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Mott metal-insulator transition in the doped Hubbard-Holstein model
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Motivated by the current interest in the understanding of the Mott insulators away from half-filling, observed
in many perovskite oxides, we study the Mott metal-insulator transition in the doped Hubbard-Holstein model
using the Hartree-Fock mean field theory. The Hubbard-Holstein model is the simplest model containing both the
Coulomb and the electron-lattice interactions, which are important ingredients in the physics of the perovskite
oxides. In contrast to the half-filled Hubbard model, which always results in a single phase (either metallic
or insulating), our results show that away from half-filling, a mixed phase of metallic and insulating regions
occurs. As the dopant concentration is increased, the metallic part progressively grows in volume, until it
exceeds the percolation threshold, leading to percolative conduction. This happens above a critical dopant
concentration δc, which, depending on the strength of the electron-lattice interaction, can be a significant fraction
of unity. This means that the material could be insulating even for a substantial amount of doping, in contrast
to the expectation that doped holes would destroy the insulating behavior of the half-filled Hubbard model.
While effects of fluctuation beyond the mean field remain an open question, our results provide a starting point
for the understanding of the density-driven metal-insulator transition observed in many complex oxides.
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I. INTRODUCTION

It is well known that the half-filled Hubbard model is a
Mott insulator [1] when the strength of the onsite Coulomb
interaction U exceeds a critical value. Within the Hubbard
model, the Mott insulating state can exist only at half-
filling, and just a single hole is supposed to destroy the
antiferromagnetic insulating ground state, turning it into a
ferromagnetic metal as suggested by the Nagaoka theorem
[2], strictly true in the infinite-U limit.

Quite early on, the Mott insulator LaTiO3 was thought to
be a prototypical example of the Nagaoka theorem, where
the undoped LaTiO3 is an antiferromagnetic insulator, as
predicted for the half-filled Hubbard model, but both the
antiferromagnetism as well as the insulating behavior are
quickly destroyed with the introduction of a small number of
holes via the addition of extra oxygen [3] or via Sr substitution
(with as little as x ≈ 0.05 for La1−xSrxTiO3) [4]. Indeed, a
large number of perovskite oxides have since been found to
turn into metals upon hole doping, but only after a substantial
amount of hole concentration has been introduced into the
system. At the same time, scanning tunneling microscopy
images of these doped oxides show mixed phases in the
nanoscale, meaning that there is no clear phase separation
with a single boundary separating the two phases, but rather
that the two phases break into intermixed nanoscale puddles.
In addition, transport measurements follow percolative scaling
laws with doping and temperature, further confirming the
existence of the mixed phase [5–7].

From a theoretical point of view, there have been many
studies of the doped Mott insulators [8–28], largely for models
in two dimensions (2D), because numerical methods such as
quantum Monte Carlo are more feasible there. However, the
results vary depending on the methods used. In the 2D Hubbard
model, results from quantum Monte Carlo calculations [13,14]
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found no evidence for phase separation, consistent with the
“somewhat” exact results of Su [15]. However, other authors
using the fixed-node quantum Monte Carlo method [16] or the
Hartree-Fock mean field approximation [17] have suggested
phase separation in large regions of the parameter space.
Phase separation at small doping levels was also found in
the dynamical mean field calculation [18] and the variational
cluster perturbation theory works [19]. There are much fewer
studies of the phase separation for the Hubbard model in
three dimensions (3D), although the existence of the phase
separation there was suggested by the early works of Visscher
[20] in the 1970s. The recent Hartree-Fock calculations in
3D [27] and the dynamical mean field theory (DMFT) work
[29], strictly valid for infinite dimensions, have found phase
separation in a large region of parameter space, as did the
work of Andriotis et al. [21], who used the coherent-potential
approximation and the Bethe lattice.

Phase separation in the closely related t-J model has
also been investigated because of its relevance to the cuprate
superconductors. The phase separation has been reported for
all values of J/t by several authors [22–24], while some
authors find it only for larger values of J/t [25,26]. There
is thus a general consensus for the phase separation in the
t-J model with a large J/t and the non-half-filled band,
where the system separates into two regions, viz., an undoped
antiferromagnetic region and a carrier-rich ferromagnetic
region.

