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Adaptively truncated Hilbert space based impurity solver for dynamical mean-field theory
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We present an impurity solver based on adaptively truncated Hilbert spaces. The solver is particularly suitable
for dynamical mean-field theory in circumstances where quantum Monte Carlo approaches are ineffective. It
exploits the sparsity structure of quantum impurity models, in which the interactions couple only a small subset
of the degrees of freedom. We further introduce an adaptive truncation of the particle or hole excited spaces,
which enables computations of Green functions with an accuracy needed to avoid unphysical (sign change of
imaginary part) self-energies. The method is benchmarked on the one-dimensional Hubbard model.

DOI: 10.1103/PhysRevB.96.085139

I. INTRODUCTION

Dynamical mean-field theory (DMFT) [1–3] is widely used
to investigate the physics of many-electron systems, and has
produced crucial insights into phenomena ranging from the
Mott transition to electronically mediated superconductivity.
DMFT uses the solution of an auxiliary quantum impurity
model (finite number of interacting degrees of freedom
coupled to infinite noninteracting bath) to approximate the
physics of the full interacting lattice model. However, many
important classes of materials lead to impurity models that
are too difficult to solve with current methods. For example,
systems with partially filled d orbitals and low point group
symmetry of the correlated site are not computationally
accessible if realistic exchange interactions are included [4].

The key technical issue in implementing DMFT is the
solution of the impurity model. Many useful impurity solvers
have been proposed and implemented. Continuous-time quan-
tum Monte Carlo [5] is widely used in the single-site
approximation and can handle relatively large clusters with
high symmetry [6,7]. However, the method suffers from the
fermionic sign problem, which is grievously exacerbated for
large clusters or situations of low spatial symmetry (low
point symmetry of the correlated ions). Further, the method
requires analytical continuation to obtain spectral functions
and other experimental observables [8,9]. The numerical
renormalization group (NRG) [10] is known to be very
accurate for the low-energy physics of simple models (e.g., a
single impurity with a single band), but extending this method
to more general cases has been challenging, although there is
recently reported progress for three-orbital models [11].

An alternative and also widely used approach to the solution
of impurity models is exact diagonalization (ED) [12]. In ED,
one approximates the continuous bath by a finite number of
orbitals [13], and solves the resulting finite system exactly. This
procedure has many advantages: it excludes uncertainties by
fully diagonalizing the given Hamiltonian, it does not require
particular assumptions about the symmetry of the problem
and it computes real-frequency spectra without involving any
nontrivial process (although of course the physically relevant
continuous spectra are approximated as a sum of delta peaks).
However, the exponential increase of the computational costs
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required as the system size is increased is a crucial drawback.
This exponential growth limits the total number of orbitals
(impurity plus bath), Ns = Nc + Nb to Ns ∼ 8 with a direct
diagonalization or Ns ∼ 14 with iterative schemes such as
Lanczos or Davidson method. This is a severe limitation since
experience dictates that one needs at least three bath orbitals for
each correlated orbital; [14] thus models with three correlated
orbitals (or four in the case of the single-band Hubbard model,
where a high degree of symmetry somewhat reduces the com-
putational burden) are marginally computationally accessible
in situations of high point symmetry, but more general cases
are computationally inaccessible within the ED method.

As originally formulated, the ED method works with the
full Hilbert space of the impurity plus discretized bath system.
Quantum impurity models have a unique sparsity structure
arising because the interactions exist only on a small subset
of “correlated sites”, while the bath orbitals are uncorrelated.
Recent methodological improvements in effect exploit this
sparsity structure. Zgid et al. [15,16] proposed that one need
only deal with a subspace of the full Hilbert space. Zgid
and co-workers employed the configuration interaction (CI)
approach, familiar from quantum chemistry, to identify a
relevant subspace of the full impurity model Hilbert space,
and then diagonalized the problem in that subspace. Lin and
Demkov further developed the method, noting in particular
that CI was most effective when the system had only a few
partially occupied orbitals [17]. We also developed an active
space variant of the CI method, which was applied to the
three-band copper oxide model [18].

Because the interactions act only on a small number of
sites, in these CI-inspired methods the dimension of the
needed subspace grows only slowly with the number of bath
orbitals, permitting study of models with more bath orbitals per
correlated orbital. However, the required size of the subspace
increases rapidly with the number of correlated orbitals.
Further, applications to dynamical mean-field theory require
a high-quality approximation to the electron self-energy, and
even slight inaccuracies in the calculation of the Green function
can lead to unphysical impurity self-energies, with imaginary
parts that change sign as a function of frequency.

Recently, Lu et al. proposed an iterative scheme to
build the truncated Hilbert space by repeatedly applying
the Hamiltonian to a certain initial state [19], diagonalizing
the Hamiltonian in the truncated space, and then selecting the
highest weight Slater determinants in the lowest eigenstate as
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new initial states. These authors also proposed a pole-merging
scheme to circumvent the unphysical self-energy problem.
The approach of Lu et al. has to date been applied to single-
impurity models with a small number of correlated orbitals.
The number of bath orbitals that can be treated is relatively
large, and the combination of the pole-merging scheme and
the large number of bath orbitals leads to smooth spectra,
but the number of correlated orbitals that can be treated is
unknown.

In this paper, we present a new scheme that, within
certain restrictions, overcomes these limitations. We build two
truncated Hilbert spaces, one for the computation of the ground
state and one for the computation of the Green function, by
combining two ideas: particle-hole substitution with respect to
the reference states and iterative update followed by truncation.
We show that this combination enables access to larger systems
(more correlated orbitals) than had been previously accessible,
while preserving the accuracy needed for computation of the
self-energies.

