation (BSE) approach [7–12] and time-dependent local-
density approximation (TDLDA) [13,14], have been used to
calculate the excitation spectra of solids. The BSE approach
explicitly treats electron-hole interaction (excitonic) effects
by solving the two-particle correlation function, which have
been used to calculate optical spectra of bulk semiconductors
and achieved good agreement with experiment [12]. TDLDA
focuses on the response of the interacting system to a weak
external perturbation and treats the exchange-correlation (XC)
potential VXC by local density approximation (LDA) [15]. The
method has been successful in obtaining the excitation spectra
of finite systems but not successful for extended systems
[12]. Another difficulty, which has been known since the
early 1980s, is that the basic local density approximation and
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its semilocal extensions severely underestimate the band gap
[16–22]. A scissor operator (�E)Pck must be used to correct
the band gap for its application in solids. Here the energy shift
(�E) can be obtained either semiempirically [20] or by GW
calculation [21–24], and Pck is the projection operator applied
on conduction bands only. Unfortunately, it is impossible to
use the scissor operator in alloys since it is a composition of
two or more semiconductors and one cannot determine which
band gap to be corrected. It makes the scissor operator method
inapplicable to alloys.

The recently meta-generalized gradient approximation
(mGGA) [25–28] can fix the notorious underestimated band
gaps caused by LDA [16–19] without consuming large
computational resources. It expands the exchange-correlation
potential in terms of not only the density but also the gradient
of the density ∇nσ (r), the kinetic-energy density τ (r), and/or
∇2nσ (r). The mGGA developed by Tran and Blaha (TB09)
[26] shows great improvement in band gaps which are in
excellent agreement with experimental results. The mGGA
can be used to generate Kohn-Sham (KS) wave functions
and eigenenergies with good band gaps for GaAs, InAs, InP,
and their alloys. The idea of using time-dependent density
functional theory (TDDFT) [29,30] with adiabatic mGGA to
compute an optical spectrum was introduced by Nazarov and
Vignale [31]. They have implemented this approach into the
full-potential linearized augmented plane-wave (FLAPW) [32]
scheme to calculate the optical spectrum for bulk Si and Ge
with good success. However, FLAPW needs a large number
of plane waves as the basis, which makes it computationally
expensive to apply to systems with large number of atoms per
unit cell. On the other hand, Sharma et al. [33,34] proposed a
“bootstrap” kernel for TDDFT that determines the long-range
correction parameter self-consistently and generated good
excitation spectra for a wide range of materials, including
the band-gap correction either with a scissor approximation or
the LDA + U approach.

In this paper we describe the implementation of TDDFT
in the full-potential linear augmented Slater-type orbitals
(LASTO) scheme [35–38] with adiabatic mGGA to compute
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optical excitation spectra for alloys with the help of the cluster
averaging method. The LASTO approach uses a much smaller
number of basis functions than FLAPW, which makes it much
easier to extend to systems with large unit cells. It is found that
by using mGGA to evaluate the exchange-correlation kernel in
TDDFT and the self-energy correction to band energies while
using the Kohn-Sham wave functions calculated in LDA, we
can obtain excitation spectra of ternary alloys in very good
agreement with experimental results.

This paper is organized as follows. In Sec. II we briefly
review the TDDFT concepts and formulas on which our
calculation is based. In Sec. III we describe how to model
the basic supercell structures needed in our calculation
for alloys. In Sec. IV, we apply the TDDFT approach to
compute the optical excitation spectra for the family of ternary
alloys including InxGa1−xAs and InAsxP1−x . The results are
compared to experimental data. Finally, a summary and future
outlook are presented to conclude this paper in Sec. V.

II. THEORETICAL METHODS

Let us consider the linear response of a semiconductor alloy
to a weak optical excitation. The response function χ can
be built from the frequency-dependent, dynamical exchange-
correlation kernel fXC(r,r′,ω) and the noninteracting Kohn-
Sham response function χKS(r,r′,ω) according to [30]

χ−1(r,r′,ω) = χ−1
KS (r,r′,ω) − fXC(r,r′,ω) − e2

|r − r′| , (1)

where fXC(r,r′,ω) is defined as

fXC(r,r′,ω) = δVXC[n(r,ω)]

δn(r′,ω)
. (2)