All these theoretical works do not include the coupling of
lattice to the electrons, which is an important ingredient in the
physics of many perovskite oxides, where a strong Jahn-Teller
coupling plays a critical role in the behavior of the material.
In this paper, we study the Hubbard-Holstein model with
the Hartree-Fock method, which includes both the Coulomb
interaction as well as the electron-lattice coupling. We study
the energetics of the various magnetic phases including the
paramagnetic and the spiral phase [which incorporates the
antiferromagnetic (AFM) and ferromagnetic (FM) phases as
special cases] and compute the phase stability in the doped
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system near half-filling. For small number of dopants (elec-
trons or holes), the system phase separates into an undoped
antiferromagnetic insulator and a carrier-rich, ferromagnetic
or spiral magnetic, metallic phase. As the dopant concentration
is increased, the metallic part grown in volume, and eventually
at a critical dopant concentration, the percolation threshold
is reached and the system becomes a conductor. The critical
concentration for this percolative Mott metal-insulator (MIT)
transition is studied for varying interaction parameters, and the
theoretical results are connected with the existing experiments
in the literature.

II. MODEL

We consider the Hubbard-Holstein model for a cubic lattice

H =
∑
〈ij〉σ

tij (c†iσ cjσ + H.c.) + U
∑

i

ni↑ni↓

+
∑

i

(
1

2
KQ2

i − gQini

)
− μ

∑
iσ

niσ , (1)

which contains both the Coulomb interaction and the electron-
lattice coupling terms. Here, c

†
iσ is the electron creation oper-

ator at site i with spin σ, niσ = c
†
iσ ciσ is the number operator,

tij is the hopping amplitude between nearest-neighbor sites
denoted by 〈ij 〉, U is the onsite Coulomb repulsion, Qi is
the lattice distortion at site i, K and g are, respectively, the
stiffness and the electron-lattice coupling constants, and μ is
the chemical potential that controls the carrier concentration.
Taking the nearest-neighbor hopping integral as tij = −t ,
there are two parameters in the Hamiltonian, viz., U/t and
λ ≡ g2/(KW ), where W = 12|t | is the bandwidth and λ is
the effective electron-lattice coupling strength. Note that we
have considered the static Holstein model [30], which contains
a simpler version of the local lattice interaction such as the
Jahn-Teller interaction, and, in addition, it does not contain
any phonon momentum dependence.

The key problem to study is the energy of the ground
state and the stability of the various phases as a function
of the carrier concentration away from the half-filling. Both
magnetic (ferromagnetic, antiferromagnetic, or spiral) as well
as nonmagnetic phases are considered. In fact, all these
solutions are special cases of the spiral phase, which is
conveniently described in terms of a site-dependent local spin
basis set described by the unitary transformation [17]

d
†
iσ =

∑
σ ′

(e−i 	σ · 	αi/2)σσ ′ c
†
iσ ′ , (2)

where 	αi is the site-dependent spin rotation angle. The spiral
phase is described by 	αi = (	q · 	Ri)x̂, where x̂ is the spin
rotation axis, 	Ri is the site position, and 	q ≡ (qx,qy,qz)
is the modulation wave vector of the spiral state. The
ferromagnetic, paramagnetic, as well as the antiferromagnetic
states, considered in this work, are all special cases of the spiral
state. Explicitly, 	q = 0 for the ferromagnetic or paramagnetic
state, while it is π (1,1,1) for the Néel antiferromagnetic state.

In the new basis, the Hamiltonian (1) remains un-
changed except for the first term, which becomes Hke =∑

〈ij〉,σσ ′ (tσσ ′
ij d

†
iσ djσ ′ + H.c.), where the hopping is now spin

dependent

tσσ ′
ij = (ei 	q·( 	Ri− 	Rj )σx/2)σσ ′ tij , (3)

and in the remaining terms in (1), the number operators are
redefined to mean niσ = d

