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Gradient terms in quantum-critical theories of itinerant fermions
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We investigate the origin and renormalization of the gradient (Q2) term in the propagator of soft bosonic
fluctuations in theories of itinerant fermions near a quantum critical point (QCP) with ordering wavevector
Q0 = 0. A common belief is that (i) the Q2 term comes from fermions with high energies (roughly of order of the
bandwidth) and, as such, should be included into the bare bosonic propagator of the effective low-energy model,
and (ii) fluctuations within the low-energy model generate Landau damping of soft bosons, but affect the Q2 term
only weakly. We argue that the situation is in fact more complex. First, we found that the high- and low-energy
contributions to the Q2 term are of the same order. Second, we computed the high-energy contributions to the
Q2 term in two microscopic models (a Fermi gas with Coulomb interaction and the Hubbard model) and found
that in all cases these contributions are numerically much smaller than the low-energy ones, especially in 2D.
This last result is relevant for the behavior of observables at low energies, because the low-energy part of the Q2

term is expected to flow when the effective mass diverges near QCP. If this term is the dominant one, its flow has
to be computed self-consistently, which gives rise to a novel quantum-critical behavior. Following up on these
results, we discuss two possible ways of formulating the theory of a QCP with Q0 = 0.
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I. INTRODUCTION

Understanding the behavior of itinerant fermions near
a quantum critical point (QCP) is crucial for describing
correlated electron systems. The underlying idea is that near
QCP the behavior becomes universal and can be described
by a small number of exponents, which depend only on the
type of symmetries broken in the ordered phase and on spatial
dimensionality.

QCP in a metallic system generally occurs at intermediate
coupling, where the fermion-fermion interaction is of order
of bandwidth W . In this case, a perturbation theory in the
original interaction is not a reliable computational scheme.
A commonly accepted alternative [1–4] is to abandon the
underlying microscopic model and analyze instead an effective
low-energy model of fermions interacting via the exchange of
soft bosons that condense in the ordered state. Although such
a model cannot, except for a few special cases, be derived in a
controllable way from microscopics, it is generally believed to
emerge once one integrates out fermions with energies between
W and some much smaller energy �, which serves as the upper
cutoff for the effective model (see Fig. 1). The anticipated
universality of low-energy behavior implies that the behavior
of observables at large distances and long-time scales does not
depend on a particular choice of �, as long as �/W � 1.

The inputs for the low-energy model are the boson-fermion
coupling and bare bosonic propagator, χ0(Q,�). The latter
is a particle-hole polarization bubble, dressed by interactions
involving fermions with energies between � and W . Fermions
with such energies are assumed not to differ qualitatively from
free one, even at QCP. As the consequence, the momentum and
frequency dependences of χ0(Q,�) are assumed to be regular,
i.e., expandable in powers of �2 and (Q − Q0)2, where Q0

is the momentum at which bosons condense in the ordered
phase. The regular frequency dependence of χ0(Q,�) is often
omitted in anticipation that renormalizations within the low-

energy model produce a much stronger, nonanalytic |�|�(Q)
frequency dependence (Landau damping). This nonanalytic
dependence comes from fermions with energies � |�|, and
it emerges regardless of whether the system is at QCP or
away from it. With few exceptions (discussed later in this
section) [5–7], there is no analogous nonanalytic contribution
to the momentum dependence of the bosonic propagator, hence
the dependence of χ0 on (Q − Q0)2 is essential and must be
kept. In most theories, this dependence is taken to be of the
Ornstein-Zernike form:

χ0(Q,�) ≈ χ0(Q,0) = χ0

c2(Q − Q0)2 + M2
, (1)

where χ0 is of order of the static and uniform susceptibility of
free fermions, c is a model-dependent parameter, generally
of order of the interatomic spacing, and (dimensionless)
M is the measure of the distance to QCP. Boson-fermion
models with χ0(Q,�) given by Eq. (1) have been studied
extensively both for finite Q0 (a density-wave QCP) and
Q0 = 0 (a ferromagnetic or nematic QCP, or the model of
fermions interacting with a gauge field). If only the Landau-
damping contribution from low-energy fermions is included,
the critical bosonic propagator has dynamical exponent of
z = 2 for a finite-Q0 QCP [in this case, the prefactor �(Q)
of the Landau-damping term is a constant] and z = 3 for
a Q0 = 0 QCP [in this case, �(Q) = f (Q̂)γ /Q with Q̂ ≡
Q/Q]. Beyond this approximation, the interaction between
low-energy fermions and critical bosonic fluctuations gives
rise to a singular frequency dependence of the fermionic
self-energy in dimensions d � 3, leading to a non-Fermi liquid
(NFL) behavior at QCP. In 2D (and in some specially crafted
models in 2 < d < 3), these singular renormalizations also
give rise to anomalous exponents for fermionic and bosonic
propagators, and may also change the value of the dynamical
exponent z.
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FIG. 1. Energy scales contributing to the gradient term of a
quantum-critical theory. Q is the external momentum (for a finite-Q
QCP, it is to be understood as |Q − Q0|, where Q0 is the ordering
momentum), � is the cutoff of the low-energy theory, and W is the
bandwidth. The region E � vF Q is referred to as “low energies” and
the region � � E � W as to “high energies.”

In this paper, we discuss another aspect of the low-energy
model, which attracted less attention until recently [8,9]. This
new aspect is an observation that low-energy fermions can also
contribute to the regular (Q − Q0)2 dependence of the bosonic
propagator. This additional contribution is often neglected
because it is assumed to be smaller than that from high-energy
fermions by a factor of �/W � 1, simply because the energy
width of the low-energy model is small (below we will
dispute this assumption for the Q0 = 0 case). However, the
parameter c in the high-energy contribution [Eq. (1)] is model-
dependent and, in principle, can be rather small. If we assume
momentarily that this is the case and set c = 0 in Eq. (1), we
encounter a situation when the bare bosonic propagator is just
a constant, and both the Landau-damping and gradient terms
in the bosonic propagator come from low-energy fermions.
Away from a QCP, it does not really matter whether the
gradient terms come from high or low energies. Near a
QCP, however, the low- and high-energy contributions are
qualitatively different. Namely, the high-energy contribution
is insensitive to NFL physics, specifically to the divergence
of the effective mass. The contribution from low-energy
fermions, on the other hand, depends on the effective mass.
In Eliashberg-type theories, where the self-energy near a QCP
depends predominantly on the frequency, the fermionic residue
Z(ω) = [1 − ∂	(ω)/∂ω)]−1 accounts for renormalization of
the fermionic dispersion [εk → Z(ω)εk], which means that the
ratio of the effective and bare quasiparticle masses is m∗/m =
1/Z. Then, if one keeps only the low-energy contribution to
the gradient term, one ends up with a new theory in which
mass renormalization has to be computed self-consistently
with the bosonic dispersion. We emphasize that this holds even
in cases when bosonic propagators do not acquire anomalous
dimensions.

The spin-fermion model with an additional mass-dependent
prefactor of the gradient term in the bosonic propagator has
been recently put forward by Wolfle and Abrahams [8] in
the context of an antiferromagnetic QCP in d = 3. In this
case, a high-energy contribution to the gradient term should
also be present, and it is not a priori clear why it can be
neglected, given that in a generic case this should be the
largest contribution. At the same time, the analysis in Ref. [8]
and subsequent work [9] demonstrated a very good agreement
between this theory and the data for a number of heavy-fermion
materials. This calls for further investigation of the interplay
between high- and low-energy contributions to the gradient
term in these systems.

In this paper, we study the case of Q0 = 0, which is
special for two reasons. First, we show that the low-energy

contribution to the Q2 term is of the same order as the
high-energy one, i.e., it is not small in �/W . Second, we show
that the high-energy contribution to the Q2 term is absent if the
interaction between high-energy fermions is approximated as
static, and emerges only if one includes dynamical screening
of this interaction.

To demonstrate these two features, we analyze the interplay
between the high- and low-energy gradient terms first within
the random phase approximation (RPA), which neglects dy-
namical screening of the interaction by high-energy fermions,
and then for two models with a dynamical interaction between
high-energy fermions.

The first model is a Fermi gas with a dynamically screened
Coulomb interaction. In principle, this model can be tuned to
a critical point in the spin channel or in the charge channel
with angular momentum l � 2. We will not analyze a specific
path to quantum criticality, but rather compute the Q2 term in
dressed bosonic propagators in the spin and charge channels.
We show that the low-energy contribution to the Q2 term
comes from fermions with energies of order of vF Q, where
vF is the Fermi velocity, while the high-energy contribution
comes from energies of order of the effective plasma frequency,
�p. Our reasoning for the separation between the low- and
high-energy contributions holds if �p � �, which in practical
terms implies that the enhancement of the mass ratio m∗/m is
confined to energies below �. We show that the (numerically)
dominant contribution to the Q2 term comes from low-energy
fermions both in 2D and 3D. The difference between the
high- and low-energy contributions is particularly spectacular
in 2D, where the high-energy contribution accounts only for
two percent of the total. Moreover, we found that the sign of
the high-energy Q2 term is nonuniversal: it is negative in 2D
and positive in 3D for fermions with a parabolic dispersion.
For 2D fermions on a square lattice the high-energy part of the
Q2 term changes sign near quarter-filling and stays positive all
the way up to half-filling.

The second model is a Fermi gas with a parabolic dispersion
and Hubbard interaction, which we set to be a constant (= U )
up to some momentum cutoff and then vanish. This model
can be tuned to QCP in the spin channel (for positive U ) or
the charge channel (for negative U ). We show that the high-
energy contribution to the Q2 term emerges at second order
in U , once dynamical screening of the Hubbard interaction is
included. As in the Coulomb case, we find that the high-energy
contribution to the Q2 term is numerically small. We extended
the result beyond second order in U by summing up RPA
diagrams for screened interaction, and found that the prefactor
of the high-energy Q2 term changes sign at some critical value
of U .

The outcome of our analysis is that the low-energy boson-
fermion model for QCP with Q0 = 0 has to be reconsidered,
at least in some cases. Namely, instead of starting from
Eq. (1) for the bare propagator and neglecting additional
Q2 contributions to χ (Q,�) from low-energy fermions, one
has to set the bare propagator to be Q-independent and
compute both the frequency and momentum dependencies of
χ (Q,�) within the low-energy model. The Landau-damping
term does not depend on m∗/m and is the same as for free
fermions, but the prefactor of the Q2 term is reduced by
critical fluctuations. As a consequence, the quantum-critical
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theory becomes qualitatively different from the one with the
bare propagator given by Eq. (1).