The rest of this paper is organized as follows. In Sec. II,
we describe the impurity solver we improved focusing on how
we construct the truncated Hilbert space for both the ground
state and the Green function. In Sec. III, we benchmark the
method on the one- and two-dimensional Hubbard model and
show that this method can solve the impurity Hamiltonian
with eight spin-degenerate (sixteen total) correlated orbitals.
We present scaling of the computational costs with respect to
the number of orbitals in the impurity Hamiltonian in Sec. IV.
Section V explains how to select the parameters to build a cost-
efficient truncated Hilbert space. Finally, we give summary and
prospects of this method in Sec. VI.

II. METHODS

A. Overview

In this section, we outline the key aspects of the methods we
present. We are interested in the solution of a quantum impurity
model containing Ns = Nc + Nb orbitals, with Nc correlated
orbitals created by operators c†ν with ν = 1, . . . ,Nc and Nb

bath orbitals created by operators a
†
l with ν = 1, . . . ,Nb

(throughout this paper we do not explicitly write the spin
indices; μ and l label spin-orbital states and each orbital has a
twofold spin degeneracy). The Hamiltonian is

H =
Nc∑
μν

Êμνc
†
μcν +

Nc∑
μ

Nb∑
l

(Vμlc
†
μal + H.c.) +

Nb∑
l

εla
†
l al

+
Nc∑

μνδκ

Iμνδκc
†
μc†νcκcδ, (1)

where E is a matrix describing one-particle terms in the
impurity, Vμl is the hybridization strength between the μth
impurity orbital and the lth bath orbitals, εl is the onsite energy
of lth bath orbital, and Iμνδκ is a matrix element of the two-body
interactions among the impurity sites. The circumflex over E

denotes an Nc × Nc matrix.
The Hilbert space of the problem defined by Eq. (1)

has dimension 4Ns , which becomes prohibitively large for
Ns � 14. The original ED method [12] simply diagonalizes

the problem in this Hilbert space. More recent papers [16–19]
observe that much of the full Hilbert space is irrelevant, and
use methods inspired by the CI approach of quantum chemistry
to identify the relevant subspace in which the impurity model
is diagonalized.

The standard CI approach diagonalizes the Hamiltonian in
a subspace constructed of states obtained by creating some
number of particle hole excitations on top of one or more
reference states. The reference states are chosen a priori
(for example, as solutions of Hartree-Fock equations) and
“active space” methods [20] are used to restrict the size of the
subspace by considering only subsets of all possible particle-
hole excitations. These approaches have substantially extended
the range of impurity models that can be studied [16–18] but
are not fully satisfactory. They do not take full advantage of
the sparsity structure (locality of interactions) characteristic of
impurity models, and encounter difficulties in computing the
Green function at the level needed to ensure that the sign of
the imaginary part of the self-energy is always negative, as
required by causality.

The difficulty with the self-energy �̂ has a straightforward
origin: it is defined in terms of the full Ĝ and bare Ĝ0 Green
functions by the Dyson equation,

�̂(ω) = Ĝ−1
0 (ω) − Ĝ−1(ω). (2)

In all of the discretized bath methods, both Ĝ and Ĝ0 are
represented as sums of poles, which must combine correctly
to yield a physical �̂. If the Hamiltonian is solved exactly, the
self-energy is causal. However, in the CI-based methods, Ĝ and
Ĝ0 are determined in different ways. Ĝ0 is given analytically
in terms of the impurity model via

[
Ĝ−1

0 (ω)
]
μν

= ω − Êμν −
∑

l

V ∗
μlVνl

ω − εl

, (3)

while Ĝ is computed via an approximate procedure involving
a subset of the full Hilbert space. If the computation of Ĝ

is insufficiently accurate, a misalignment of poles between
Ĝ and Ĝ0, or a misestimate of the strengths of the poles in Ĝ

may occur, leading to unphysical behavior of �̂, which causes
difficulties in the DMFT convergence.

In the remainder of this section we first explain our method
for defining a restricted subspace in which the ground state
is computed and then show how to compute the Green
function with sufficient accuracy that the self-energy satisfies
needed “causality” properties. The idea for both ground state
and Green function/self-energy calculations is to build an
appropriate subspace of the full 4Ns -dimensional Hilbert space
of Eq. (1).

B. Ground state

Our approach aims to exploit the sparsity structure of
the impurity model, which is that the interactions live only
on a small subset of the total number of sites: the bath
orbitals are completely noninteracting. The consequence is
that most of the Hilbert space is irrelevant, so that the
ground state may be found by diagonalizing Eq. (1) in an
appropriately selected and parametrically smaller subspace
of the full Hilbert space. We adopt an iterative procedure
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FIG. 1. (a) Flow chart of procedure for obtaining the ground state and the Green function: we construct a truncated Hilbert space by
applying particle hole substitutions (PHSs) to a set of reference states. The lowest eigenstate is computed within the truncated Hilbert space by
the modified Lanczos method. The Nref (typically O(103)) Slater determinants (SDs) with the highest weight in the ground state are selected
as new reference states for next iteration. This procedure is repeated until convergence is reached. Reference states for the Green function
calculation are obtained by applying a creation or annihilation operator to the Nref highest weight SDs in the final ground state, and the Green
function space is again built by adding PHS to these states. The Green function is then computed by the continued fraction representation in
this subspace. (b) Selected examples of the generation of SDs by making PHS on reference states. Starting from a set of reference states (one
is shown in the leftmost panel), additional SDs are produced by repeatedly applying the PHS to each reference state. Empty (filled) circles
indicate holes (electrons) created by the particle-hole substitutions. All SDs in N th

ph order act as seeds to generate SDs for (Nph + 1)th order
but only few selected SDs are shown for simplicity. At order Nph = 1, all possible particle-hole pairs are created; at higher order Nph > 1,
particle-hole substitutions are performed only for orbitals which are partially occupied in the natural orbital basis (shaded regions, green and
red on-line).

which generalizes and extends those of Zgid et al. [16] and
Lu et al. [19]. We use a multireference CI-like procedure to
build a variational subspace of Slater Determinants (SDs) by
particle-hole excitations from a set of reference states, diago-
nalize the problem in this subspace, and then choose as new
reference states those SDs with highest weight in the ground
state, and repeat until the process converges. This algorithm
is sketched in panel (a) of Fig. 1. The method requires a
choice of initial (“seed”) reference states; we typically use
the references of the multireference configuration interaction
method [18]. The final results should be independent of the
initial choice, and we have verified that this is generically the
case.