†
iσ diσ . Making the Bloch transfor-

mation into momentum space

d
†
	kσ

= 1√
N

∑
i

ei	k. 	Ri d
†
iσ , (4)

and using the Hartree-Fock approximation n1n2 = 〈n1〉n2 +
〈n2〉n1 − 〈d†

1d2〉d†
2d1−〈d†

2d1〉d†
1d2−〈n1〉〈n2〉 + 〈d†

1d2〉〈d†
2d1〉,

we get the quasiparticle Hamiltonian

H(	k) =
[
T1(	k) + U 〈n↓〉 − μ −T2(	k) − U 〈d†

↓d↑〉
−T2(	k) − U 〈d†

↑d↓〉 T1(	k) + U 〈n↑〉 − μ

]
,

(5)

where T1(	k)=−2t[cos(kxa)cos(qxa/2)+ cos(kya)cos(qya/2)
+ cos(kza) cos(qza/2)], T2(	k) is the same as T1(	k) except
that all cosine functions are replaced by sines, only the
nearest-neighbor hopping tij = −t has been kept in the
original Hamiltonian (the unit of energy is set by t = 1),
and the expectation values 〈d†

σ dσ ′ 〉 are to be determined
self-consistently. Note that the exact form of Hk would depend
on the spin rotation axis 	α in the spiral phase (here chosen
along x̂). However, the final results should not depend on
this choice as there is no coupling between the space and the
spin coordinates. We also find from direct calculations that the
exchange terms U 〈d†

σ d−σ 〉 appearing in Eq. (5) contribute very
little to the total energy. This contribution would be exactly
zero, if the spins do not mix, so that the density matrices
ρσσ ′ ≡ 〈d†

σ dσ ′ 〉 are diagonal in the spin space.
The total energy per site is given by

E(	q) = 1

N

μ∑
	kσ

ε	kσ − U 〈n↑〉〈n↓〉 + U 〈d†
↑d↓〉〈d†

↓d↑〉 − g2n2

2K
,

(6)

where ε	kσ are the eigenvalues of the Hamiltonian in Eq. (5),
the second and the third terms correct for the double counting
of the Coulomb energy, and the last term is the lattice energy
gain at each site, obtained from minimizing the lattice energy
∂E/∂Q = 0 from Eq. (1). The chemical potential is related
to the number of electrons by the expression N−1 ∑

	kσ θ (μ −
ε	kσ ) = n, N being the number of lattice sites. For a fixed
value of doping δ = 1 − n, where n is the total number of
electrons per lattice site, we have minimized the total energy
E(	q) numerically as a function of the spiral vector 	q by varying
each component between 0 and 2π . The minimum yields the
ground state. All Brillouin zone integrations were performed
with 1000 k points. We restrict ourselves to the hole-doping
region n � 1 without loss of generality since we have the
electron-hole symmetry in the problem.

III. RESULTS

To determine the phase diagram, we calculated the ground-
state energy of the system according to Eq. (6) for the given
input parameters n, U , and λ. Figure 1 shows a typical plot of
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FIG. 1. Ground-state energy as a function of the hole concen-
tration δ for U/W = 1.25 and λ = 0. The lines show results for a
single-site unit cell, while the crosses show the results for a double-site
unit cell, which allowed for charge and spin disproportionation,
but no such disproportionation was found, and the double-site
results converged to the single-site results. Note that the double-site
calculations allowed for the ferromagnetic or the antiferromagnetic
phase, but not the spiral phase.

the ground-state energy per lattice site as a function of the hole
concentration δ for different magnetic phases. As seen from the
figure, the ground state is antiferromagnetic (AF) at half-filling
(δ = 0), in agreement with the standard result for the Hubbard
model. With increasing hole concentration δ, the system first
turns into a spiral (S) state, then into a ferromagnetic (F) state,
and eventually into the paramagnetic (P) state.

Note that we have considered the spiral state in Eq. (2),
which is a spin density wave (SDW) state, with the modulation
wave vector 	q, but not the charge density wave (CDW) state,
which is a higher-energy state and is not expected to occur
in the parameter regime we are working. The CDW state is
difficult to incorporate within our calculation as it requires a
supercell of arbitrary size depending on the modulation wave
vector of the CDW. However, we can study the CDW in a
special case, viz., where the modulation 	q = (π,π,π ), in which
case we have two sites in the unit cell of the crystal, and we
can allow for both charge and spin disproportionation between
the two sublattices. Results of this calculation are also shown
in Fig. 1 as crosses and they go over to the single-site results
indicating the absence of any CDW for this wave vector.