We caution that, near QCP, our arguments apply to the
behavior of the system at small but finite energies. At
progressively smaller energies, the low-energy contribution
to the Q2 term is reduced because of growing m∗/m and
eventually gets smaller than the high-energy contribution,
which is not affected by mass renormalization. As a re-
sult, the high-energy contribution dominates at the lowest
energies, and the quantum-critical theory eventually be-
comes the “conventional” one, if the high-energy Q2 term
is positive. If it is negative, the system either develops
an incommensurate order or the transition becomes first
order. We emphasize that this is different from a first-
order transition and an incommensurate magnetic order
due to generation of a nonanalytic momentum dependence
of χ (Q,0) by an effective long-range interaction [5–7].
The effect we consider here is related to a possible sign change
of the analytic Q2 term. One difference is that the effect due
to nonanalyticity holds for an O(3)-symmetric ferromagnetic
QCP, but is absent for a charge QCP and also if the O(3)
symmetry is broken down to Ising [10,11] by, e.g., spin-orbit
interaction [12,13]. In contrast, the new physics, associated
with potential negative sign of the Q2 term, holds for both spin
and charge QCPs. Another difference is that a nonanalytic Q

dependence of χ (Q,0) is a low-energy effect, while we are
interested in a high-energy Q2 term.

The rest of the paper is organized as follows. In Sec. II,
we analyze the dressed bosonic propagator near Q = 0 within
RPA and FL theory. In Sec. II A, we show that the Q2 term
in RPA comes exclusively from fermions with energies of
order of vF Q, while the high-energy contribution is absent. In
Sec. II B, we include FL renormalizations on top of RPA.
In Sec. III, we compute both the low- and high-energy
contributions to the Q2 term in the bosonic propagator for
a model with dynamically screened Coulomb interaction.
We show that the low-energy contribution still comes from
energies of order of vF Q, while the high-energy one comes
from energies of order of the effective plasma frequency.
In Sec. IV, we perform the same analysis for the Hubbard
model. We discuss possible consequences of our results for
low-energy theories of a Q0 = 0 QCP in Sec. V. Technical
details of the calculations are given in Appendices A–D.

II. BOSONIC PROPAGATOR IN RPA AND IN FL THEORY

A. RPA

To illustrate the issue with the gradient term in the
bosonic propagator near a Q0 = 0 criticality, we first consider
derivation of Eq. (1) within RPA for a system with a constant
repulsive interaction U . A system with sufficiently large
repulsive U is unstable towards ferromagnetism, and we focus
on the spin susceptibility.

For free fermions, the static spin susceptibility χs(Q) =
�(Q), where �(Q) is the free static polarization bubble (with
an extra factor of two due to spin summation)

�(Q) = −2
∫

ddk

(2π )d

∫ ∞

−∞

dωm

2π
G(k + Q,ωm)G(k,ωm),

(2)

where G(k,ωm) = (iωm − εk)−1 is the Green’s function and
ωm is the Matsubara frequency. The dressed spin susceptibility
is given by a series of ladder diagrams, which is summed up
into

χs(Q) = �(Q)

1 − U
2 �(Q)

. (3)

In the limit Q → 0, the polarization bubble is reduced to
�(Q → 0) = NF , where NF is the density of states at a Fermi
level per two spin orientations. At finite Q, �(Q) should
in general have some regular dependence on Q, i.e., to be
expandable in powers of Q2:

�(Q) = NF + A
Q2

k2
F

+ O(Q4). (4)

The prefactor A vanishes in special cases, e.g., for 2D fermions
with a parabolic or linear dispersion, but in general is nonzero.
The issue we consider is where this term comes from.

The constant (NF ) term in Eq. (4) can be obtained in two
ways—by integrating first over frequency and then over the
momentum or vice versa [14]. In the first method, one has to
keep Q finite and set it to zero only at the end of calculation.
The integral comes from the region where the poles of the
integrand over ωm in Eq. (2) are in the opposite half-planes.
This imposes the conditions εk+Q > 0 and εk < 0 (or vice
versa) which, for Q � kF , can be satisfied only for k near
the Fermi surface, when εk is at most comparable to vF Q. In
our nomenclature, this implies that the integral comes from
low energies. In the second method, one sets Q = 0 from
the beginning but constraints integration over εk to the region
−W � εk � W . From Eq. (2), we then have

�(0) = −NF

∫ ∞

−∞

dωm

2π

∫ W

−W

dεk
1

(iωm − εk)2

= NF

∫ ∞

−∞

dωm

2π

2W

ω2
m + W 2

= NF . (5)

This time, the integral comes from energies |ωm| ∼ |εk| ∼ W ,
i.e., from high energies in our nomenclature. The fact that
the same result can be obtained in two ways implies that the
NF term in the polarization operator for free fermions is an
“anomaly” [15,16], which can be viewed as either as a low-
or high-energy contribution, depending on the regularization
procedure. This feature is a consequence of the double pole in
the integrand of Eq. (4) for Q = 0.

For the Q2 term, the situation is different. If we compute this
term by the second method, i.e., by expanding the integrand
in �(Q) to order Q2 and integrate first over εk in finite limits
−W � εk � W and then over frequency, we get zero. This
implies that there is no “high-energy” contribution to �(Q)
for free fermions. If, on the other hand, we keep Q finite and
integrate over frequency first, we do find a nonzero Q2 term.
An explicit calculation for 3D fermions with an isotropic but
otherwise arbitrary dispersion εk ≡ εk + EF yields [17]

A = −k2
F

12

d

dεk

{
N (εk)

[
2vk

k
+ 1

mk

]
− 2

3

d

dεk

[
N (εk)v2

k

]}∣∣∣∣
εk=EF

,

(6)
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where vk = dεk/dk, m−1
k = d2εk/dk2, and N (εk) is the density

of states as a function of energy. For a power-law dispersion,
εk = akγ , we have A = −(γ + 1)NF /36. For a parabolic
dispersion A = −NF /12. A similar formula holds for the 2D
case, the only difference is that A = 0 in 2D both for parabolic
and linear dispersions. The low-energy nature of this Q2 term
is manifested by the fact that its prefactor is expressed entirely
via the dispersion and its derivatives at the Fermi energy, i.e.,
A comes from fermions with energies smaller than vF Q. In
this respect, if we would construct the bare spin susceptibility
for the effective low-energy model by integrating out fermions
with energies much larger than vF Q, we would not obtain a
Q2 term. At the same time, we see that the prefactor A does
not depend on the upper cutoff � of the low-energy model and,
hence, does not contain a small prefactor of �/W . (Following
the same lines, we show in Appendix A that the diamagnetic
susceptibility of a free electron gas, which is usually viewed
as the property of the entire electron band, is in fact also a
low-energy property in the sense defined above.)

B. Gradient term within the FL theory

The computational procedure in which the constant NF

term in the polarization bubble comes from low-energy
fermions can be extended in a rigorous way to include FL
renormalizations. One way to to do this is to solve the kinetic
equation for a FL in the presence of a magnetic field [18–20];
another is to keep with diagrammatics [21,22], but to go
beyond RPA and include self-energy and vertex corrections.
Both procedures lead to the familiar result for the static and
uniform spin susceptibility of an FL:

χs = N∗
F

1 + Fa
0

. (7)

Diagrammatically, this result comes about because self-energy
corrections change the low-energy part of the Green’s function
to Z/(iω − ε∗

k), where ε∗
k = v∗

F (k − kF ), v∗
F = kF /m∗, and

m∗ is the effective mass. The role of vertex corrections is
to cancel the Z factors coming from the numerators of the
Green’s functions. Also, the constant interaction U is replaced
by the zeroth harmonic of the Landau function in the spin
channel FL via Z2UN∗

F → −Fa
0 , where N∗

F = NF (m∗/m) is
the renormalized density of states at the Fermi level.

How FL renormalizations affect the Q2 term is a more
difficult question, which, in general, has no definite answer
in either the kinetic-equation or diagrammatic versions of the
FL theory. Indeed, the FL theory operates with quasiparticles
with dispersions linearized near the Fermi energy and thus
contains only the first derivative of the dispersion (the Fermi
velocity) but not higher derivatives, whereas one needs to know
higher derivatives of the dispersion to obtain a Q2 term in
the susceptibility [see Eq. (6)]. Keeping higher than O(k −
kF ) terms in the dispersion is, strictly speaking, inconsistent
with a FL assumption of nondecaying quasiparticles, because
damping of quasiparticles occurs already at order (k − kF )2.

One can approximately relate the prefactor of the Q2 term
to the renormalized effective mass (which is a FL parameter)
in the case of a local FL, when the self-energy depends
on the frequency stronger than on the momentum. Such a
case is realized near a QCP with z > 1 (Refs. [23–25]).

In this situation, fermionic propagator can be approximated
by G(k,ωm) = Z/(iωm − Zεk), i.e., the whole fermionic
dispersion acquires a factor Z. One can then re-calculate
the Q2 term for free fermions with dispersion Zεk with an
obvious result that A in Eq. (6) is multiplied by Z = m/m∗.
[The overall factor of Z in G(k,ωm) is canceled by vertex
corrections.] Near a QCP, m∗/m is supposed to diverge and
thus the Q2 term vanishes. Therefore mass renormalization
changes the critical theory in a qualitative way compared to
the case when the prefactor of the Q2 term is treated as a
constant.

The same result can be obtained using a kinetic equation for
a generic FL (but not necessarily assuming that the Z-factor
and m∗/m are related). Consider a special case of a FL,
in which the interaction in the spin channel contains only
the zeroth harmonic of the Landau function, Fa

0 . Solving a
FL kinetic equation [18–20] in the presence of a time- and
position-dependent magnetic field, we obtain for the spin
susceptibility

χs(Q,�) = �∗(Q,�)

1 + Fa
0 �∗(Q,�)/N∗

F

, (8)

where

�∗(Q,�) = N∗
F

〈
v∗

F · Q
v∗

F · Q − � − i0+

〉
(9)

is the particle-hole polarization bubble in the small-Q limit,
dressed by FL corrections, and 〈. . . 〉 denotes averaging over
the angle between v∗

F and Q. In the limit of � � v∗
F Q, Eq. (8)

is reduced to1

χs(Q,�) = N∗
F

1 + Fa
0 + iF a

0 αd
�

v∗
F Q

, (10)

where αd is a numerical coefficient which depends on spatial
dimensionality d. Equation (10) does contain the bosonic mass
(proportional to 1 + Fa

0 ) and the Landau-damping term but, as
expected, it does not have a Q2 term. In this version of the FL
theory, the Q2 term is absent because the quasiclassical kinetic
equation contains only the first gradient of the distribution
function, and thus Q enters only as v∗

F · Q.2

Suppose now that we “improve” the theory by adding a
low-energy term Q2 term to the polarization bubble:

�∗(Q,�)/N∗
F = 1 + iαd

�

v∗
F Q

+ B
Q2

k2
F

. (11)

(To ensure the ordering occurs at Q = 0, we must also
assume that B < 0.) Near criticality, when Fa

0 ≈ −1, the spin

1It can be shown [42] that Eq. (10) is valid for an arbitrary
Landau function with any number of harmonics but only in the limit
�/v∗

F q � 1.
2This is also the reason why the FL theory does not have analog

of Eq. (8) for the diamagnetic susceptibility, which is obtained as
the prefactor of the Q2 term in the static current-current correlation
function (see Appendix A). For an explicit calculation of the
diamagnetic susceptibility renormalized by the Coulomb interaction,
see Ref. [43] and references therein.
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susceptibility then becomes

χs(Q,�) = NF

M2 + m
m∗ B(Q/kF )2 − iαD

�
vF Q

(12)

with M2 ≡ (1 + Fa
0 )(m/m∗). We see again if the fermionic

mass diverges near criticality while B stays constant, the
gradient term vanishes. This implies that the gradient term
becomes a part of the low-energy theory and needs to be
renormalized accordingly.