Given a set of reference states, the algorithm then generates
a family of states in the usual CI manner by applying particle-
hole substitutions (PHSs) to each reference state as illustrated
in Fig. 1. We classify the states by the number of particle-hole
substitutions Nph. For a given reference state |ψR〉, the Nph = 1
manifold is given by all states of the form |ψp,R

i 〉 = f
†
pfi |ψR〉,

where f is a fermionic operator, either c or a. Each |ψp,R

i 〉
is then used to generate a set of Nph = 2 SDs as |ψpq,R

ij 〉 =
f

†
pf

†
q fifj |ψR〉, etc. The set of states generated by applying this

procedure to all reference states will typically include many
duplicates, which must be removed to define the truncated
Hilbert space. It is most convenient to remove duplicates after
each N th

ph-order PHSs to prevent a larger set of duplications in
the next order of SDs.

After the truncated Hilbert space is constructed, the lowest
eigenstate of the Hamiltonian in the restricted Hilbert space is

computed as a linear combination of SDs,

|	G.S.〉=
∑
R

⎡
⎣CR|ψR〉 +

∑
pi

C
p,R

i

∣∣ψp,R

i

〉 +∑
pqij

C
pq,R

ij

∣∣ψpq,R

ij

〉

+
∑

pqrijk

C
pqr,R

ijk

∣∣ψpqr,R

ijk

〉 + · · ·
⎤
⎦, (4)

where R is the reference state index and subscripts i, j , and
k (superscript p, q, and r) run over the filled (empty) orbital
in the given reference state. We used the modified Lanczos
method [21] to compute the lowest eigenstate in this work, but
the matrices are typically not large so many diagonalization
methods, for example, Davidson [22], standard Lanczos [23],
or even direct diagonalization (if possible) may be used. The
magnitude of the coefficients C indicate the importance of
the corresponding SD |ψ〉 is in the ground state. We choose
the NSD

seed with the largest C to be the new reference states
for the next iteration. The other SDs are abandoned and they
are not necessarily included in the Hilbert space in the next
iteration unless they are regenerated by PHSs from the new
reference states. This closes the loop in Fig. 1(a) to obtain the
ground state.

The method described here combines two important ideas
from previous methods. In conventional multireference con-
figuration interaction methods [16], the Hilbert space is
constructed from a fixed reference set; here we iteratively
update the reference states. In the approach of Lu et al. [19],
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the reference set is iteratively updated but no further PHS is
applied after a reference set consisting of a certain number of
SDs is chosen. The dimension of the effective Hilbert space
is determined by both NSD

seed and Nph. The combination of two
ideas, iterative update and PHSs, enables us to obtain, with a
minimal number of SD, a solution of the impurity Hamiltonian,
which is sufficiently accurate for the purposes of DMFT.
Moreover, as explained in the following section, this approach
provides an optimal starting point for the computation of the
Green function.

Two refinements of the procedure are important to note. At
each iteration we compute the Ns × Ns single-particle density
matrix D from the ground state in the usual way from the
ground state |	G.S.〉 and use this density matrix to transform
the single particle basis to the natural orbital basis [16,17,19]
defined by D. Here we fully diagonalized the density matrix,
allowing the correlated orbitals to be mixed with the bath
orbitals by the transformation. The next step of the iteration is
done in this natural orbital basis. The iteration is continued
until the changes both in ground-state energy and density
matrix eigenvalues become minimal. Also, we apply different
order of PHSs to natural orbitals depending on their occupancy.
The partition of the orbitals is marked by different colors in
Fig. 1. The first PHS is applied to all orbitals in SDs in the
reference states (Nph = 0), but we allow higher orders of PHS
to only 2Nc + 4 (2Nc) most partially filled orbitals for Nph = 2
(Nph � 3). This idea is based on the active space variation of
the CI method and further reduces the dimension of the Hilbert
space by excluding SDs generated by higher order of PHS in
occupied or empty natural orbitals.

We also observe that unlike in molecular systems in
quantum chemistry, the impurity Hamiltonian has two clearly
distinguished types of orbitals: correlated Nc orbitals and
noninteracting Nb orbitals. Adding more bath orbitals is much
cheaper than adding correlated orbitals, because the particle
hole substitutions need only account for the interactions
relating to the correlated orbitals. In quantum chemistry
language, the active space of partially filled orbitals has size
related to Nc, so it is small relative to the total space.