We note further that the CDW state could be favored when
the electron-lattice interaction is strong. We can estimate the
condition for this by considering the energy of the charge-
disproportionated state (a special case of the CDW) for the
half-filled Hubbard-Holstein model and comparing it with the
energy of the state without any charge disproportionation. In
the former case, the charges on the two sublattices are 1 ± η

(η � 1 is the charge disproportionation amplitude), and the
total energy would be E = −(g2/2K)[(1 + η)2 + (1 − η2)] +
Uη. The first term here is the energy gain due to lattice
interaction, the second term is due to the fact that η electrons
are forced to occupy the upper Hubbard band, and we have
neglected the kinetic energy difference in order to get a simple
estimate. It immediately follows from this expression that
such a CDW state would be favorable if U/(Wλ) � 1. For

FIG. 2. Ground-state phase diagram for the Hubbard model for
the simple cubic lattice. The red dashed line separates the stable and
unstable single-phase regions, while the black dashed line indicates
the MIT [these two lines were calculated from the total energy curve
E(δ) for each U/W as illustrated in Fig. 4 below]. The hatched region
indicates existence of the mixed phase. The dashed dotted line shows
the Stoner criterion result [Eq. (9)] for a sinusoidal model density of
states.

the parameter regime relevant for the oxides, this condition is
not satisfied, so that it is reasonable to omit the CDW state,
which we have not considered in our work.

Figure 2 shows the calculated phase diagram. For the half-
filled case, there is perfect Fermi surface nesting [ε(	kF ) =
ε(	kF + 	qn) = 0, 	qn = π (1,1,1) is the nesting vector], which
leads to an antiferromagnetic insulator for any value of U .
As we move away from half-filling, perfect nesting is lost
and a critical value Uc is needed for the onset of magnetic
order. Below a certain hole doping δ, the system goes from
the paramagnetic state to a spiral state, and eventually to the
ferromagnetic state, as U is increased, while for a larger value
of δ, the system goes directly from the paramagnetic to the
ferromagnetic state.

Figure 3 shows the calculated energy as a function of the
spiral wave vector for three different parameters. Note that
for the paramagnetic solution corresponding to U/W = 0.3,

FIG. 3. Energy as a function of the spiral wave vector 	q =
(qx,π,π ) for the Hubbard model with three different Coulomb
parameters, indicating the paramagnetic (P), ferromagnetic (F), or
the spiral (S) ground state, depending on the strength of the Coulomb
U . Here, the hole concentration is δ = 0.6 and the zero of the energy
has been shifted to correspond to the minimum in each case.
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the energy is independent of the spiral wave vector since the
magnetic moment is zero.

Paramagnetic-ferromagnetic phase boundary. The bound-
ary between the paramagnetic and the ferromagnetic phases
in the Hubbard model (Fig. 2) can be understood by taking a
model density of states and applying the Stoner criterion for
ferromagnetic instability. We consider the sinusoidal density
of states for each spin

ρ(ε) =
{ π

2W
sin (επ/W ) if 0 < ε < W,

0 else,
(7)

of bandwidth W . The total energy E is a sum of the band
energy, the Coulomb energy, and the lattice energy, which is
immediately obtained from a direct integration to yield

E(n,m) = W

2π
[
√

1 − x2 − x cos−1 x +
√

1−y2 − y cos−1 y]

+ U

4
(n2 − m2) − λn2, (8)

where x = 1 − n − m, y = 1 − n + m, n = n↑ + n↓ is the
number of electrons, and m = n↑ − n↓ is the spin polarization.
The Fermi energies for the up and down spins are, respectively,
εF↑ = π−1W cos−1 x and εF↓ = π−1W cos−1 y. The onset
of ferromagnetism is determined from the Stoner criterion
Uρ(εF ) � 1, where εF = π−1W cos−1(1 − n) is the Fermi
energy of the paramagnetic phase, while the spin polarization
is determined by the minimization of the energy [Eq. (7)] as
a function of the polarization m. The Stoner criterion leads
to the equation of the paramagnetic-ferromagnetic transition
line:

δ = 1 − n =
√

1 −
(

2W

πU

)2

, (9)

which is plotted as a dotted line in Fig. 2 and reproduces the
trend found from the full solution of the Hubbard model for the
cubic lattice. It is readily seen from Eq. (9) that for the Coulomb
interaction below the critical value Uc = 2/π , the system is
paramagnetic for all values of the hole concentration δ.