Yet another approach is to assume that the Landau pa-
rameter Fa

0 = �a
ωZ2NF (m∗/m), where �a

ω is the irreducible
interaction vertex [18,20], acquires a Q2 dependence via
the momentum dependence of �a

ω : �a
ω(Q) = �a

ω + B̄Q2/k2
F

(Refs. [8,26]). Substituting this into Eq. (10) and pulling out a
factor of m∗/m from the numerator, we obtain

χs(Q,�) = NF

M2 + Z2B̄(Q/kF )2 − iαD
�

vF Q

(13)

with M2 = (1 + Fa
0 )(m/m∗). In a local FL, Z = m/m∗, hence

the prefactor of the Q2 term scales as (m/m∗)2, i.e., this
Q2 term is renormalized even stronger than the Q2 term in
Eq. (12). Equation (13) was used in Refs. [8,9].

In the next two sections, we show, on examples of two
microscopic models, that there is a finite contribution to the
Q2 term from high-energy fermions. Such contribution is not
affected by the divergence of the effective mass and hence
survives at QCP. We found, however, that the high-energy
contributions are numerically very small, at least in the models
we considered. Therefore, at least over some range of energies,
the dominant contribution to the Q2 term comes from low-
energy fermions, and its prefactor does contain m/m∗.

III. ELECTRON GAS WITH COULOMB INTERACTION

A. Formulation of the problem and background

We consider 2D and 3D electron gases with Coulomb
interaction in the high-density limit. As we have already said
in Sec. I, a Q2 term in the free-electron polarization bubble,
�(Q,0), if nonzero, comes only from low energies. A Q2

term in the bubble, renormalized by the dynamically screened
Coulomb interaction, was calculated in a seminal 1968 paper
by Ma and Brueckner for a 3D electron gas [27]. Since then, the
Q dependence has been addressed by a large number of authors
by semianalytic or numerical means, see, e.g., Refs. [28–31].
The difference between our calculation and the previous ones
is that the goal of the latter was to obtain the entire Q2 term,
which contains both low- and high-energy parts. On the other
hand, we are interested only in the high-energy part of the Q2

term and will arrange the calculation in such a way that it picks
up only that part. Comparison with prior work will allow us
estimate the relative fraction of the high-energy part.

The minimum set of diagrams for the renormalized static
polarization bubble, �̃(Q), is shown in Figs. 2(a)–2(e). The
interaction correction to the spin susceptibility is given directly
by diagrams (a)–(c). [The Aslamazov-Larkin diagrams (d)
and (e) do not contribute to χs , because the traces over Pauli
matrices at the vertices vanish in the spin channel by SU(2)
symmetry.] On the other hand, the starting point for the charge
susceptibility is the RPA formula 1/χc(Q,�) = 1/�(Q,�) +

FIG. 2. Diagrams for the polarization bubble to lowest order in
the dynamically screened Coulomb interaction (wavy line). Diagrams
(a)–(c) contribute to the spin susceptibility, while diagrams (a)–(e)
contribute to the charge susceptibility. Diagram (f) is a representative
next-order diagram, which we will use for comparison with the
leading order ones.

U0(Q), where U0(Q) is the bare Coulomb potential. To
obtain χc beyond RPA, one simply needs to replace the bare
polarization bubble in this formula by the renormalized one,
which now includes the contributions of all five diagrams,
(a)–(e). The wavy lines in Fig. 2 correspond to the Coulomb
potential, dynamically screened by free electrons,

U (q,�m) = N−1
F

κd−1
d

qd−1 + κd−1
d �(q,�m)

, (14)

where κ2 = 2πe2NF and κ3 =
√

4πe2NF are the screening
momenta in d = 2,3, correspondingly. To keep the pertur-
bation theory under control, we assume that κ � kF (the
high-density approximation) or, equivalently, that e2/vF � 1.
Because typical momentum transfers are expected to be of
order κ , the polarization bubble of free fermions in Eq. (14)
can be approximated by its small Q limit:

�(q,�m) = 1 − |�m|√
v2

F q2 + �2
m

, (15)

�(q,�m) = 1 − �m

vF q
tan−1 vF q

�m

, (16)

in d = 2 and 3, correspondingly.3

If the dynamic interaction is replaced by the static one,
U (q,0), the Q2 term in �̃(Q,0) comes only from low-energy
fermions. For example, diagram (c) in Fig. 2 in this case contain
a product of two blocks:∫

dωmG(k − Q/2,ωm)G(k + Q/2,ωm)

×
∫

dω′
mG(k′ − Q/2,ω′

m)G(k′ + Q/2,ω′
m), (17)

3By the same argument of small momentum transfers, the nonan-
alytic, |Q|d−1 terms in the spin susceptibility [44,45], which come
from 2kF scattering processes, appear only at the next order in κ/kF

and can be neglected.

085137-5



MASLOV, SHARMA, TORBUNOV, AND CHUBUKOV PHYSICAL REVIEW B 96, 085137 (2017)

where k′ = k + q. Because the interaction is static, integrals
over ωm and ω′

m in Eq. (17) are independent, and each of
them confines the fermionic momenta k and k′ to narrow
regions of width Q near the Fermi surface, i.e., only fermions
with energies smaller that vF Q contribute. This calculation
also shows that a low-energy Q2 term could not be obtained
by Taylor-expanding Eq. (17) to order Q2. Indeed, such an
expansion would generate terms of order

∫
dωmG2(k,ωm)

or higher, which vanish because the poles of the integrand
are in the same half-plane of a complex variable ωm. On
the contrary, a high-energy Q2 term can be obtained via a
straightforward Taylor expansion. On a technical level, this is
the main difference between the low- and high-energy gradient
terms.

The Q dependence of the susceptibility arising from the
static Coulomb potential (the Hartree-Fock approximation)
was calculated numerically in Ref. [28] for d = 3 and Ref. [30]
for d = 2, and by a variational method for d = 2 in Ref. [29].
The low-energy contribution to the Q2 term for the static
Coulomb potential in discussed in Sec. III E and Appendix
C. The high-energy contributions to diagrams (a)–(e) can be
singled out by subtracting off the static contributions, which
amounts to replacing the Coulomb potential by its dynamic
part:

Udyn(q,�m) = U (q,�m) − U (q,0). (18)

This is the effective interaction that we will be using in the
next section.

B. Spin channel

The corrections to the polarization bubble in the spin
channel, δ�̃s(Q) ≡ �̃s(Q,0) − �̃s(Q → 0,0), are given by
diagrams (a)–(c) in Fig. 2. The calculations for d = 2 and
d = 3 are very similar, and we present them in parallel. The
self-energy diagrams (a) and (b) are equal. Labeling them as
shown in Fig. 2, we obtain for their combined contribution

Dab(Q) = Da + Db

= 4
∫

k,q

G2(k + Q/2,ωm)G(k − Q/2,ωm)

×G(k + q + Q/2,ωm + �m)Udyn(q,�m), (19)

while diagram (c) gives

Dc(Q) = 2
∫

k,q

G(k − Q/2,ωm)G(k + Q/2,ωm)

×G(k + q + Q/2,ωm + �m)

×G(k + q − Q/2,ωm + �m)Udyn(q,�m), (20)

where
∫
k

≡ (2π )−(d+1)
∫

ddk
∫

dωm and
∫
q

≡
(2π )−(d+1)

∫
ddq

∫
d�m. For a quadratic spectrum

εk = (k2 − k2
F )/2m, the dispersions in Eqs. (19) and

(20) are expanded as

εk±Q/2 = εk ± 1

2m
k · Q + Q2

8m
,

εk+q±Q/2 = εk+q ± 1

2m
(k + q) · Q + Q2

8m
. (21)

Performing corresponding expansions in the Green’s functions
and keeping only terms of order Q2, we find that the high-
energy Q2 term in δ�̃s(Q,0) consists of four parts:

δ�̃s(Q,0) = Dab(Q) + Dc(Q)

= δ�̃s,1 + δ�̃s,2 + δ�̃s,3 + δ�̃s,4, (22)

where

δ�̃s,1 = 1

2m2

∫
k,q

(k · Q)2
[
G2

kG
4
k+q + 2G3

kG
3
k+q

+ 3G4
kG

2
k+q + 4G5

kGk+q

]
Udyn(q,�m), (23a)

δ�̃s,2 = Q2

2m

∫
k,q

[
G2

kG
3
k+q + 2G3

kG
2
k+q + 3G4

kGk+q

]
×Udyn(q,�m), (23b)

δ�̃s,3 = 1

m2

∫
k,q

(k · Q)(q · Q)
[
G2

kG
4
k+q + 2G3

kG
3
k+q

+G4
kG

2
k+q

]
Udyn(q,�m), (23c)

δ�̃s,4 = 1

2m2

∫
k,q

(q · Q)2
[
G2

kG
4
k+q + 2G3

kG
3
k+q

]
Udyn(q,�m)

(23d)

with

Gk ≡ G(k,ωm) and Gk+q ≡ G(k + q,ωm + �m). (24)

It can be readily shown that

∫
dωmGn

kG
m
k+q = − m

n − 1

∫
dωmGn−1

k Gm+1
k+q

= − n

m − 1

∫
dωmGn+1

k Gm−1
k+q . (25)

Applying this identity to Eqs. (23a) and (23b), we find that
all terms in the square brackets cancel each other, and thus
δ�̃s,1 = δ�̃s,2 = 0. This result can be related to the fact
that any two-particle correlation function is a gauge-invariant
object and, as such, can contain the interaction potential only
multiplied by factor that vanishes at q → 0 [32]. Such a factor
ensures that there is no contribution from a potential which is
constant in real space, i.e., a delta function in the momentum
space. There are no such factors in δ�̃s,1 and δ�̃s,2, and
therefore they must vanish.