C. Green function

As discussed in the introduction to this section, the need
for an accurate self-energy for DMFT computations imposes
stringent requirements on the quality of the computed Green
function. Figure 2 shows examples of the difficulties that
can arise, even for apparently high-quality Green functions.
The top panels show the imaginary part of the on-site
component of the electron Green function, computed from
a cluster dynamical mean-field (CDMFT) solution of the
half-filled one-dimensional Hubbard model for two values of
the interaction parameter. In both cases, the Green function
is fully causal and has a very reasonable form (note that
for the small U case the theoretically confirmed small gap
insulating behavior is captured at this level of dynamical
mean-field approximation but is obscured by the broadening
used to construct the local density of states). The bottom panels
show the imaginary parts of the on-site term of self-energy;
we see that the imaginary part changes sign. Comparison to
the on-site term of the inverse Green function shown in the
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FIG. 2. (Top) Imaginary part of the on-site term of full Green
function computed for the impurity model corresponding to the
eight-site cluster dynamical mean-field approximation to the one-
dimensional Hubbard model with 16 spin-degenerate bath orbitals at
half filling for the U values shown. In this calculation the DMFT
solution was converged with respect to basis set size but the Green
function calculation was performed using a smaller basis set. (Middle)
On-site components of inverse Green function (color on-line) along
with (dashed, black on-line) the inverse of the noninteracting Green
function. (Bottom) Self-energy computed from Dyson equation and
inverse of noninteracting Green function.

middle panels reveals that in the U/t = 2.0 case the unphysical
sign change is the result of a small error in the amplitude of
the pole at ω/t ≈ ±1 so that the difference between Ĝ−1

0 and
Ĝ−1 is not quite correct. In this figure, we also see that the
poles in Ĝ−1

0 and Ĝ−1 at ω/t ≈ ±3 do not quite line up.
This misalignment produces unphysical structure in �̂, but
in this case, it is not large enough to cause a sign change in
the imaginary part. The U/t = 8.0 case reveals an additional
difficulty: small inaccuracies in the computed Ĝ can lead to
unphysical behavior in Ĝ−1, arising because in the CDMFT
method Ĝ is a matrix with off-diagonal components, and the
poles in the different entries in this matrix must combine
correctly to lead to correct behavior in Ĝ−1; the errors in
Ĝ−1 are seen to lead to strong causality violation in �̂.

Computing the Green function requires acting on the
N -particle ground state with an electron creation or anni-
hilation operator and then propagating the resulting state.
Implementing this propagation with acceptable computational
effort requires constructing a reduced basis set (which we
call the Green function space) for the (N ± 1)-particle Hilbert
space. The standard approach constructs the Green function
space by applying a particle or a hole creation operator to each
SD used in the ground state [16–19]. In this case, the only way
to improve the accuracy of the impurity Green function is to
increase the number of SDs in the ground-state sector itself
so that their particle or hole excitations produce more SDs in
the Green function sectors. Unfortunately, in this approach,
the ground-state sector may become excessively large before
a sufficiently accurate Ĝ is obtained.

The computation of the Green function involves repeatedly
applying the Hamiltonian to states in the Green function
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space. These applications generate particle-hole excitations,
increasing the Nph. Hamiltonian matrix elements that take the
system outside of the space defined from the ground-state
sector are dropped. The effect of the dropped contributions
depends on the weight of the SD from which it originated,
because the coefficient persists in the multiplication of the
Hamiltonian; SDs produced by adding higher-order PHS to
an important SD may be more important than states produced
by adding lower-order PHS to a SD with small ground-state
weight. This suggests that the desired Hilbert space for the
Green function is a set of SDs, which minimize the importance
of dropped states under as many actions of H as possible, in
other words, we should choose the set of SDs with PHS which
are generated by the Hamiltonian itself.

Motivated by this idea, we construct the Green function
space as sketched in Fig. 1(a). We build the Green function
space by taking the reference states from the ground-state
calculation, adding a particle or hole, and then completing
the space by adding all states generated by adding up to
NGreen

ph particle-hole substitutions in the N ± 1 sectors (in
practice, we find NG.S.

ph = 2 suffices for the ground state,
while NGreen

ph � 4 is needed for the Green function). The
Green function is then computed using the standard continued
fraction representation within the Lanczos basis constructed
from this basis set [12,19,24–27]. We observe that it is not
necessary to use the same number of reference states as in the
ground state. In this work, as a first step we used the same
number of seed SDs as in the ground-state calculation, and
included more SDs in the seed set if the resulting self-energy
has causality violations.

The need to treat only PHS relating to the correlated
subspace makes possible our efficient construction of a
minimal basis for the Green function space. For constructing
this space, we found that treating the first PHS as Nph = 1, not
as Nph = 0 is useful: the first PHS is applied to at most 2Nc + 4
partially filled orbitals and higher orders of PHSs only target
2Nc. Since the reference states are already reasonably well
selected from the ground state, one can obtain accurate Green
functions without involving all orbitals by PHSs. This implies
that if a good starting point is chosen, the computational costs
even for the ground state may be reduced further by excluding
empty and occupied orbitals for PHSs, but we have not yet
explored this scheme for the ground-state computations. We
refer the readers to Sec. IV for further details.

III. BENCHMARKING THE METHOD
ON THE HUBBARD MODEL

We benchmarked our method by using it as an impurity
solver for cluster dynamical mean-field theory of the Hubbard
model. The Hubbard Hamiltonian reads

H = −t
∑
〈i,j〉

(c†i cj + H.c) + U
∑

i

ni↑ni↓ − μ
∑

i

ni, (5)

where i and j are the site indices, t is the nearest-neighbor
hopping amplitude, U is the local Coulomb interaction
between spin-up and -down electron is the same site, and H.c.
indicates Hermitian conjugate. We set the chemical potential
μ = U/2 so that the system is half-filled.

In this section, we focus on the one-dimensional Hubbard
model (1D HM) for which important features of the electron
spectral function are exactly calculable from the Bethe ansatz
solution [28–31] and are numerically accessible using the
density matrix renormalization group (DMRG) [32]. We also
present a few preliminary results on the 2D Hubbard model.