Percolative metal-insulator transition. Returning to our
original Hubbard-Holstein model, as seen from Fig. 1, the
ground-state energy is not everywhere convex, which indicates
a phase separation, which is seen for small doping near half-
filling. At half-filling, we have an antiferromagnetic insulator.
As holes are introduced, the system phase separates into two
regions: one is the antiferromagnetic insulating state with hole
concentration zero, and the second is a spiral or ferromagnetic
phase (depending on the strength of U ) with hole concentration
δ∗. As δ is increased, so does the volume of the metallic
fraction. When it exceeds a certain threshold δc, given by
the percolation theory, the metallic regions form a percolative
network and the system conducts.

The fraction of the two phases can be obtained from the
standard Maxwell construction, which is illustrated for the
case of U/W = 2 in Fig. 4. If vm (vi) is the volume fraction of
the substance in the metallic (insulating) phase in the mixed-
phase region (δ∗ < δ < 0), then we have the two equations
vm + vi = 1 and vmδ∗ = δ, which means that the metallic
volume fraction linearly increases with the hole concentration,
i.e., vm = δ/δ∗. The hole concentration δ∗ separates the
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δ   > δ > 0c
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Insulator

δ > δ *
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F

S

AFI

cδ  > δ > δ

FIG. 4. Ground-state energy as a function of the hole concen-
tration δ, indicating phase instability near half-filling (δ = 0), and
the Maxwell construction that yields the upper concentration δ∗ for
the existence of the mixed phase. The system remains an insulator
for δ < δc, the percolation threshold, beyond which the metallic
fraction forms a percolation network making the system a conductor.
Parameters used are U/W = 2.0 and λ = 0.

mixed-phase region from the single-phase region and depends
on the Hamiltonian parameters as seen, e.g., from Fig. 2, and
it must be calculated from the total energy curve for each set
of parameters from a Maxwell construction.

The Maxwell construction indicates phase separation into
two separate regions consisting of single phases, separated by
a single boundary. However, in the actual solids, one does
not encounter such clear phase separation, but rather a mixed
phase usually results, where the two phases are intermixed on
the nanoscale. There are many reasons why a mixed phase
could be more favorable. For example, the presence of a small
amount of charged impurities because of unintentional doping
could cause a deviation from charge neutrality of the two
components and would impede the formation of the phase
separation due to the large cost in Coulomb energy. Thus, one
would encounter a nanoscale inhomogeneous phase (or mixed
phase) with intermixed metallic and insulating components
(Coulomb frustrated phase separation) [31]. It has also been
suggested that the mixed phase could even originate due to
kinetic reasons, i.e., self-organized inhomogeneities resulting
from a strong coupling between electronic and elastic degrees
of freedom [32]. A large number of experiments point to the
existence of the mixed phases in the oxide materials, including
transport results and scanning tunneling microscopy images
[33–35].

The percolation threshold vc, beyond which the metallic
regions touch and the percolative conduction begins, depends
on the specific model used in the percolation theory, but is

085132-4



MOTT METAL-INSULATOR TRANSITION IN THE DOPED . . . PHYSICAL REVIEW B 96, 085132 (2017)

TABLE I. Site percolation threshold vc for various lattices.

Cubic Diamond bcc fcc Square Triangular Honeycomb

vc 0.31 0.43 0.25 0.20 0.59 0.5 0.7

typically about vc ≈ 0.30. For example, in the percolation
model, where the metallic region consists of randomly packed,
overlapping spheres of radius r in an insulating matrix,
the critical volume fraction of the spheres for the onset of
percolation is vc ≈ 0.29 and is independent of r [36]. On
the other hand, for the site percolation problem in the cubic
lattice, the percolation threshold is about vc ≈ 0.31. The
site percolation thresholds are long well known [37], but
are summarized in Table I for ready reference. We have used
the value vc = 0.3 in our calculations, which is similar to the
site percolation result for the cubic lattice.