VXC[n(r,ω)] is the time-dependent XC potential which is a
functional of the electron density n(r,ω). Following the work
of Nazarov and Vignale [31], we approximate the Fourier
transform of the XC kernel fXC by

f XC
G,G′ ≈ −∂εXC

∂τ
χ−1

KS,s(G,G′) , (3)

where G and G′ denote reciprocal-lattice vectors. f XC
G,G′ has

the singularity of the type f XC
00 (q) ∼ 1/q2 as q → 0 that

the traditional approximations do not provide [39]. Here εXC

is the exchange-correlation energy density, which depends on
the kinetic-energy density τ (r) in mGGA [25–28], and the

overbar in ∂εXC
∂τ

denotes the average over the unit cell. The
Fourier transform of the noninteracting KS response function
χKS(r,r′,ω) can be expressed in terms of the Kohn-Sham Bloch
states and eigenenergies as

χKS
G,G′(q,ω) =

∑
ν,ν ′,σ

fν,k − fν ′,k+q

ω − Eν ′,k + Eν,k + iη

×〈�ν,σ,k(r)|e−i(G+q)·r|�ν ′,σ,k(r)〉
× 〈�ν ′,σ,k(r′)|ei(G′+q)·r|�ν,σ,k(r′)〉 , (4)

where fν is the occupation number for the Kohn-Sham
Bloch state |�ν,σ,k(r)〉 with quantum number ν and spin
σ at wave vector k (limited in the first Brillouin zone).
The KS eigenvalues Eν,k and |�ν,σ,k(r)〉 are obtained within

mGGA. Note that the KS response function adopted in
Eq. (3) is the static one, i.e., it does not depend on time or
frequency. The excitonic effect is contained in the macroscopic
complex dielectric function εM (q,ω), which is related to the
macroscopic average of the response function χ by

1

εM (q,ω)
= 1 + 4πe2

q2
χ00(q,ω) , (5)

where q is the wave vector of a photon and χ00 is the G =
G′ = 0 component of the Fourier transform of χ (r,r′,ω).

To evaluate εM (q,ω) in the long-wavelength limit
(q → 0), we need to calculate the matrix elements
〈�ν,σ,k(r)|e−i(G+q)·r|�ν ′,σ,k(r)〉 that appear in Eq. (4). If the
reciprocal vector G is nonzero, we can simply set q = 0 and
evaluate the matrix elements directly. However, for G = 0,
the transition matrix element becomes zero at q = 0, and we
have to calculate the leading contribution which is linearly
proportional to q. By keeping only the term linear in q, we
obtain the following relation:

〈νk | e−iq·r | ν ′k〉 = h̄/m

Eν ′,k − Eν,k
〈νk | q · p | ν ′k〉 , (6)

where p = im[H,r]/h̄ is the momentum operator and m is the
electron mass. The calculation of limq→0 εM (q,ω) by using
TDDFT with f XC

G,G′ approximated by Eq. (3) will be referred
to as TDDFT-A.

Alternatively, we may use LDA to calculate the transition
matrix elements, which implies keeping the KS wave functions
in LDA while using mGGA to obtain the self-energy correction
to band energies. It has been shown that in GW approximation it
is better to keep the KS wave functions obtained in LDA rather
than using the wave fuctions obtained in fully self-consistent
GW calculation [24,40]. In this way, the dipole transition
matrix elements are given by

〈νk | e−iq·r | ν ′k〉LDA = h̄/m

ELDA
ν ′,k − ELDA

ν,k

〈νk | q · p | ν ′k〉LDA.

(7)

Here 〈νk | p | ν ′k〉LDA denote the LDA momentum matrix
elements. Such approximation was also used by Rohlfing and
Louie [41]. The calculation of limq→0εM (q,ω) obtained this
way will be referred to as TDDFT-B.

III. CLUSTER AVERAGING APPROACH FOR ALLOYS

To calculate the dielectric functions of ternary alloys
AxB1−xC (with x varying between zero and one), we adopt the
cluster averaging method. We follow the procedures described
in Ref. [42]. First, electronic states of five basic configurations,
AC, BC, A3BC4, AB3C4, and the AC-BC superlattice, have to
be calculated at the corresponding lattice constants which obey
Vegard’s law [43] with

aA1−xBxC = xaBC + (1 − x)aAC. (8)

The macroscopic dielectric function of the alloy for a given
value of x is calculated via a configuration average with a
probability weight of P (n)(x) for the nth configuration. We
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TABLE I. The lattice constants (in atomic units) for supercell
structures considered in modeling the InGaAs and InAsP ternary
alloys.