We performed CDMFT calculations for the one-
dimensional Hubbard model following the procedure defined
in Ref. [33]. The DMFT loop involves putting the computed
impurity model self-energy �̂ is into the cellular DMFT
(CDMFT) self-consistent equation as

G−1
0,new(ω) =

[∑
k

Ĝlatt(k,ω)

]−1

+ �̂(ω), (6)

where the lattice Green function is obtained by

Ĝlatt(k,ω) = 1

(ω + μ)1̂ − t̂(k) − �̂(ω)
. (7)

The Fourier transform of the hopping term t̂(k) defines
the lattice structure in the DMFT self-consistent equation
and (ω + μ)1̂ − Ĝ−1

0,new(ω) defines the hybridization function,
which we fit in terms of a finite number of bath parameters
by minimizing the distance function as in the standard
ED + DMFT approach [12,18],

χ2 =
Nmax∑

n

Nc∑
μν

∣∣[Ĝ−1
0,new(iωn) − Ĝ−1

0 (iωn)
]
μν

∣∣2
. (8)

The fitting is done along the imaginary frequency axis; we
chose the required fictitious Matsubara frequencies iωn =
i(2n + 1)π/β with βt = 128 retained Nmax = 512 frequen-
cies.

Since the CDMFT breaks translational symmetry, we
compute the momentum resolved spectral function by sym-
metrizing the lattice Green function following the original
CDMFT prescription [33]

ρ(k,ω) = − 1

π
Im

∑
μν

exp[i(μ − ν)][Ĝlatt(k,ω + iη)]μν, (9)

where η = 0.1 t is a Lorentzian-type broadening factor.
The level of the CDMFT method is determined by the

number of correlated orbitals Nc, and our method requires
a choice of number of bath orbitals Nb. Figure 3 presents the
spectral function obtained for two cases: (Nc,Nb) = (4,8) and
(Nc,Nb) = (8,16). The combination (Nc,Nb) = (4,8) corre-
sponds to a Hilbert space dimension 412 = 16 777 216. (Use
of symmetry reduces the number of states needed in the ED
calculation to 853,776 and is the practical limit of conventional
ED calculations for CDMFT studies of the Hubbard model.)
For this case we have verified that our results, obtained with
a few thousand states, are numerically equivalent to those
from ED.

First, we checked the convergence of the ground state by
comparing the lowest energy eigenvalues and by computing
the overlap between the ground-state wave functions found
in our truncated Hilbert space method (TH) and that found
by exact diagonalization (ED), 〈	TH

G.S.|	ED
G.S.〉. Figure 4 shows

that even a very small number of seed states and PHSs
reproduces the ground state within numerical accuracy. The
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FIG. 3. False color representation zero intensity, blue, highest
intensity, red, see color bar of the imaginary part of the electron
propagator obtained for the one-dimensional Hubbard model at half-
filling and U/t = 8.0 with (a) (Nc,Nb) = (4,8) and (b) (Nc,Nb) =
(8,16). The same color bar is also used in Figs. 6 and 7.

error in the ground-state energy and residual overlap decreases
exponentially as the number of seed states NSD

seed increases,
while increasing the number of particle hole excitations NG.S.

ph
to a value �2 do not improve the accuracy significantly. We
present the convergence of the Green function in Fig. 5.
In this case, we have an additional control parameter, the
order of PHS to build the Green function space, NGreen

ph . Here
we choose NGreen

ph = log2 NSD
seed to show the overall behavior

as the Green function space increases. In fact, for small
systems (which are tractable by the ED), any combination with
NGreen

ph � 4 yields sufficiently good accuracy to conduct the
DMFT self-consistent calculation on the imaginary frequency.
The size of the truncated Hilbert space required to reproduce
the ED results is substantially smaller than the original one.
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FIG. 4. (a) Error of the ground-state energy as a function of
the number of seed states with NG.S.

ph = 2. (b) Residual overlap
(difference between unity and inner product of the ED ground state
and lowest eigenstate from the truncated Hilbert spaces) with various
combination of the number of seed states NSD

seed and the order of
PHSs NG.S.

ph . Semilogarithmic scale is employed to visualize small
differences. As NSD

seed and NG.S.
ph increase, the overlap between two

wave functions quickly approaches unity. To observe the convergence,
the same impurity Hamiltonian with (Nc, Nb) = (4, 8) was solved
by the ED and the new impurity solver using the truncated Hilbert
space. The bath parameters in the impurity Hamiltonian were taken
from the converged DMFT solution for a given value of U in 1D HM.
See also Table I for detailed information on the Hilbert spaces.
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FIG. 5. Imaginary part of the impurity Green functions of the
impurity Hamiltonian used in Fig. 4 for (a) U/t = 2.0 and (b) 8.0.
We choose NG.S.

ph = 2 and NGreen
ph = log2 NSD

seed to show convergence
of the Green function. Since the differences are very small, we put
insets to emphasize shaded regions where the error is largest. See also
Table I for detailed information on the Hilbert spaces. As the truncated
Hilbert space grows, the Green functions from the truncated Hilbert
spaces converge to the ED result rapidly, even before the causality is
fully restored.

For more details on the number of SDs we need, see also
Table I.

The left panel of Fig. 3 shows a representative example
of a (Nc,Nb) = (4,8) calculation. While (particularly with
some a-priori knowledge of the expected spectrum) one can
infer a considerable amount of information about the electronic
dynamics, it is not clear which of the structures in the plot
are physical and which are artifacts of the approximation.
Our method enables us to double the number of correlated
orbitals, keeping the ratio of correlated to bath orbitals the
same. The right panel of Fig. 3 shows results obtained with
(Nc,Nb) = (8,16). The additional orbitals lead very obvious
improvement in the spectral weights of Fig. 3: the spinon and
holon dispersions are clearly distinguished and the triangular
spinon-holon continuum is recognizable without any guideline
from the Bethe ansatz solution.