Percolative conduction occurs when the metallic volume
fraction exceeds vc, i.e., δ/δ∗ = vm > vc, or

δ > δc = vcδ
∗, (10)

where δ∗ is the critical concentration, beyond which the system
turns into a single-phase metal, which is either ferromagnetic
or in the spin spiral state depending on the strength of U/W

(see Fig. 2). For the specific parameters used in Fig. 4, the full
metallic phase for δ > δ∗ is ferromagnetic; for intermediate
values of δ between 0 and δ∗, the phase separation occurs
between the AFI half-filled (δ = 0) phase and the FM metallic
phase with carrier concentration δ∗. Figure 5 summarizes
the phase diagram showing the MIT boundary. The system
continues to remain an AF insulator until dopant concentration
(electrons or holes) exceeds the critical value δc.

Effect of electron-lattice coupling. A finite value of the
electron-lattice coupling in the Hubbard-Holstein model does
not change the relative energies of the various phases for a

0

1

2

U
/W

Percolative 

Percolative 
Metal

Insulator

Metal

δ

δ

0.5 electronsholes 0 0.5

δ

*

c

AFI

FIG. 5. Phase diagram indicating the various phases as a function
of carrier (electron or hole) doping δ. As δ is increased starting from
the AF insulator state at half-filling (δ = 0), the system continues to
be a mixed-phase insulator, turning into a percolative metal beyond
δ = δc, and eventually becoming a single-phase metal beyond δ∗ as
discussed in the text.

-0.6

-0.2

 0.2

 0.7  0.35 0

E
ne

rg
y

*

*
*

λ = 0.25
λ = 0.6

λ = 0

δ

δ δ

δ
FIG. 6. Energy vs doping δ for different strengths of the electron-

lattice coupling λ = 0, 0.25, and 0.6 with U/W = 1.25. A linear
term const ×n has been subtracted from the energy and the zero of
the energy has been redefined to more clearly show the Maxwell
construction.

fixed concentration n as already noted since it alters the energy
of each phase equally [see Eqs. (6) and (8)]. The presence of
charge disproportionation or a CDW (n varies from site to site)
would change the phase diagram. However, as we have already
argued at the beginning of this section, for parameters relevant
to the oxides, the CDW phase is unlikely to occur, which
we have not considered in this work. Thus, the various phase
regions (AF, F, P, or S) in the phase diagram, Fig. 2, remain
unchanged. However, the curvatures of the ground-state total
energy as a function of n or δ, as in Fig. 1, change, leading
to the phase-separation regions which now change with λ, and
therefore so do the quantities δc and δ∗. This is clearly seen
from Fig. 6, where δ∗ increases as the electron-lattice coupling
strength λ is increased.

Figure 7 shows the critical doping δc as a function of the
electron-lattice coupling strength λ for several values of U/W .
As seen from the figure, the larger the value of λ, the higher
is the dopant concentration δ needed for the transition into the

0

 0.1

 0.2

0  0.5 1

Percolative
Metal

Percolative
Insulator

U/W = 0.75 

U/W = 0.25 

δ

λ

c

U/W = 1.25 

FIG. 7. The critical dopant concentration δc for the MIT as a
function of the electron-lattice coupling strength λ. δc was obtained
from the Maxwell construction (Fig. 6) and Eq. (10).

085132-5



JAMSHID MORADI KURDESTANY AND S. SATPATHY PHYSICAL REVIEW B 96, 085132 (2017)

FIG. 8. Ground-state phase diagram for the Hubbard-Holstein
model for the simple cubic lattice for λ = 0.6, with δc indicating the
critical carrier concentration for percolative MIT, where δ > δc is the
percolative metallic region.

metallic state. Finally, Fig. 8 shows the phase diagram in the
Hubbard-Holstein model for a specific value of λ.

To make connections with the experiments, we summarize
the measured critical carrier density for the MIT in several
perovskite oxides from the existing literature in Table II.
As these results indicate, the critical carrier concentration δc

needed to transform the insulating phase into the metallic phase
is a significant fraction of unity, starting from 0.05 for LaTiO3

to as high as 0.5 for YVO3. However, other than a few systems,
where δc is as high as 0.5, for most compounds shown in
Table II, it is between 0.05 and 0.2, which is the typical value
of δc predicted by our theory.