The combination of the Green’s functions in the square
brackets in δ�̃s,3 does not vanish on applying Eq. (25). This
can be related to the fact the integrand contains a common
factor of q, and thus δ�̃s,3 does not have to vanish identically.
However, it still gives no contribution to leading order in κ/kF .
Indeed, integrating first over ωm and approximating εk+q =
εk + vF ·q with vF = vF k/k, we find that each term in square
brackets in Eq. (23c) yields a combination

∫
ddq

∫
dεk(q · Q)

sgn(εk + vF · q) − sgnεk

(i�m − vF · q)5
, (26)
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which is odd in �m. Since the potential is even in �m, the
integral over �m vanishes, and thus δ�̃s,3 = 0 to leading
order.

The only term that does not vanish by gauge invariance and
is nonzero to leading order is thus δ�̃s,4. [In Appendix B, we
demonstrate another way of arriving at the same result by first
combining diagrams Figs. 2(a)–2(c) and then expanding the
result to order Q2.] The calculation of δ�̃s,4 is fairly straight-
forward. The frequency integrals in δ�̃s,4 are calculated as

∫
dωm

2π
Gn

kG
6−n
k+q = Cn

sgn(εk + vF · q) − sgnεk

2(i�m − vF · q)5
, (27)

where C2 = C4 = −4 and C3 = 6. Now we replace ddk/(2π )d

by NF dεkdϑd/(2dπ ), where ϑd is the solid angle in d

dimensions, and integrate over εk. The integral over εk is
confined by the sign functions in Eq. (27) to the region
(0,|vF · q|) and gives a factor of vF · q = vF q cos θ . Averaging
over the angle between vF and Q (the direction of Q is chosen
as a reference) yields

∫
dϑd

2d−1π

cos θ

(i�m − vF q cos θ )5
= 1

(vF q)5
Fd

(
�m

vF q

)
, (28)

where

F2(x) = 5|x|
8

3 − 4x2

(x2 + 1)9/2
, (29a)

F3(x) = 1

3

1 − 5x2

(x2 + 1)4
. (29b)

Finally, averaging over the angle between q and Q gives a
factor of 1/d. After these manipulations, we obtain

δ�̃s(Q,0) = δ�̃s,4 = 2

d

1

πd

NF Q2

m2v4
F

∫ ∞

0
dqqd−3

×
∫ ∞

0
d�mUdyn(q,�m)Fd

(
�m

vF q

)
. (30)

Now it is convenient to introduce dimensionless variables x =
�m/vF q and y = q/κ . In d = 2, the integrals over x and y

can be solved analytically:

δ�̃s(Q,0) = 1

π2

Q2κ

m2v3
F

∫ ∞

0
dxF2(x)

×
∫ ∞

0
dy

(
1

y + 1 − x√
x2+1

− 1

y + 1

)
(31)

= − 1

π2

Q2κ

m2v3
F

∫ ∞

0
dxF2(x) ln

(
1 − x√

x2 + 1

)

= 1

2π

(
π

32
− 3

35

)
NF

e2

vF

(
Q

2kF

)2

≈ 1.98 × 10−3NF

e2

vF

(
Q

2kF

)2

.

In d = 3, the integral over y is solved analytically but the
integral over x needs to be solved numerically, which yields

δ�̃s(Q,0) = 16 × (−0.12)

3π2
NF

e2

vF

(
Q

2kF

)2

≈ −0.064NF

e2

vF

(
Q

2kF

)2

. (32)

As we mentioned before, Eqs. (31) and (32) give directly the
Q2 term in the spin susceptibility: χs(Q,0) − χs(Q → 0,0) =
δ�̃s(Q).

Tracing back our steps, we note that all the internal energy
scales are of order of the effective plasma frequency �p =
vF κ: |ωm| ∼ |εk| ∼ vF q ∼ |�m| ∼ �p, which plays the role
of a high-energy cutoff in this problem. Therefore the Q2

terms in Eqs. (31) and (32) are indeed of the high-energy
type.

For typical values of q ∼ κ and �m ∼ vF q ∼ �p, the
dynamically screened potential in Eq. (14) is of order of N−1

F

and does not depend on the electric charge. Although higher-
order diagrams contain higher powers of the interaction, the
interaction is not small in the dimensionless coupling constant
of the theory, e2/vF ∼ κ/kF . This may raise a concern
about convergence of the perturbation theory. Fortunately, this
concern is not legitimate, as higher-order diagrams have more
integrals over internal energy scales, which do bring additional
factors of e2/vF compared to lowest-order diagrams (a)–(c). To
see this, one can compare, e.g., diagram (c) with a next-order
diagram, e.g., diagram (f). The main contribution to diagram
(c) comes from expanding the fermionic dispersion to order
q · Q, and then expanding the corresponding Green’s function
to second order in this parameter, which is equivalent to
replacing one of the four Green’s functions in this diagram by
G3. Consequently, the Q2 term from diagram (c) contains six
Green’s functions, and by power-counting G6 ∝ κ−6. Integrals
over ωm, εk, �m, and q altogether give a factor of κ3+d , and
another κ2 comes from q2 in the expansion of the dispersion.
Overall, the count is κ5+d/κ6 = κd−1 ∝ e2 both in d = 2 and
3. Now, assuming that the main contribution to diagram (f)
also comes from terms of order q1,2 · Q in the dispersions, we
end up with eight Green’s functions G8 ∝ κ−8. The number
of the fermionic variables remains the same but the number
of bosonic ones is doubled, therefore integrations give κ2(d+2).
With an extra factor of κ2 from either q2

1 or q2
2 , the overall

count for diagram (f) is κ2d+6/κ8 = κ2(d−1) ∝ e4, which is
smaller than diagram (c) by a factor of e2.

C. Charge channel

In addition to the contribution from diagrams (a)–(c) in
Fig. 2, the polarization bubble in the charge channel also
contains the contribution from Aslamazov-Larkin diagrams
(d) and (e). It will be shown in this section, however, that the
high-energy Q2 terms from diagrams (d) and (e) cancel each
other, so Eqs. (31) and (32) apply to the charge channel as
well.
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Labeling the diagrams as shown in Fig. 2, we obtain for the sum of diagrams (d) and (e):

Dde = Dd + De = 4
∫

k,p,q

U (q,�m)U (q + Q,�m)G(k,ω′
m)G(k + q,ω′

m + �m)G(k − Q,ω′
m)G(p,ωm)

×[G(p − q,ωm − �m)G(p + Q,ωm) + G(p + q,ωm + �m)G(p − Q,ωm)]. (33)

The dispersions are expanded to order Q2 as εk±Q = εk ± (vk · Q) + Q2/2m. We will also need to expand the interaction, which
depends on the magnitude of q, as

U (q + Q,�m) = U (q,�m) + Q · q̂∂qU + 1
2Q2ĥqU, (34)

where q̂ = q/q, ĥq ≡ sin2 θqq
−1∂q + cos θ2

q∂2
q , and θq is the angle between q and Q.

It is convenient to split Dde into two parts. The first part (D(1)
de ) contains all but the terms arising from the Q2/2m terms in

the expanded dispersions, while the second part (D(2)
de ) contains the remaining Q2/2m terms. Collecting all Q2 terms in D

(1)
de , we

obtain

D
(1)
de = 4

∫
k,p,q

{[
(vk · Q)2U 2

q G4
kGk+q − (vk · Q)(Q · q̂)Uq∂qUqG

3
kGk+q + 1

2Q2Uq

(
ĥqUq

)
G2

kGk+q

]
J (2)

pq

+ [
(vk · Q)(vp · Q)U 2

q G3
kGk+q − (vp · Q)(Q · q̂)Uq∂qUqG

2
kGk+q

]
J (3)

pq + (vp · Q)2U 2
q G2

kGk+qJ
(4)
pq

}
, (35)

where shorthands for Gl with l = k,p,k + q,p + q are the
same as in Eq. (24), Uq ≡ U (q,�m), and

J (n)
pq = Gn

p

[
Gp+q + (−)nGp−q

]
. (36)

Now let us define

F (n)
q =

∫
dεp

∫
dωm(Gp)nGp+q, (37)

where q = (q,�m). On expanding εp+q = εp + vp · q, it can
be readily seen that F

(n)
−q = (−)n+1F

(n)
−q . Therefore∫

dεp

∫
dωmJ (n)

pq = F (n)
q + (−)nF (n)

−q = 0 (38)

for any n, and thus D
(1)
de = 0.

Next, we collect Q2/2m terms and obtain

D
(2)
de = 2

Q2

m

∫
k,p,q

U 2
q

[
G3

kGk+qJ
(2)
pq

+G2
kGk+qG

3
p(Gp+q + Gp−q)

]
. (39)

The term with J (2)
pq vanishes as before by Eq. (38). In the

second term, one needs to go one step farther. Integrating the
combination G3

p(Gp+q + Gp−q) over ωm and εp, we obtain
(up to an inessential prefactor)

vp · q
(i�m − vp · q)3

. (40)

Likewise, integration of the product G2
kGk+q over ω′

m and εk
yields

vk · q

(i�m − vk · q)2 . (41)

The product of Eqs. (40) and (41) is odd under a simultaneous
change �m → −�m and q → −q, whereas Uq is even. Hence
the integral of the second term in Eq. (39) vanishes as well,
which means that D

(2)
de = 0. Therefore the contribution from

the Aslamazov-Larkin diagrams vanishes, i.e., the high-energy

Q2 term in the polarization bubble in the charge channel is the
same as in the spin channel:

δ�̃c(Q,0) = δ�̃s(Q,0). (42)

D. 2D case, lattice dispersion

The sign of the high-energy gradient term in 2D [Eq. (31)]
is positive. If the low-energy Q2 term is reduced by critical
fluctuations, i.e., by a factor of m/m∗, then it is the high-energy
term that determines the behavior of χs(Q) near QCP. The
positive sign of this term would indicate that the susceptibility
is peaked at finite Q, and thus a Q0 = 0 QCP is pre-empted by
a finite-Q instability. However, the positive sign was obtained
for a special case of fermions with a quadratic spectrum, and
its universality needs to be verified. Obviously, the sign will
remain the same for any isotropic but not necessarily quadratic
dispersion: in this case one just needs to replace a factor of
1/m in Eq. (23d) by vF /kF . To check whether the sign can be
reversed in the presence of a lattice, we computed numerically
the prefactor of the high-energy gradient term in the same
model with a long-range Coulomb interaction but for electrons
on a square lattice with a tight-binding dispersion εk =
−2t(cos kx + cos ky).4 The dynamically screened Coulomb
interaction is the same as in Eq. (14), except for now �(q,�m)
is the polarization bubble of electrons on a square lattice,
which we computed numerically for a range of filling factors.
The calculation follows the same lines as in Sec. III B. We
focus on the leading contribution to the Q2 term [δ�̃s,4 in
Eq. (23d)], calculate the integrals over ωm and εk analytically,
and compute the remaining four-dimensional integral over q,
�m, and along the Fermi surface numerically. By C4 symmetry,