Figure 6 presents a more detailed analysis of our results
and their relation to previously published results. Panel (a)
replots the (Nc,Nb) = (8,16) spectrum from Fig. 3, along with
the spinon and holon dispersions and the upper and lower
bounds of the spectrum at each k, from the Bethe ansatz.
Panels (b)–(f) present the spectrum as a function of energy
for selected momentum values. We see that the larger cluster
size produces a spectrum which is in better agreement with
known results, in particular, producing larger spectral weights
near the energies (shown by solid and dotted lines) where
the Bethe ansatz predicts structure. We also see that the
large cluster does a better job of concentrating spectral weight
in the allowed regions.

We also performed CDMFT calculations for the two-
dimensional square lattice Hubbard model, using the clusters
illustrated in Fig. 7(a). While Nc = 4 cluster preserves the C4
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TABLE I. Size chart describing construction of truncated Hilbert spaces large enough to produce causal self-energies in CDMFT calculations
of the one-dimensional Hubbard model at density n = 1 and to recover the causality in the 1D HM with U/t = 2.0 and U/t = 8.0. (Left)
Number of correlated (Nc) and bath (Nb) orbitals, and, for comparison, the number of SDs in the largest symmetry sector of a full exact
diagonalization calculation. The middle and right columns show, for the two values of U , different cases for the order of particle-hole
substitution in the ground NG.S.

ph and Green function NGreen
ph spaces, and the number of “seed” determinants retained, along with the resulting

number of SDs in the two spaces. (In principle, the NSD
seed can be any positive integer but we used powers of 2 starting from 16.) Also shown as

NSD
sig is the number of SDs that have weight larger than 10−6 in the ground state. (This is not used directly in the program, but shows how the

number of important SDs scales as the system size is increased.)

U/t = 2.0 U/t = 8.0

Nc Nb N
SD,ED
G.S. NG.S.

ph NGreen
ph NSD

seed NSD
G.S. NSD

Green NSD
sig NG.S.

ph NGreen
ph NSD

seed NSD
G.S. NSD

Green Nsig

2 8 63 504 2 4 16 828 132 14 2 4 16 652 82 12
2 16 2 363 904 400 2 4 16 7296 416 16 2 4 16 2914 180 12
4 8 853 776 2 4 32 8271 1074 196 2 4 32 2996 324 80
4 16 34 134 779 536 2 4 32 33 327 2146 196 2 4 32 5412 888 112
8 8 165 636 900 2 8 256 841 435 543 513 1484 2 6 128 220 132 23 520 1474
8 16 7 312 459 672 336 2 8 256 3 444 682 758 086 1546 2 6 256 740 388 43 120 2136

point symmetry, there is no Nc = 8 cluster for CDMFT that
is compatible with the C4 point symmetry. We periodize the
Green function as we do for the 1D HM in Eq. (9), to restore
translational invariance.

We computed the spectral function from the converged
self-energy along the lines connecting high-symmetry points
of the Brillouin zone shown in Fig. 7(b); results are shown in
panels (c) and (d) for (Nc,Nb) = (4,8) and (Nc,Nb) = (8,16).
The CDMFT convergence was not particularly more difficult
in 2D than in 1D HM, implying that the new impurity solver
is not highly sensitive to the dimensionality of the underlying
DMFT problem or the connectivity within the cluster, although
more SDs were required to recover a causal self-energy. This
result is encouraging, considering that DMFT calculations
including eight correlated orbital have been reported only in
combination with the continuous-time Monte Carlo [6,7,34]
or semiclassical approximations [35]. The results given by our
new method will provide complementary point of view on this

problem. A detailed analysis of the spectral properties of the
two-dimensional Hubbard model obtained by this method will
be discussed in a separate paper. Here, we merely remark that
the continuous nature of the electron spectral function is much
better represented in the larger Nc calculation.

IV. CONVERGENCE CRITERIA

In this section, we discuss more details of our method,
focusing on convergence criteria and the trade-offs between
computational cost and accuracy of result when increasing
the number of SDs by increasing the number of seeds or
particle-hole substitutions. First, for problems that are not
too large [such as the (Nc,Nb) = (4,8) case discussed above],
we have compared the impurity self-energy obtained by the
truncated Hilbert space approach to the numerically exact
solution from the ED (see Figs. 4 and 5, for example). We
found that if the self-energy computed in the truncated Hilbert

FIG. 6. (a) False color representation (zero intensity, blue, highest intensity, red, see color bar in Fig. 3) of electron spectral function of
one-dimensional Hubbard model U/t = 8.0 from DMFT+truncated Hilbert space approach calculation for (Nc,Nb) = (8,16). Also shown are
Bethe ansatz dispersions: spinon branch (black solid line), holon branches (gray solid lines), and lower bound of excitation spectrum (black
dashed lines). (b)–(f) Blue lines: the (Nc,Nb) = (8,16) electron spectral functions shown in (a) plotted on the x axis against energy on the
y axis at k points, k = 0, π/4, π/2, 3π/4, and π . The spectral functions for the (Nc,Nb) = (4,8) case are given by red lines for comparison.
Crossings and lower bounds of the Bethe-ansatz dispersion at the given k are shown by horizontal lines in (b)–(f).
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Nc = 4

Nc = 8

Y M

Γ X
kx

ky

π

π

−π

−π

(a) (b)

FIG. 7. (Top) (a) (Nc,Nb) = (4,8) cluster for the 2D square
lattice. The sites in the cluster are highlighted by colors. (b) First
Brillouin zone and high-symmetry points of the 2D square lattice.
(Bottom) Spectral function of the two-dimensional Hubbard model
for U/t = 8.0 with (c) (Nc, Nb) = (4, 8) and (d) (Nc, Nb) = (8, 16).

space is causal at all frequencies on the real-frequency axis, it
also agrees to very high precision with the exact ED self-energy
on the imaginary frequency, even though the effective Hilbert
space is substantially smaller. For larger systems beyond the
capability of the ED, we investigated the convergence of
the self-energy as the accuracy is improved. We find that in
all the cases we have studied the self-energy converges at
system sizes far below the largest Hilbert space size we can
study. The rapid convergence of the imaginary self-energy
is of particular technical importance, because the DMFT
self-consistent equation is solved in terms of the imaginary
frequencies, so efficient calculation of the needed self-energy
is helpful.