Figure 9 shows the experimental conductivity behavior [42]
of the doped titanates RTiO3 plotted against the bandwidth
of the material as well as the same calculated from our
theory. Although inclusion of the detail interactions in the
Hamiltonian may be necessary for a quantitative description
of a specific compound, the general trend for the onset of the
MIT is well described within the Hubbard-Holstein model.
As seen from Fig. 9, for a large bandwidth (U/W less than

TABLE II. Summary of the experimental results for the critical
hole doping in the perovskite oxides for transition to the metallic
state.

Critical hole
Perovskite oxide doping (δc) Ref.

SmNiO3 0.1 [41]
LaTiO3 0.05 [4]
PrTiO3 0.14 [42]
NdTiO3 0.2 [42]
SmTiO3 0.24 [42]
YTiO3 0.35 [43]
LaMnO3 0.17 – 0.2 [44,45]
PrMnO3 0.3 – 0.5 [46–48]
NdMnO3 0.5 [48]
LaVO3 0.176 [39]
YVO3 0.5 [38,40]

0

 0.25

 0.5

0

δc

Percolative

Percolative
Metal

Insulator

δ*Metal

δ

U/W
0.80.4

FIG. 9. Experimental conductivity data, taken from Katsufuji
et al. [42], for the hole-doped RTiO3 system, with the x axis showing
the renormalized bandwidth W̃ (ratio of the bandwidth of each RTiO3

to that of LaTiO3) (top) and the theoretical phase diagram from
the present calculations, with the electron-lattice coupling strength
λ = 0.6 (bottom).

a critical value), the system is a metal for all doping levels,
and as U/W is increased beyond a critical value, the critical
carrier concentration for MIT increases, roughly linearly. This
agrees with the experimental data, where Katsufuji et al. [42]
have plotted the inverse bandwidth versus the conduction
behavior for a large number of samples with different carrier
concentrations in the titanates. As was argued in Ref. [42],
the magnitude of the Coulomb U may be expected to be
relatively unchanged for the R1−xCaxTiO3+y/2 series, allowing
a direct comparison of the trends seen in theory versus
experiments.

One point to note is that Eq. (10) puts an upper limit on
the critical doping δc ≈ 0.3 since δ∗ can not exceed one and
vc ≈ 0.3, which is what is observed for most of the samples
in Table I. For carrier concentration δ as high as 0.5, as is
the case for some of the samples, the crystal and electronic
structures are likely changed significantly, making the model
less applicable for such systems. In our theory, we have
assumed that the percolative conduction occurs in the mixed
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phase, where the two components (metallic and insulating)
occur randomly, so that the percolation theory applies. If the
two components do not occur randomly, but rather that there is
a tendency towards coalescing of the components, this would
increase the critical value δc, as more volume fraction of the
metallic component will be needed before a percolation path
for conduction forms.

Note that the Hartree-Fock approximation due to its
mean field nature does omit the effect of fluctuations on
the phase separation. It has been shown that such quantum
fluctuations can indeed modify the magnetic phase boundary
within the Hubbard model [49,50]. However, the qualitative
similarity of our theoretical results with the experiments
(as seen from Fig. 9) suggests that the Hartree-Fock re-
sults should contain the qualitative physics of the problem,
while the fluctuation effects will likely alter the predicted
critical doping quantitatively. The effect of the fluctuations
on the phase separation remains an open question for future
study.

IV. SUMMARY

In summary, we studied the phase diagram and energetics of
the Hubbard-Holstein model using the Hartree-Fock method.
For a wide range of the Hamiltonian parameters, we found

the existence of a mixed phase, consisting of an undoped
component which is an antiferromagnetic insulator and a
carrier-rich metallic phase, which is either ferromagnetic or
spiral magnetic. As the carrier concentration (electrons or
holes) increases with doping, the metallic portion slowly
grows, forming isolated islands in an insulating matrix. As
the volume fraction of the metallic islands increases with
carrier doping, eventually they form a percolative conducting
network and the material conducts beyond the critical dopant
concentration δc. This happens for δc which is typically
between 0 and 0.2 or so, in general agreement with the
experimental results. We furthermore showed that the electron-
lattice interaction favors the insulating phase with respect to
the metallic phase and the critical doping value increases along
with the strength of the electron-lattice coupling. The general
trends for the critical doping concentration for MIT predicted
by our theory agree with the existing experimental results for
the hole-doped perovskite oxides.
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