4Strictly speaking, the interaction of electrons on a lattice must
be described by matrix elements of the bare Coulomb potential in
the basis of Wannier functions. This changes the magnitude of the
Coulomb potential but not its 1/qd−1 form. As we are interested here
only in the sign of the effect, we ignore this complication and use the
same bare Coulomb potential as for electrons in continuum.
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FIG. 3. Prefactor of the high-energy Q2 term in the spin suscepti-
bility for electrons on a two-dimensional square lattice as a function of
the Fermi energy, measured in units of the hopping integral. EF = −4
corresponds to zero filling and EF = 0 corresponds to half-filling.
The numerical result is normalized to its value at EF → −4.

the Q2 term is isotropic. In Fig. 3, we plot its prefactor as a
function of the Fermi energy, measured in units of t , such
that EF = −4 corresponds to the bottom of the band. For
EF → −4, the numerical solution reproduces the analytic
result in Eq. (31) with high accuracy. However, at larger
fillings, we found a new behavior. Namely, Fig. 3 shows that
the prefactor of the Q2 term changes sign around quarter-filling
(EF = −2) and remains negative all the way up to half-filling
(EF = 0). A negative prefactor for Q2 implies that χs(Q) has
a maximum at Q = 0, as expected near QCP towards an order
with Q0 = 0. We see therefore that lattice tends to stabilize a
Q0 = 0 QCP, given that the maximum of χs(Q) at Q = 0 is
higher than that at finite Q.

E. Relative magnitudes of high-energy and low-energy
contributions to the Q2 term

We found in previous sections that the magnitude of the
prefactor of the high-energy Q2 term, in units of rs ∼ e2/vF ,
happens to be numerically small both in 2D and 3D. This
naturally raises a question about the ratio of high-energy to
low-energy parts of the Q2 term.

In 3D, the low-energy contribution is nonzero already for
free fermions, whereas the high-energy contribution comes
only from interaction and is therefore parametrically small at
small rs . The interaction correction to the low-energy part is
small as well. For rs ∼ 1, all contributions to Q2 become of
the same order, and it makes sense to compare the numerical
prefactors. The same set of diagrams as in Fig. 2 for the
polarization bubble was computed numerically in Ref. [31] for
rs = 2. We digitized the data of Ref. [31], fitted the small-Q
parts of the curves by a Q2 form, and extracted the total
interaction-dependent prefactor of the Q2 term, which contains
both low- and high-energy contributions. Comparing the total
numerical prefactor with the analytic result for the high-energy
contribution, given by Eq. (32), we found that the high-energy
contribution amounts to about 15% and 30% of the total for

the charge and spin susceptibilities, correspondingly.5 At the
same time, the total interaction-induced Q2 term in the spin
and charge susceptibilities for rs = 2 is about 70% and 140%
of the free-fermion result, correspondingly.

The 2D case is different in that the free-fermion polarization
bubble for fermions with a parabolic dispersion is independent
of Q up to Q = 2kF , i.e., the prefactor of the Q2 term is zero.
This degeneracy can be broken by lattice but, at low enough fill-
ing, the Q2 term in the free-fermion bubble is still small. Then
both high- and low-energy contributions to the Q2 term come
from interaction, which allows for a direct comparison between
the two contributions. In what follows, we focus on the spin
susceptibility. We estimated the low-energy contribution to
the interaction-induced Q2 term by evaluating the diagrams in
Figs. 2(a)–2(c) with a statically screened Coulomb potential,
U (q,0) = 2πe2/(q + κ). (In Sec. III B we subtracted off this
contribution.) We obtained (see Appendix C for details)

δ�̃low
s (Q) = 1

12π

(
92

15
− ln

2
√

2

rs

)
NF

e2

vF

(
Q

2kF

)2

=
(

0.16 − 0.027 × ln
2
√

2

rs

)
NF

e2

vF

(
Q

2kF

)2

,

(43)

where rs = √
2e2/vF = 2

√
2κ/kF in 2D.

The Q dependence of the polarization bubble in 2D due
to static Coulomb interaction was addressed in Refs. [29,30].
There is some confusion about the results in prior literature
which needs to be clarified. Namely, the numerical calculation
in Ref. [30] was performed for the bare Coulomb potential
(κ = 0) and produced a finite result for the susceptibility at
all Q, whereas in Ref. [29] it was argued that the prefactor
of the Q2 term is divergent at κ → 0. Actually, these two
results do not contradict each other. We found, in agreement
with Ref. [29], that the leading term in the Q dependence of
δ�̃low

s (Q) for the bare Coulomb potential is Q2 ln Q rather
than Q2. If screening is taken into account, ln Q is replaced
by ln κ/kF ∼ ln rs , as it is the case in Eq. (43). At the same
time, we see that the numerical prefactor of the Q2 ln rs term
in Eq. (43) is much smaller (by a factor of ≈6) than that
of the Q2 term, so the numerical results of Ref. [30] are
indeed well-described by the Q2 form except for the region
of extremely small Q.

The Q dependence of the polarization bubble in 2D due
to the dynamically screened Coulomb interaction was also
calculated numerically in Ref. [31]. Fitting the result of
Ref. [31] for the spin susceptibility into a Q2 form at rs = 2, we
found that it is described by Eq. (43) very well. This implies
that the interaction-induced Q2 term comes primarily from
low energies. Comparing the numerical result for the total
interaction-induced Q2 term with our analytic result for its
high-energy part [Eq. (31)], we found that the latter amounts

5Reference [31] gives the results for diagrams (a)-(c) and (d), (e)
separately, from which one can extract the polarization bubbles both
in the charge and spin channels.
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(a)

(c)

(b)

(d)

FIG. 4. Diagrams for the polarization bubble in the Hubbard
model to second order in U .

to about 2% of the former. (For the charge channel, the fraction
of the high-energy part is about 4%.)

Another comment on the 2D case is in order. That
the susceptibility of noninteracting electrons with quadratic
dispersion is flat up to 2kF indicates a high degree of frustration
with respect to ordering into a state with finite Q. (The same
flatness holds for 2D fermions with a Dirac dispersion [33].)
The Coulomb interaction lifts this degeneracy, and numerical
calculations show that the full susceptibility is peaked at
Q = 2kF [30,31]. [Note in this regard that the prefactors
of the Q2 terms in Eqs. (31) and (43) are positive, i.e.,
the susceptibility increases with increasing Q.] For electrons
on lattice, the tendency to ordering at finite rather than
zero Q is pronounced already in the noninteracting case:
numerical calculations for square, triangular, and honeycomb
lattices show that the susceptibility is peaked at the momenta
connecting certain points on the FS [34–36]. In light of these
results, a 2D electron system may not seem to be a good
candidate for a Q = 0 instability. Nevertheless, the type of an
instability in an interacting system is decided by the relative
strengths of renormalizations of χs at Q = 0 and finite Q. The
former is determined by FL parameters, while the latter cannot
be quantified in this way and depends on details of the electron
spectrum and interaction. Even though χs(Q) of free electrons
may have a peak at finite Q, the Q = 0 peak in renormalized
χs(Q) may be higher, and thus the Q = 0 instability may win.
In addition, the Kohn anomaly, which leads to a peak at 2kF , is
weakened under certain circumstances, e.g., in chiral electron
systems, such as graphene and surface states of 3D topological
insulators, due to suppression of backscattering into states with
opposite (pseudo) spins [33].

IV. A Q2 TERM IN THE HUBBARD MODEL

As another example, we compute the polarization bubble
of interacting fermions assuming that the four-fermion inter-
action is Hubbard-like, i.e., it is equal to a constant U for q

below some cutoff, qc, and is zero for larger q. To simplify
calculations, we set qc to be much smaller tan kF . This will
allow us to use a small-q and small-�m form of the polarization
bubble, Eq. (15).

To first order in U [panel (a) in Fig. 4], the self-energy
diagram amounts to shifting the chemical potential, while the

vertex diagram is reduced to a product of two free-fermion po-
larization bubbles. None of the above produces a high-energy
Q2 term. However, the situation changes at second order in U

because now self-energy and vertex renormalizations within
a particle-hole bubble can be viewed as dynamical screening
of the interaction between high-energy fermions. In this re-
spect, the Hubbard model, taken at order U 2, becomes similar
to the model with dynamically screened Coulomb interaction,
taken at first order in this interaction. It remains to be seen,
however, whether the prefactor of the Q2 term in the Hubbard
model is of the same sign and comparable magnitude as
for the model with Coulomb interaction. Interaction-induced
corrections to the static polarization bubble in the Hubbard
model were analyzed in Ref. [37] without making a distinction
between low-energy and high-energy contributions. Our goal
is to distinguish between the two.

There are seven distinct non-RPA diagrams for renormal-
ization of � to second order in U , which potentially can give
rise to a high-energy Q2 term. We show them in panels (b)-(d)
of Fig. 4. Five of these diagrams, shown in panels (b) and (c),
renormalize both the charge and spin susceptibilities, while the
Aslamazov-Larkin diagrams, shown in panel (d), renormalize
only the charge susceptibility.