We next turn to the question of the Hilbert space require-
ments for obtaining a causal inverse Green function. The three
panels of Fig. 8 show the evolution of the site-diagonal matrix
element of Green function and the inverse Green function
computed for the one-dimensional half-filled Hubbard model
at U/t = 8.0 as the size of the ground state and Green
function spaces are increased by adding more particle-hole
substitutions. The top panels of Figs. 8(a) and 8(b) show
how increasing the number of particle-hole substitutions in
the ground state improves the Green function. We find (not
shown) that a further increase in the size of the ground-state
space does not further improve the Green function. The lower
panels, however, show (as also seen in Fig. 2) that even quite
reasonable approximations to Ĝ do not produce adequate
approximations to Ĝ−1. Panel (c) then shows that once one
has an adequate ground state, increasing the size of the Green
function space provides a decisive improvement to the quality

of the inverse Green function, even though changes to the
Green function are small on the scale shown in the upper panel.

We next turn with Fig. 9 to the quality of the self-energy, and
its relation to the convergence of the DMFT loop. The upper
three panels of this figure show the evolution of the self-energy
for the three cases shown in Fig. 8. The evolution of the
self-energy is very similar to that of the inverse Green function
shown in Fig. 8. The lower panels present the Matsubara
axis self-energy. We see that already at the intermediate
level of accuracy [panel (b′)] the Matsubara self-energy is
quite accurate (it coincides with the converged result of
panel (c′), shown as the solid red line)—causality breaking
on the level shown in the middle panel is not important for
the Matsubara axis computation because the unphysical poles
are far enough from the Fermi surface. This indicates that
we can conduct the DMFT iteration with lower accuracy at
first, and finally improve the accuracy of the Green function
after we get the solution. If performing initial computations
with lower accuracy, one should carefully check convergence,
because our experience is that anomalies near the Fermi
level make a difference to the self-energy on the imaginary
axis. Specifically, the self-energy evaluated at low Matsubara
frequencies is directly affected by the ill-behaving self-energy
near zero-frequency on the real axis due to analyticity of the
self-energy on the upper-half plane.

To gain insight into the number of reference SDs and
the needed order of particle-hole substitutions, we used our
method to solve the CDMFT equations of the one-dimensional
Hubbard model for various combinations of Nc and Nb. We
systematically improved the accuracy of the calculation until
causality is restored by increasing the order of PHSs Nph and
the number of reference states NSD

seed as shown in Table I.
For a given number of seed SDs NSD

seed, we tested various
combinations of the particle-hole substitution in the ground
state and the Green function spaces. Once those parameters
are set, the number of SDs in the Hilbert space is determined
automatically by the iterative updates described in Fig. 1. We
find that for ground-state properties, NG.S.

ph = 2 suffices, but a
larger number of PHS is needed for the Green function space.
Increasing the PHS order in the ground state is not effective in
restoring causality if the order in the Green function space is
too small.

The computational costs are roughly proportional to the
square of the number of SDs, however, it is important to note
that the running time for a single DMFT iteration depends
sensitively on the entanglement of the ground state and the
quality of the initial states. For example, in our calculations
with (Nc,Nb) = (8,16) and U/t = 2.0 the shortest full DMFT
solution took 3 hours with 256 cores to converge while in the
most time consuming case we have observed a single DMFT
iteration took 26 hours. When the iteration takes a relatively
long time, more than 80% of the running time was spent to
compute the ground state.

The method presented here requires a finite number of
bath orbitals, so bath fitting is always an issue [13,14,18,36].
More bath orbitals improves the fitting and reproduces the
continuous energy spectrum of the effective environment in
the DMFT, but also increases the computational cost. In the
original ED, the cost to add a bath orbital is not particularly
cheaper than that to add a correlated orbital. In this method,
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FIG. 8. Comparison of the imaginary part of (a)–(c) the Green function and (a′)–(c′) the inverse Green function from the same impurity
Hamiltonian for (Nc,Nb) = (8,8) with different level of accuracy. The accuracy is controlled by the order of particle-hole substitutions NG.S.

ph

(NGreen
ph ) to construct the truncated Hilbert for the ground state (the Green function). Only the first diagonal element is shown for clarity but all

the other elements show similar behavior for a given frequency. All data sets are from the exactly bath parameters which are the converged
solution of the DMFT calculation for the 1D HM with U/t = 8.0. While the causality is not broken in the Green function, the inverse Green
function ill behaves. The noninteracting inverse Green function is also given in lower panels as black thin solid lines for comparison. The
corresponding self-energies are given in Fig. 9.

however, the Nb dependence of the computational cost is
relatively slow, implying that many more bath orbitals can be
added than in other methods. Even if we double the number of
bath orbitals in the impurity Hamiltonian, the number of most
important SDs do not increase drastically. Also, we find that
the required values of Nph and NSD

seed are almost independent
of Nb; therefore we can first perform calculations with smaller
Nb to find an optimal parameters, then increase Nb to save
time for searching the optimal Nph and NSD

seed.
The favorable scaling of computational burden with Nb

arises from the noninteracting nature of the bath orbitals,
which are less entangled with other orbitals, so higher order
of PHSs involving them do not contribute to the ground
state significantly. This scaling grants us more room to invest
the limited computational power on treating the correlated
orbitals, which still show exponential growth of the costs with
Nc. Further optimization (implementation of more efficient
parallelization and better algorithm to find a reasonable initial
SDs) will enable us to include more correlated orbitals than
the 8 studied here. We are developing an algorithm to build
initial seed states based on an optimal set of SDs with the
same Nc but smaller Nb, which will significantly decrease
the number of iterations required to obtain the ground state.
A substantial improvement in computational time is expected
because finding the ground state is at present the most time
consuming part of the algorithm. We expect the limit will be

around twelve correlated orbitals, where standard ED starts to
suffer from the size of the Hilbert space.