InGaAs2 InGa3As4 In3GaAs4 In2AsP In4As3P In4AsP3

11.07 10.87 11.26 11.27 11.36 11.18

have

εM (q,ω,x) =
4∑

n=0

P (n)(x) · εM (A4−nBnC4) , (9)

where εM (A4−nBnC4) denotes the macroscopic dielectric func-
tion of configuration A4−nBnC4. The probability weights can
be calculated by the equation (assuming random distribution)

P (n)(x) =
(

4
n

)
xn(1 − x)4−n . (10)

The binary end-point compounds AC and BC are modeled
by zinc-blende structure with Td symmetry. The remaining
configurations are modeled by a AC-BC superlattice and two
minority clusters A3BC4 and AB3C4.

Following Ref. [42] we model the AC-BC superlattice
by using the primitive tetragonal structure with space group
no. 115 in the International Tables for Crystallography or
point group D2d . It contains four atoms per unit cell with
the primitive vectors

a1 = (
1
2 ,− 1

2 ,0
)
a,

a2 = (
1
2 , 1

2 ,0
)
a, (11)

a3 = (0,0,1) a,

where a is the face-centered cubic lattice constant. Two
minority clusters A3BC4 and AB3C4 require a larger unit cell
to model them, and we use the primitive cubic structure with
space group no. 215 or point group Td , which contains eight
atoms in the unit cell with the primitive vectors

a1 = (1,0,0)a,

a2 = (0,1,0)a, (12)

a3 = (0,0,1)a.

In principle, we can use three distinct unit cells for five
configurations, the typical zinc-blende unit cell for AC and BC,
the primitive tetragonal structure for the AC-BC superlattice,
and the primitive cubic structure for A3BC4 and AB3C4

supercells. In order to cancel systematic errors (caused by
finite sampling in zone integration), we use the largest unit cell
among them, the eight-atom supercell specified by Eq. (12),
for all three supercell configurations. Their constituent atoms
are allowed to relax until they reach equilibrium positions. In
general, all atoms can move independently, but we restrict their
movements in a way preserving the symmetry of the atoms in
their unrelaxed (ideal) positions in the crystal. Note that we
do not use the largest unit cell for the bulk configurations AC
and BC, since we found that the results of using the supercell
and the bulk unit cell are identical, due to the fact that they

FIG. 1. Band structures of GaAs obtained by LASTO (left) and
WIEN2K (right).

have the same Td symmetry and that sampling points in zone
integration are equivalent.

IV. RESULTS AND DISCUSSION

A. Band structures

The self-consistent KS band structures of constituent mate-
rials GaAs (InAs), InGa3As4 (In4As3P), InGaAs2 (In2AsP),
In3GaAs4 (In4AsP3), and InAs (InP) for InGaAs (InAsP)
alloys are computed in mGGA within the LASTO basis by
incorporating the TB09 [26] code. The lattice constants of
GaAs, InAs, and InP at room temperature are taken from
the experimental values compiled in Ref. [44]. The lattice
constants of the AC-BC superlattice and A3BC4 and AB3C4

supercell structures are computed by Vegard’s law and are
listed in Table I. We have exploited the point-group symmetry
to reduce the computational effort. The relaxation of atoms
within the supercell is determined by using WIEN2K [45],
which is more reliable than LASTO in terms of structure
energy minimization, because it uses the linearized augmented

FIG. 2. Band structures of InAs obtained by LASTO (left) and
WIEN2K (right).
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FIG. 3. Band structures of InP obtained by LASTO (left) and
WIEN2K (right).

plane-wave basis, which is a more flexible basis set than
LASTO. The band structures (including spin-orbit interaction)
of GaAs, InAs, InP, InGaAs2, and In2AsP computed by
LASTO and WIEN2K are shown in Figs. 1–5, for comparison.
Due to the small number of basis functions used in LASTO,
the exponents ζ used in the Slater basis functions [φnlm(r) =
rne−ζ rYlm(r̂)] need to be properly chosen to give band gaps in
close agreement with WIEN2K. We see that the LASTO results
with an optimized set of exponents are very close to WIEN2K

results in all aspects even though the former uses a much
smaller basis set. It is worth noting that the band gaps obtained
by the two methods agree within 0.1 eV. For the eight-atom
supercell case, the computation time needed to obtain the band
structures and KS wave functions (for 300 k points) in LASTO
is about a factor 1/8 (1/3) of that forWIEN2K calculation with
(without) spin-orbit interaction, indicating the advantage of
LASTO over WIEN2K for applications when a large number of
KS states are needed in the calculation.

FIG. 4. Band structures of InGaAs2 obtained by LASTO (left)
and WIEN2K (right).