For definiteness, we consider 2D case and approximate the
fermionic dispersion by a parabolic one. We found that the
three diagrams in panel (c) and two Aslamazov-Larkin dia-
grams in panel (d) are smaller in qc/kF than the two diagrams
in panel (b). Furthermore, we found that if even these diagrams
are computed without a restriction on momentum integration,
individual diagrams are not small in qc/kF , but their sum
is still zero. We show this in Appendix D. The remaining
two diagrams in panel (b) can be viewed as vertex and self-
energy corrections to the particle-hole bubble coming from
effective interaction Ueff(q,�m) = −U 2�(q,�m). To explore
the region of somewhat larger U , we will extend this formula
to the full RPA result Ueff(q,�m) = U [1 + U�(q,�m)]−1.
The actual diagrams that need to be evaluated are then the
first-order diagrams [panel (a)] in which U is replaced by
Ueff. The second-order result can be obtained by expanding
the effective interaction back to second order in U . Expanding
these diagrams to order Q2, and integrating over fermionic
frequencies and momenta in the same way as in Sec. III, we
obtain for the high-energy Q2 contribution to the polarization
bubble in the spin channel:

δ�̃s(Q,0) = NF AH

Q2

k2
F

, (44)

where

AH = 2k2
F

m2v3
F

IH (45)

and

IH =
∫

dq

2π

∫ ∞

−∞

dx

2π

[
F2(x) − 1

4
δ(x)

]

× U

1 + UNF

(
1 −

√
x2

x2+1

) . (46)

Here, x = �m/vF q and F2(x) are given by Eq. (29a). One
can check that the remaining integral over x vanishes if the
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effective interaction is approximated as static, i.e., the
last factor in the integrand of Eq. (46) is replaced by
U/(1 + UNF ). We follow the same strategy as in Sec. III
and just subtract off the static interaction from Eq. (46). Then
the delta-function term in Eq. (46) can be omitted, and the
expression for IH becomes

IH = − 5

8π

∫
dq

2π

∫ ∞

0

dxx(4x2 − 3)

(x2 + 1)9/2

×
[

U

1 + UNF

(
1 −

√
x2

x2+1

) − U

1 + UNF

]
. (47)

This expression is similar to the corresponding formula for
Coulomb interaction in 2D [Eq. (30)] with one important
distinction. For the Coulomb case, the interaction behaves as
1/q and, as a consequence, the integral over q in Eq. (30) is
ultraviolet convergent, i.e., integration over q can be extended
to infinity. For the Hubbard case, the integral over q in
Eq. (47) is not convergent and needs to be cut off at qc.

Substituting Eq. (47) into Eq. (45), we obtain

δ�̃s(Q,0) = NF

(
qc

kF

)(
Q

kF

)2

f (UNF ), (48)

where

f (u) = −5

2
u

∫ ∞

0

dxx(4x2 − 3)

(x2 + 1)9/2

×
[

1

1 + u
(
1 −

√
x2

x2+1

) − 1

1 + u

]
. (49)

At small u,

f (u) = 277π

16384
√

2
u2 + O(u3) ≈ 0.075u2. (50)

We see that, at weak coupling, the prefactor of the Q2 term
in δ�̃s(Q,0) is positive. As a consequence, χs(Q) increases
with increasing Q. This is similar to what we obtained for the
Coulomb interaction in 2D for a parabolic dispersion. Also,
as in the Coulomb case, the magnitude of the high-energy
contribution to the Q2 term is numerically very small.

Function f (u) in plotted Fig. 5. We see that the magnitude
of f remains small for all u, but f (u) changes sign at u ≈ 2.6
and becomes negative for larger u. At such u, χs(Q) becomes
a decreasing function of Q, i.e., χs(Q) has at least a local
maximum at Q = 0.

We note, however, that the prefactor of the Q2 term changes
its sign at a rather large u. Whether at such u the system still
does not order magnetically is unclear (within RPA, the Stoner
instability occurs at ucr = 1, but the value of ucr changes due
to corrections beyond RPA).

A low-energy contribution to the Q2 term in δ�̃s(Q,0)
in a 2D system with a parabolic dispersion also emerges to
second order in U . A computation of this contribution is rather
involved and we left it aside. We note, however, that the low-
energy contribution is nonzero already for free fermions, once
we include higher powers of k2 into an isotropic dispersion or
put the model on a lattice.

FIG. 5. Function f (u) [Eq. (49)].

V. DISCUSSION AND CONCLUSIONS

We now discuss the results of the previous sections in the
context of a quantum-critical theory. We have shown that there
are two contributions to the gradient (Q2) term in the bosonic
propagator near a Q = 0 QCP. One comes from fermions with
high energies, by which we understand energies above the
upper cutoff of the effective boson-fermion low-energy theory,
�. Another comes from fermions with low energies, of order
of vF Q. The low-energy contribution is present already in
the bosonic susceptibility made of free fermions (except for
the special cases of, e.g., linear and parabolic dispersions in
2D). To get a high-energy contribution to the Q2 term, one
has to include dynamical screening of the interaction between
high-energy fermions. If only static screening is included, the
high-energy contribution is absent.

The low-energy part of the Q2 term near a Q = 0 QCP is
not reduced by a small ratio of � to the fermionic bandwidth.
However, it is reduced near QCP by a divergence of the
effective mass m∗. There is no general formula relating the
prefactor of the low-energy Q2 term to the Landau parameters.
However, if near QCP the fermionic self-energy depends on
the frequency much stronger than on the momentum, the
low-energy part of the Q2 term is reduced by a factor of
m/m∗ = [1 − ∂	(ω)/∂ω]−1. The high-energy contribution to
Q2 term is not reduced by m/m∗ and, in general, has to be the
dominant contribution near QCP.

We found, however, that, at least in two microscopic
models, the high-energy contribution to the Q2 term is
numerically very small. The most spectacular example is a
2D Fermi gas with Coulomb interaction—the high-energy
contribution to Q2 term in the bosonic susceptibility is less
than two percent of the total.

Based on these numbers, one can envisage two possible
types of quantum-critical theories. In the first one, adopted
in earlier studies, the numerical smallness of the high-energy
terms is disregarded as an artifact of a particular model. The
starting point for such a theory is a high-energy action with a
Q2 term, which is not assumed to be small. Such a theory has
dynamical exponent z = 3 and yields the fermionic self-energy
	(ω) ∝ ωd/3, modulo logarithmic corrections [24,25]. In the
second type of theories, the smallness of the high-energy Q2

term is treated as the real effect, and the bosonic propagator
at energies O(�) is taken to be independent of Q, at least
to first approximation. Then the entire Q2 term in the bosonic
propagator comes from low energies, and its prefactor depends
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on m/m∗. Because in critical boson-fermion theories the
fermionic self-energy, and hence m/m∗, depends on the
prefactor of the Q2 term, one now has to solve for m/m∗
self-consistently, keeping m/m∗ in the prefactor of the Q2

term. Such a procedure has not been yet implemented for the
critical behavior near a Q0 = 0 QCP.

The self-consistent procedure of this kind was implemented
in Refs. [8,9] for an antiferromagnetic QCP (an instability at
Q = Q0). In this theory, the prefactor of the (Q − Q0)2 term
in the bosonic propagator is set phenomenologically to scale
as (m/m∗)2 as in Eq. (13), and the consequences of this choice
for the quantum-critical behavior are analyzed. At finite Q0,
the high-energy contribution to the gradient term is nonzero
already for free fermions, and in general it is not small. At the
same time, the low-energy contribution is reduced by a factor
of �/W . Then, in a generic case, the largest contribution to the
gradient term should come from high energies, as it is assumed
in conventional boson-fermion theories near a Q = 0 QCP [4].
However, in light of our results for the Q = 0 case, it would be
interesting to analyze the high-energy Q2 terms in a broader
set of models.
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APPENDIX A: DIAMAGNETIC SUSCEPTIBILITY
AS A LOW-ENERGY PROPERTY

It is commonly assumed that the diamagnetic susceptibility
of a free Fermi gas, χdia, is determined by all occupied states,

both far below and near the Fermi energy [38,39]. In our
terminology, this makes χdia a high-energy property. This
argument is based on the thermodynamic way of calculating
χdia [40], in which one first finds the Landau levels, then
calculates the free energy as the sum over these levels, and
finally differentiates the result over the magnetic field. Such a
procedure can be carried out only in those cases when the exact
form of the Landau spectrum is known, e.g., for parabolic and
linear dispersions. However, one can also calculate χdia within
the linear-response theory [38,39,41], as a prefactor of the Q2

term in the current-current correlation function. The result of
such a calculation, Eq. (A4), which can be carried out for an
arbitrary electron dispersion, is similar to that for the prefactor
of the Q2 term in the charge or spin susceptibilities [Eq. (6)]
in that χdia is entirely parameterized by the derivatives of the
dispersion at the Fermi energy. This implies that χdia is, in a
fact, a low-energy property. Some details of the calculation are
presented below.

As in Ref. [17], we assume that the electron dispersion
is an isotropic but otherwise arbitrary function of k. With
Q chosen as the z axis, we need to calculate the Q2

term in the xx component of the current-current correlation
function,

Kxx = −2
e2

c
T

∑
ωm

∫
d3k

(2π )3
vx

k+Qẑv
x
k

×G(k + Qẑ,ωm)G(k,ωm), (A1)

where vx
k = ∂εk/∂kx . Defining δKxx(Q) ≡ Kxx(Q) −

Kxx(0), the diamagnetic susceptibility is found as
χdia = limQ→0 δKxx(Q)/cQ2. Summation over ωm gives

Kxx = −2
e2

c

∫
d3k

(2π )3
v2

x

nF (εk+Qẑ) − nF (εk)

εk+Qẑ − εk
, (A2)

where nF (E) is the Fermi function. Next, we expand the
dispersion, the x component of the velocity, and the Fermi
function to order Q2 as

δε ≡ εk+Qẑ − εk = vkQ cos θ + 1

2
Q2

(
sin2 θ

vk

k
+ 1

mk

cos2 θ

)
,

vx
k+Qẑ = sin θ cos φ

[
vk + Q cos θ

(
1

mk

− vk

k

)
+ Q2

2k

{(
3 cos2 θ − 1

)(vk

k
− 1

mk

)
+ kγk

}]
,

1

δε
[nF (εk + Qẑ) − nF (ε(k)] = n′

F (εk) + 1

2
n′′

F (εk)δε + 1

6
n′′′

F (εk)δε2. (A3)

Here, (θ,φ) are the polar and azimuthal angles of k, εk ≡ εk + EF , vk = dεk/dk is the group velocity, 1/mk = d2εk/dk2 is the
effective mass, and γk = d3εk/dk3. For a parabolic spectrum, vk = k/m, mk = m = const, γk = 0, and vx

k+Qẑ is independent
of Q. At T = 0, the derivatives of the Fermi functions are replaced by dpnF /dε

p

k = −δ(p−1)(εk − EF ). Subtracting off the
Q-independent term from Kxx , integrating over εk by parts, and averaging over the angles, we arrive at the final result for the
diamagnetic susceptibility:

χdia = e2

15c2

{
N (εk)

(
vk

kmk

− v2
k

k2
+ 1

2
vkγk

)
+ ∂

∂εk

[
−N (εk)

4

(
2v3

k

k
+ 3v2

k

mk

)
+ 1

6

∂

∂εk

(
N (εk)v4

k

)
]}∣∣∣∣

εk=EF

. (A4)
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FIG. 6. Diagrams for the polarization bubble to first order in the
statically screened Coulomb potential.

For a parabolic dispersion, the last equation is reduced to

χdia = − e2NF

12m2c2
= −1

3
χs, (A5)

as it should.