V. DISCUSSION

Our method uses several different control parameters
to tune the truncated Hilbert space; finding the optimum
combination can be challenging. In this section, we discuss
how to choose the control parameters, NG.S.

ph , NGreen
ph , and NSD

seed
in details. The first step is to compute a sufficiently accurate
ground state. The accuracy of the ground state is controlled by
NG.S.

ph and NSD
seed. Since we have found that NG.S.

ph = 2 suffices in
the convergence analysis, we can focus on NSD

seed. Starting from
NSD

seed = 8, we obtain the lowest eigenstate of the Hamiltonian
in a generated Hilbert space by the operations described in
Fig. 1. Then we double NSD

seed, and repeat the same procedure in
the enlarged Hilbert space. If the newly obtained ground-state
energy differs less than 10−8 from the previous one, we proceed
to compute the Green function. Otherwise we keep doubling
NSD

seed until the convergence is reached.
The NSD

seed is now used to generate SDs in the Green function
space. For this given number of seed states, we again apply
PHSs after we add a hole or an electron to each seed state
and we consider convergence with respect to NGreen

ph . The
real-frequency Green function and self-energy are sums of
poles, and small differences in positions and strengths of poles
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FIG. 9. Imaginary parts of a diagonal element of self-energy on (a)–(c) the real-frequency axis and (a′)–(c′) the imaginary frequency axis
with the same parameters used in Fig. 8. In panels (a′) and (b′), the self-energy shown in (c′) is presented as a red solid line for comparison. Even
though the imaginary frequency self-energies shown in panels (b′) and (c′) are indistinguishable on this plot, the real frequency self-energy in
(b) shows causality breaking while (c) does not. Causality is restored when the order of NGreen

ph is increased, although the level of accuracy for
the ground state is the same in both cases.

leads to large variations at frequencies near the pole positions,
making the formulation of a quantitative frequency-pointwise
convergence condition difficult. If NGreen

ph is too small, we find
that the imaginary frequency is not causal (imaginary part
changes sign) and for large enough NGreen

ph the imaginary part
is causal. The imaginary frequency/imaginary time Greens
function and self-energy are much better behaved than the real
axis, and a frequency pointwise convergence condition is easy
to apply and is robust. We find empirically that an NGreen

ph that is
large enough to produce a causal self-energy is more than large
enough to produce a converged imaginary axis self-energy and
Green function and therefore in practice we use the causality
of the real axis self-energy as a convergence condition.

The number of seed SDs required to recover causality
depends on not only Nc and Nb but also on the Hamiltonian
itself. An extreme example is the noninteracting limit, in which
the ground state is described by a single SD and only few
SDs reproduce the zero self-energy with high accuracy. In the
one-dimensional Hubbard model, the most computationally
challenging value of interaction strength was found to be
U/t = 2.0, where the interaction strength is the same with
the bandwidth and the physics crosses over from itinerant to
localized.

VI. SUMMARY AND FUTURE WORKS

We developed and implemented an impurity solver inspired
by the truncated Hilbert space approaches used in earlier
work [16,17,19]. The algorithm combines the CI idea of

the successively applied particle-hole substitutions [16] with
an iterative procedure for updating the truncated Hilbert
space [19] to construct a compact truncated basis that
enables study of a much wider range of correlated electron
quantum impurity models. By applying the same ideas to
the N ± 1 particle Green function spaces we eliminated the
causality-breaking problem that has plagued previous results.
Impurity Hamiltonians with up to eight correlated orbitals
and 24 bath orbitals are solvable in this method, and we
expect that future optimization will enable treatment of up
to twelve correlated orbitals with at least three bath orbitals
per correlated orbital. We stress that our method is not more
efficient than the ED for small systems. Various iterations
to build adequate Hilbert spaces take longer time than one
required for the ED. The power of this method is favorable
scaling enabling treatment of much larger systems than can be
treated in ED, and especially the favorable scaling with number
of bath orbitals, which makes the method very useful for
DMFT applications. We also note that this method specifically
targets the ground state in constructing the Hilbert space. In
principle, it is possible extend the target to few lowest excited
states, enabling a treatment of nonzero temperatures, but this
problem requires further investigation. Extension to nonzero
temperatures would make an interesting combination with
self-energy functional theory [37] or the DMFT calculation
for very low temperatures [26].

We demonstrated that our method provides useful and ac-
curate solutions of the cluster dynamical mean-field equations
of the Hubbard model. Going beyond previously reported
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results we showed that the 8-site CDMFT approximation
gives a very good account of the electron spectral function
of the one-dimensional Hubbard model, clearly revealing the
spinon and holon sectors and the range over which continuum
excitations exist. Because our method is not expected to be
sensitive to the complexity of the impurity Hamiltonian, it can
be applied to a wide range of other situations and in particular
will be useful for dynamical mean-field studies of multiorbital
models, where a severe sign problem limits the applicability of
quantum Monte Carlo methods except in very high symmetry

situations. Our ability to incorporate many bath orbitals means
that we can obtain good approximations to spectral functions,
without the need for analytical continuation.
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