FIG. 5. Band structures of In2AsP obtained by LASTO (left) and
WIEN2K (right).

B. Optical excitation spectra

Using the electronic states obtained with the LASTO basis,
we calculate optical excitation spectra for five basic structures
through TDDFT. Two methods (TDDFT-A and TDDFT-B)
for calculating the excitation spectra have been considered as
described in Sec. II. In TDDFT-A, both band structures and
wave functions are calculated within mGGA. In TDDFT-B,
the mGGA is used to obtain self-energy corrections in the
band energies, while the dipole transition matrix elements are
evaluated in LDA according to Eq. (7). To check the accuracy
of calculated momentum matrix elements in our LASTO
code, we compare the calculated results of |〈νk | p | ν ′k〉|2)
for optical transitions from the highest three valence bands
(labeled v1–v3) to the lowest two conduction bands (labeled
c1 and c2) obtained both by LASTO and WIEN2K (without
including the spin-orbit interaction) in Fig. 6 (within LDA)
and Fig. 7 (within mGGA). Due to the possible random mixing
of states of degenerate bands in numerical calculations, we
take linear combinations of degenerate states to obtain states
of fixed symmetry types, which lead to smooth behavior of

FIG. 6. Squared optical matrix elements of GaAs obtained by
LASTO (left) and WIEN2K (right) within LDA.
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FIG. 7. Squared optical matrix elements of GaAs obtained by
LASTO (left) and WIEN2K (right) within mGGA.

optical matrix elements for wave vectors along symmetry axes.
The comparison shows that results obtained by LASTO and
WIEN2K are essentially the same with very minor differences
caused by the limited number of orbitals used in the LASTO
approach. Similar agreement between LASTO and WIEN2K

results is also found for optical transition matrix elements
involving higher conduction bands (c3 and c4), although they
are not shown here.

For calculating the optical excitation spectra, the average
value of the derivative of the XC energy with respect to the
kinetic-energy density in Eq. (2) is computed by Voorhis
and Scuseria’s XC functional [27]. As a benchmark test, the
resulting optical spectra from TDDFT-A and TDDFT-B are
presented in Fig. 8 for bulk Si together with results calculated in
random-phase approximation (RPA) and experimental results
from Ref. [46]. For zone integration, we have used 12 ×
12 × 12k mesh within the irreducible wedge of the Brillouin

FIG. 8. Comparison of optical spectra by various methods for Si.
Dash-dotted lines, with pure mGGA (TDDFT-A); solid lines, with
LDA optical matrix elements and self-energy correction in mGGA
(TDDFT-B); dashed lines, RPA-A; dotted lines, RPA-B; symbols,
experimental data taken from Ref. [46].

FIG. 9. Comparison of optical spectra of five configuration
structures for InxGa1−xAs alloy calculated by TDDFT-B approach.
Experimental data are taken from Ref. [5].

zone (IWBZ), as generated by the Monkhorst-Pack method
[47] with shift (0.083333,0.25,0.416667) 2π

a
. The RPA-A and

RPA-B results (which do not include the excitonic effect)
are obtained by replacing χ0,0(q,ω) in Eq. (5) by χKS

0,0 (q,ω)
with dipole matrix elements calculated in mGGA and LDA,
respectively. In Fig. 8, it is clearly seen that the RPA-A results
underestimate both the E1 peak (due to L-point van Hove
singularity) near 3.3 eV and the E2 peak (due to X-point van
Hove singularity) near 4.1 eV of the ε2 spectrum in comparison

FIG. 10. Comparison of optical spectra of five configuration
structures for InAsxP1−x alloy calculated by TDDFT-B approach.
Experimental data are taken from Ref. [6].
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FIG. 11. Optical spectra of InxGa1−xAs alloys calculated by (a) TDDFT-A and (b) TDDFT-B. Solid lines are results obtained with cluster
averaging method, except for x = 0 and 1, which correspond to bulk materials. Dashed lines are experimental data from Ref. [5].

with experiment, while RPA-B results overestimate the E2
peak (slightly) but still underestimate the E1 peak due to
the neglect of the excitonic effect. The TDDFT-A result
(dash-dotted curve) improves only slightly with about 15%
increase of the E1 peak over the RPA-A results. On the other
hand, the TDDFT-B result (solid curve) produces significant
increase of the E1 peak, bringing much better agreement
with the experimental data. Similar behaviors are found for
other semiconductors. We thus conclude that it is better to
use the TDDFT-B approach to calculate the optical spectra of
semiconductors.