APPENDIX B: A MANIFESTLY GAUGE-INVARIANT WAY
OF COLLECTING DIAGRAMS

In this appendix, we show how diagrams (a)-(c) in Fig. 2
can be combined in a manifestly gauge-invariant way. For
convenience, we relabel the diagrams as shown in Fig. 6 and
adopt “relativistic” notations: k = (ik0,k), q = (iq0,q), and
Q = (iQ0,Q). Q0 will be set to zero later on in the calculation.

The sum of the self-energy diagrams [(a) and (b)] can be
written as

Dab = −2
∫

k

GkGk+Q

(
Gk+Q	k+Q + Gk	k

)
, (B1)

where

	k = −
∫

q

UqGk+q (B2)

is the one-loop self-energy.
Rewriting the product of the Green’s functions as

GkGk+Q = 1

iQ0 − εk+Q + εk
[Gk − Gk+Q], (B3)

we represent Dab as a sum of two parts Dab = D
(1)
ab + D

(2)
ab ,

where

D
(1)
ab = 2

∫
k

GkGk+Q(	k − 	k+Q)

iQ0 − εk+Q + εk
,

D
(2)
ab = 2

∫
k

G2
k+Q	k+Q − G2

k	k

iQ0 − εk+Q + εk

= 2
∫

k

G2(k)	(k)

[
1

iQ0 − εk + εk−Q

− 1

iQ0 − εk+Q + εk

]
. (B4)

Now we focus on the case of small momentum transfers,
which is relevant for the Coulomb interaction. In this case,
the dispersion of the Green’s function in Eq. (B2) can be
expanded as εk+q = εk + vk · q. The integral of G2

k	k over k0

and εk gives, up to a prefactor,∫
εk

∫
k0

G2
k	k = −

∫
q

∫
εk

∫
k0

G2
kGk+qUq

∝
∫

q

Uq

vk · q
(iq0 − vk · q)2

. (B5)

The fraction in the last formula in Eq. (B5) is odd upon q0 →
−q0 and q → −q, while Uq is even, and therefore D

(2)
ab = 0.

Applying Eq. (B3) again and using an explicit form of 	k ,
we obtain for the remaining part of Dab:

D
(1)
ab = −2

∫
k,q

(Gk − Gk+Q)(Gk+q − Gk+q+Q)

(iQ0 − εk+Q + εk)2
Uq. (B6)

Applying Eq. (B3) to diagram (c) in Fig. 6, we obtain

Dc = 2
∫

k,q

(Gk − Gk+Q)(Gk+q − Gk+q+Q)

(iQ0 − εk+Q + εk)(iQ0 − εk+q+Q + εk+q)
Uq.

(B7)

Combining the self-energy and exchange contributions, we
arrive at the following result for the spin susceptibility:

χ (Q) = D
(1)
ab + Dc = 2

∫
k,q

Uq(Gk − Gk+Q)

× (Gk+q − Gk+q+Q)R, (B8)

where

R = εk − εk+Q + εk+q+Q − εk+q

(iQ0 − εk+Q + εk)2(iQ0 − εk+q+Q + εk+q)
. (B9)

By spin conservation, the spin susceptibility must vanish at
Q = 0 and finite Q0. Equation (B8) satisfies this condition
because the numerator of R in Eq. (B9) vanishes at Q = 0.
After this check, we set Q0 = 0 upon which R is reduced to

R = εk − εk+Q + εk+q+Q − εk+q

(εk − εk+Q)2(εk+q − εk+q+Q)
. (B10)

It is clear that R vanishes at finite Q and q = 0, which
guarantees gauge invariance of the result.

Expanding the integrand in Eq. (B8) to order Q2, one
obtains parts δ�̃s,3 and δ�̃s,4 of the spin susceptibility, given
by Eqs. (23c) and (23d). Parts δ�̃s,1 and δ�̃s,2 are absent in
this approach as their integrands do not contain factors of q
and thus vanish identically by gauge invariance.

APPENDIX C: A Q2 TERM IN THE POLARIZATION
BUBBLE FOR THE STATIC COULOMB POTENTIAL

In this appendix, we present details of the calculation of the
Q2 term in the polarization bubble for the static Coulomb
potential. As discussed in Sec. III E, this is a low-energy
contribution, arising from fermions with energies of order of
vF Q.

To lowest order in the interaction, the susceptibility is
given by the sum of three diagrams in Fig. 6, where now
the wavy line corresponds to a statically screened Coulomb
potential; in 2D, U (q) = 2πe2/(q + κ). In Appendix B, we
showed how to combine these diagrams in a manifestly
gauge-invariant way. The result is presented in Eq. (B8) with
R in the static case given by Eq. (B10). Following Ref. [28],
we symmetrize the result by relabeling k + q = p, splitting it
into two equal parts, and interchanging k ↔ p in one of the
parts. Summing also over frequencies k0 and p0, and expanding
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εk+Q − εk = vk · Q + O(Q2), we obtain

δ�(Q) = −
∫

k,p
U (|k − p|)[nF (εk) − nF (εk+Q)][nF (εp) − nF (εp+Q)]

[
vk.Q − vp.Q
(vk.Q)(vp.Q)

]2

. (C1)

The purpose of symmetrization was to make the suppression of the singularity in the Coulomb potential at k = p more prominent:
indeed, now the factor in square brackets vanishes at k = p. However, the singularity is not removed completely: in the absence
of screening (κ = 0), the prefactor of the Q2 term still diverges logarithmically [29].

Next, we expand the Fermi functions to third order in εk+Q − εk and εp+Q − εp, and collect all terms of order Q2. This gives
δ�(Q) = δ�1(Q) + δ�2(Q), where

δ�1(Q) = −1

4

∫
k,p

n′′
F (εk)n′′

F (εp)(vk · Q − vp · Q)2U (|k − p|,

δ�2(Q) = −1

3

∫
k,p

n′′′
F (εk)n′

F (εp)
vk · Q
vp · Q

(vk.Q − vp.Q)2U (|k − p|). (C2)

The singularity at vp · Q = 0 in the second line of the above equation is removed by considering the integral in the principal
value sense.

At T = 0, the derivatives of the Fermi functions are reduced to the delta-function and its derivatives, after which it is easy to
integrate over εk and εp by parts. In what follows, we will need expansions of all factors in the integrand up to O(ε2

k,ε
2
p). These

are given by

k = kF

[
1 + εk

2EF

− ε2
k

8E2
F

+ O
(
ε3

k

)]
, p = kF

[
1 + εp

2EF

− ε2
p

8E2
F

+ O
(
ε3

p

)]
;

U (|k − p|) = πe2

kF

{
1

a + ∣∣ sin θ
2

∣∣ − εk + εp

4EF

∣∣ sin θ
2

∣∣(
a + ∣∣ sin θ

2

∣∣)2 + ε2
k + ε2

p

32E2
F

[
− cos θ∣∣ sin θ

2

∣∣(a + ∣∣ sin θ
2

∣∣)2 +
∣∣ sin θ

2

∣∣(
a + ∣∣ sin θ

2

∣∣)2

+ 2 sin2 θ
2(

a + ∣∣ sin θ
2

∣∣)3

]
+ εkεp

16E2
F

[
cos θ∣∣ sin θ

2

∣∣(a + ∣∣ sin θ
2

∣∣)2 +
∣∣ sin θ

2

∣∣(
a + ∣∣ sin θ

2

∣∣)2 + 2 sin2 θ
2(

a + ∣∣ sin θ
2

∣∣)3

]
+ O

(
ε3

k,ε
3
p

)}
,

(
vk · Q − vp · Q

)2 = v2
F Q2

[
(cos θk − cos θp)2 + 1

EF

(cos θk − cos θp)(εk cos θk − εp cos θp)

−εkεp

2E2
F

cos θk cos θp + ε2
k + ε2

p

4E2
F

cos θk cos θp + O
(
ε3

k,ε
3
p

)]
, (C3)

where a = κ/2kF and θ = θk − θp. Integrating by parts over εk and εp in Eq. (C2), we obtain

δ�1(Q) = −πe2N2
F Q2

8k3
F

∫
dθk

2π

∫
dθp

2π

{
−cos θk cos θp

a + ∣∣ sin θ
2

∣∣ + sin2 θk + θp

2

[
−3

2

| sin3 θ
2 |(

a + ∣∣ sin θ
2

∣∣)2

+1

2

cos θ
∣∣ sin θ

2

∣∣(
a + ∣∣ sin θ

2

∣∣)2 + sin4 θ
2(

a + ∣∣ sin θ
2

∣∣)3

]}
,

δ�2(Q) = −πe2N2
F Q2

6k3
F

∫
dθk

2π

∫
dθp

2π

cos θk

cos θp

{
3 cos2 θk − cos2 θp

2
(
a + ∣∣ sin θ

2

∣∣) − cos θ
∣∣ sin θ

2

∣∣ sin2 θk+θp

2

2
(
a + ∣∣ sin θ

2

∣∣)2

+ sin4 θ
2 sin2 θk+θp

2(
a + ∣∣ sin θ

2

∣∣)3 + sin2 θ
2

4
(
a + ∣∣ sin θ

2

∣∣)2 (11 cos θk − 3 cos θp) sin
θk + θp

2

}
. (C4)

The angular integrals in the equations above are expressed through the angular harmonics of the following functions:

Ul =
∫ 2π

0

dθ

2π
cos(lθ )

1

a + ∣∣ sin θ
2

∣∣ ,
Vl =

∫ 2π

0

dθ

2π
cos(lθ )

cos θ
∣∣ sin θ

2

∣∣(
a + ∣∣ sin θ

2

∣∣)2 ,
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Wl =
∫ 2π

0

dθ

2π
cos(lθ )

∣∣ sin3 θ
2

∣∣(
a + ∣∣ sin θ

2

∣∣)2 ,

Zl =
∫ 2π

0

dθ

2π
cos(lθ )

sin4 θ
2(

a + ∣∣ sin θ
2

∣∣)3 . (C5)

This gives

δ�1(Q) = −πe2N2
F Q2

16k3
F

(
−U1 − 3

2
W0 + 1

2
V0 + Z0

)
,

δ�2(Q) = −πe2N2
F Q2

12k3
F

(
7

4
U1 − 3

4
U3 + 1

4
V0 − 1

2
V1 − 1

4
V2 − 1

2
Z0 + Z1 + 1

2
Z2

)
. (C6)

At weak coupling (a � 1), the harmonics entering the equations above need to be determined to order O(ln a) + O(1). A
straightforward computation yields

U1 = 2

π

(
ln

2

a
− 2

)
+ O(a),

U3 = 2

π

(
ln

2

a
− 46

15

)
+ O(a),

V0 = 2

π

(
ln

2

a
− 3

)
+ O(a),

V1 = 2

π

(
ln

2

a
− 7

3

)
+ O(a),

V2 = 2

π

(
ln

2

a
− 53

15

)
+ O(a),

W0 = 2

π
+ O(a),

Z0 = 2

π
+ O(a),

Z1 = − 2

3π
+ O(a2),

Z2 = − 2

15π
+ O(a2). (C7)

Substituting Eq. (C7) into Eq. (C6), we obtain Eq. (43) of the main text.

APPENDIX D: ANALYSIS OF DIAGRAMS
IN THE HUBBARD MODEL

In this Appendix we show that high-energy Q2 contribu-
tions to the bosonic propagator from diagrams in panels (c) and
(d) of Fig. 4 are exactly zero. We do this by Taylor-expanding
these diagrams to order Q2, explicitly evaluating frequency
integrals, and summing up all diagrams from either panel
(c) or panel (d). To simplify formulas, we assume that εp =
(p2 − p2

F )/2m and do not spell out the integrals over momenta.

FIG. 7. Aslamazov-Larkin diagrams in the Hubbard model.

We also adopt the “relativistic” notations q = (q,ωq), etc., as
in Appendix B.

We start by considering the Aslamazov-Larkin diagrams
reproduced for convenience in Fig. 7. Although we have
already proven in Sec. III C that these diagrams do not
contribute a high-energy Q2 term for an arbitrary form of
the interaction, it is worth to derive the same result here in
a different way, which can be extended to treat diagrams in
panel (c) of Fig. 4 that do not appear in the Coulomb problem.
Performing Taylor expansion to the second order in Q2, we
obtain for the two diagrams of this kind

δ�̃AL
1 = 4

∫
k

∫
ω

[(p · Q)2G(4,1,2,1)(p; p + l; q; q + l)

+ (q · Q)2G(2,1,4,1)(p; p + l; q; q + l)],

δ�̃AL
2 = 4

∫
k

∫
ω

[(p · Q)2G(4,1,1,2)(p; p + l; q; q + l)

+ ((q + l) · Q)2G(2,1,1,4)(p; p + l; q; q + l)], (D1)
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where
∫
k

is a shorthand for integrals over all internal momenta,
∫
ω

= ∫
dωpdωqdωl/(2π )3, factors of 4 in front of integrals come

from the spin summation, and we introduced the following notation for the product of the Green’s functions

G(a,b,c,d)(p; q; k; l) = Ga
p · Gb

q · Gc
k · Gd

l . (D2)

We next integrate in Eq. (D1) over frequencies. Solving the integrals over ωp, ωq , and ωl , we arrive at the following general
result

∫
ω

G(a,b,c,d)(p; p + l; q; q + l) = C(a,b,c,d) · I
(a+b+c+d)
3 (p; p + l; q; q + l), (D3a)

C(a,b,c,d) ≡ (−1)(b+c+1) (a + b + c + d − 4)!

(a − 1)!(b − 1)!(c − 1)!(d − 1)!
, (D3b)

I
(a+b+c+d)
3 (p; p + l; q; q + l) ≡ [θ (−)

p θ
(+)
q θ

(+)
p+lθ

(−)
q+l − θ

(+)
p θ

(−)
q θ

(−)
p+lθ

(+)
q+l]

(εp − εq − εp+l + εq+l)(a+b+c+d−3)
, (D3c)

where the theta function θ
(+)
p is equal to 1, if εp > 0, and to 0 otherwise, while θ

(−)
p is equal to 1, if εp < 0, and to 0 otherwise.

Using Eq. (D3a) to evaluate integrals in Eq. (D1) over the frequencies, we get

δ�̃AL
1 + δ�̃AL

2 = 16
∫

k

[(q · Q)2 − ((q + l) · Q)2]I (8)
3 (p; p + l; q; q + l), (D4)

where C(4,1,2,1) = C(2,1,4,1) = 4 and C(4,1,1,2) = C(2,1,1,4) = −4 was used. To proceed with integrals over momenta p, q, and l,
we perform transformation of the momentum variables using the symmetries of I

(n)
3 in Eq. (D3c). We identify three independent

symmetries of I
(n)
3 :

(1) Symmetry 1. Replacement of p by q and vice versa

I
(n)
3 (q; q + l; p; p + l) = (−1)n × I

(n)
3 (p; p + l; q; q + l); (D5)

(2) Symmetry 2. Simultaneous swap of p ⇐⇒ p + l and q ⇐⇒ q + l

I
(n)
3 (p + l; p; q + l; q) = (−1)n × I

(n)
3 (p; p + l; q; q + l); (D6)

(This transformation can be achieved by first changing l → −l and then changing p → p + l,q → q + l.)
(3) Symmetry 3. Swap p + l ⇐⇒ q

I
(n)
3 (p; q; p + l; q + l) = I

(n)
3 (p; p + l; q; q + l) (D7)

(acheived by l → q − p,q → p − l followed by l → −l).
Symmetrizing Eq. (D4) with the help of Eq. (D6), we see that the two terms in (D4) cancel each other, i.e., δ�̃AL

1 + δ�̃AL
2 = 0.

Therefore, the Aslamazov-Larkin diagrams do not contribute a high-energy Q2 term, which is the same result as in Sec. III C.
On a more careful look, we notice that the expansion in Q also gives rise to Q · Q terms in Eq. (D1). To obtain such terms, one

of the derivatives should act on any of the internal Green’s functions in one of Aslamazov-Larkin diagrams, giving ∂Qε in the
numerator and increasing the power of that Green’s function by 1. The second derivative should act however on the ∂Qε itself,
leaving the powers of the Green’s functions intact (as opposed to the case of terms we evaluated before, where both derivatives
acted on the Green’s functions). As a consequence, after performing ω-integration of such term using Eq. (D3a), we obtain that
the prefactor for Q · Q in δ�̃AL is proportional to I

(7)
3 (p; p + l; q; q + l). This prefactor is antisymmetric with respect to (D5)

and therefore vanishes after momentum symmetrization.
We now move to other diagrams. For convenience, we reproduce the three diagrams from panel (c) in Fig. 4 here, in Fig. 8,

and label then as A, B, and C. Performing Taylor expansion to order Q2, we obtain for diagram A δ�̃A = δ�̃
(1)
A + δ�̃

(2)
A + δ�̃

(3)
A ,

where

δ�̃
(1)
A = −4

∫
ω

[
(p · Q)(p · Q + l · Q)G(4,2,1,1) + (p · Q)(q · Q)G(4,1,2,1) + (p · Q)(q · Q + l · Q)G(4,1,1,2)

]
,

δ�̃
(2)
A = −4

∫
ω

[
(q · Q)(p · Q + l · Q)G(3,2,2,1) + (q · Q)(q · Q + l · Q)G(3,1,2,2) + (p · Q + l · Q)(q · Q + l · Q)G(3,2,1,2)

]
,

δ�̃
(3)
A = −4

∫
ω

[
2(p · Q)2G(5,1,1,1) + (p · Q + l · Q)2G(3,3,1,1) + (q · Q)2G(3,1,3,1) + (q · Q + l · Q)2G(3,1,1,3)

]
. (D8)

We did not write out the arguments of the Green’s function as they are the same as in Eq. (D1).
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FIG. 8. Diagrams from panel c in Fig. 4.

Taylor expanding diagrams B and C, we obtain δ�̃B = δ�̃
(1)
B + δ�̃

(2)
B + δ�̃

(3)
B , and δ�̃C = δ�̃

(1)
C + δ�̃

(2)
C + δ�̃

(3)
C , where

δ�̃
(1)
B = −2

∫
ω

[
(p · Q)2G(4,1,1,2) + (q · Q + l · Q)2G(2,1,1,4)],

δ�̃
(2)
B = −2

∫
ω

[
(p · Q + l · Q)2G(2,3,1,2) + (q · Q)2G(2,1,3,2)

]
,

δ�̃
(3)
B = −2

∫
ω

[−(p · Q + l · Q)(q)G(2,2,2,2)
]

(D9)

and

δ�̃
(1)
C = −4

∫
ω

[(p · Q)2G(4,1,2,1) + (q · Q)2G(2,1,4,1)],

δ�̃
(2)
C = −4

∫
ω

[(p · Q + l · Q)2G(2,3,2,1) + (q · Q + l · Q)2G(2,1,2,3)], (D10)

δ�̃
(3)
C = −4

∫
ω

(p · Q + l · Q)(q · Q + l · Q).G(2,2,2,2)

Evaluating the ω-integrals in these expressions with the help of Eq. (D3a), we obtain the following results for diagrams A, B,
and C:

δ�̃A = 16 · (p · Q)2 · I 8
3 (p; p + l; q; q + l), (D11a)

δ�̃B = 8 · [(p · Q)2 + (q · Q + l · Q)2 + 3(p · Q + l · Q)2 + 3(q · Q)2 − 6(p · Q + l · Q)(q)] · I 8
3 (p; p + l; q; q + l), (D11b)

δ�̃C = −16 · [(p · Q)2 + (q · Q)2 + 3(p · Q + l · Q)2 + 3(q · Q + l · Q)2

− 6(p · Q + l · Q)(q · Q + l · Q)] · I 8
3 (p; p + l; q; q + l). (D11c)

We now use symmetry properties of I
(8)
3 to reduce number of different terms in the above expressions. Using Eqs. (D5), (D6),

and (D7), one can reduce all the terms in the numerators of Eqs. (D11a), (D11b), and (D11c) to either (p · Q)2 or (p · Q)(p ·
Q + l · Q) by the following sequences of transformations:

(1) (q · Q + l · Q)2 sym1−−→ (p · Q + l · Q)2 sym2−−→ (p · Q)2 sym1←−− (q · Q)2;

(2) (p · Q + l · Q)(q · Q + l · Q)
sym2−−→ (p · Q)(q · Q)

sym3−−→ (p · Q)(p · Q + l · Q)
sym1←−− (q · Q)(q · Q + l · Q);

(3) (q · Q)(p · Q + l · Q)
sym2−−→ (p · Q)(q · Q + l · Q) = 2(p · Q)(p · Q + l · Q) − (p · Q)2.

Applying these transformations to Eqs. (D11a), (D11b), and (D11c), we obtain

δ�̃A = 16 · (p · Q)2 · I 8
3 (p; p + l; q; q + l),

δ�̃B = 16 · [7(p · Q)2 − 6(p · Q)((p + l) · Q)] · I 8
3 (p; p + l; q; q + l),

δ�̃C = −16 · [8(p · Q)2 − 6(p · Q)((p + l) · Q)] · I 8
3 (p; p + l; q; q + l). (D12)

Adding the above three terms, we find that their sum vanishes, i.e., δ�̃A + δ�̃B + δ�̃C = 0.
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