Figures 9 and 10 show the dielectric functions calcu-
lated by TDDFT-B for five configuration structures used
in simulating InGaAs and InAsP alloys, respectively. The
experimental data for bulk configurations are also included for
comparison. We have used a 8 × 8 × 8 k-mesh for supercells
and 10 × 10 × 10 k-mesh for bulk structures within IWBZ
to do the zone integration. As seen in Figs. 9 and 10,
the TDDFT-B results match the experiment data quite
well.

Next, we adopt the cluster averaging method to calculate
the optical spectra of alloys InxGa1−xAs and InAsxP1−x with
arbitrary composition x and compare them with experimental
data (dashed lines). The real and imaginary parts of dielec-

tric functions calculated via both TDDFT-A and TDDFT-B
methods are presented in Figs. 11 and 12. Solid lines are
results obtained with cluster averaging method, except for
x = 0 and 1, which correspond to bulk materials. Dashed lines
are experimental data. The macroscopic dielectric functions
εM (A4−nBnC4) of five configuration structures were computed
with TDDFT, which includes the many-body interactions
through fXC approximated by Eq. (2) within mGGA, and the
static average based on Eq. (9) was performed to obtain the
macroscopic dielectric functions of the alloys. It is seen that
all spectra calculated by TDDFT-B show a very good match
with experimental data. In particular, both the positions and
strengths of the E1 (L-point singularity) and E2 (X-point
singularity) peaks of ε2 (imaginary part of ε) spectra agree
well with experimental data with differences of height in the
range of 0.8–4.0% and position deviations of less than 0.3 eV.
It is noted that the ε1 (real part of ε) spectra are also in very
good agreement with the experimental data. In contrast, the
TDDFT-A approach gives excitation spectra consistently
lower in strength in the entire spectral range, although the en-
ergy positions of the E1 and E2 peaks have similar agreement
with experiment. Therefore we conclude that the TDDFT-B
approach, which uses the transition matrix elements calculated
in LDA as described by Eq. (7), while including the self-energy
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FIG. 12. Optical spectra of InAsxP1−x alloys calculated by (a) TDDFT-A and (b) TDDFT-B. Solid lines are results obtained with cluster
averaging method, except for x = 0 and 1, which correspond to bulk materials. Dashed lines are experimental data from Ref. [6].

correction in mGGA gives much better agreement between
the theoretical results and experimental data in comparison
with the TDDFT-A approach, which adopts the mGGA wave
functions throughout. Our paper also illustrates that the cluster
averaging method works quite well in obtaining the optical
spectra for ternary alloys with statistical average over five
basic configuration structures.

V. CONCLUSION

We have used the TDDFT approach combined with mGGA
and the cluster averaging method to compute the optical
excitation spectra of InxGa1−xAs and InAsxP1−x alloys with
arbitrary composition x and compared them to experimental
results with good agreement. This method is simple and
efficient. We considered two ways to compute the optical
transition matrix elements involved in the calculation of the
macroscopic dielectric function: TDDFT-A and TDDFT-B. In
TTDFT-A, both the KS wave functions and band energies
are calculated in mGGA, while in TDDFT-B only the band
energies are computed in mGGA, thus obtaining the band-gap
correction needed to produce excitation spectra with peak
positions that match the experiment, while keeping the KS
wave functions calculated in LDA. We show that the TDDFT-B
approach can generate optical spectra in much better
agreement with experiment than the TDDFT-A approach.

This seems to suggest that the KS wave functions are more
accurately described by LDA, although the band energies
need to be corrected by adding the self-energy correction.
On the other hand, mGGA is very convenient in providing
the self-energy correction to KS band structures and it allows
a simple approximation to describe the exchange-correlation

kernel f XC in terms of ∂εXC
∂τ

as given in Eq. (3), which is needed
in the TDDFT calculation to include the excitonic correction to
the excitation spectra. We believe this method can be applied
in more complicated materials, such as superlattices, quantum
wires, and quantum dots, in the future.

Since the LASTO basis is a much smaller set than the
FLAPW basis used in WIEN2K, it makes TDDFT calculation
within the LASTO basis efficient enough to handle large
supercells (up to 1000 atoms). Thus it can be applied to novel
materials and nanostructures with large number of atoms, such
as Bucky balls and nanoclusters. Furthermore, the LASTO
calculation allows easy extraction of interaction parameters
suitable for a tight-binding model, which can be combined
with TDDFT to study optical properties of nanostructures with
realistic sizes.
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