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We study the magnetic field-driven metal-to-insulator transition in half-filled Hubbard model on the Bethe
lattice, using the dynamical mean-field theory by solving the quantum impurity problem with density-matrix
renormalization group algorithm. The method enables us to obtain a high-resolution spectral densities in the
presence of a magnetic field. It is found that the Kondo resonance at the Fermi level splits at relatively high
magnetic field: the spin-up and -down components move away from the Fermi level and finally form a spin-
polarized band insulator. By calculating the magnetization and spin susceptibility, we clarify that an applied
magnetic field drives a transition from a paramagnetic metallic phase to a band insulating phase. In the weak
interaction regime, the nature of the transition is continuous and captured by the Stoner’s description, while
in the strong interaction regime the transition is very likely to be metamagnetic, evidenced by the hysteresis
curve. Furthermore, we determine the phase boundary by tracking the kink in the magnetic susceptibility, and the
steplike change of the entanglement entropy and the entanglement gap closing. Interestingly, the phase boundaries
determined from these two different ways are largely consistent with each other.
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I. INTRODUCTION

The strong interplay between electron charge, spin, and
orbital degrees of freedom renders exotic collective behaviors,
which sensitively respond to external perturbations and thus
lead to the ubiquitous quantum phase transitions in strongly
correlated systems [1]. Among various ways of tuning param-
eters, varying an external magnetic field is a useful and widely
applied experimental way for driving quantum phase transi-
tions, by significantly affecting the competition between the
formation of the Fermi liquid and the magnetic state with long-
range spin correlations. The simplest model to realize such
kind of magnetic field-driven phase transitions is the single-
band Hubbard model [2] in the presence of an exchange field.

After decades of the study, however, a consensus on the
magnetic field-driven metal-to-insulator transition is yet to be
reached. Generally, there are two competing descriptions of
the metal-to-insulator transition. One is the Stoner mean-field
approach [3,4], which predicts a smooth magnetization change
with magnetic field, while the other one is the Gutzwiller
approximation predicting a first-order metamagnetic transition
with magnetization jump around the phase transition [5,6].
The followup works largely confirm that the nature of the
transition depends on the interaction strength. That is, for
the weakly correlated metal, a smooth crossover is found
between the unpolarized metal and the fully polarized band
insulator, while for relatively strong interactions, the applied
magnetic field drives a first-order metamagnetic transition,
forcing a jump in the magnetization curve. Although a
qualitative agreement has been achieved, the predicted critical
field has non-negligible deviation between the Gutzwiller
approximation and the dynamical mean-field theory (DMFT)
[7–9]. In particular, the predicted metamagnetic transition
has not been observed in experiments of liquid 3He [10],
which leaves the nature of the field-driven metal-to-insulator

transition still unsettled. Moreover, despite that DMFT is
expected to capture the dynamics and the local fluctuations
better, the obtained results are sensitive to the choice of
the impurity solver. It has been noted that previous studies
using numerical renormalization group as an impurity solver
in DMFT overestimate the transition phase boundary of
the Mott transitions [11,12]. Thus, it is highly desired to
inspect the magnetic field-driven metal-to-insulator transition
by developing unbiased numerical techniques.

Here, we reinvestigate the half-filled single-band Hubbard
model with an external magnetic field. Although a similar
problem has been studied by exact diagonalization [7] and
numerical renormalization group [8] within the DMFT frame-
work, the detailed behavior of the crossover from the low-field
paramagnetic metal to high-field polarized insulator has not
been examined systematically. To resolve this problem, we
implement the density-matrix renormalization group (DMRG)
[13,14] as a quantum impurity solver into the DMFT [15,16].
This method enables us to provide a comprehensive picture
of the crossover from low-field regime to high-field regime,
with focuses on single-particle and two-particle dynamics, as
well as entanglement measurements. It is found that the Kondo
resonance at the Fermi level splits at relatively high magnetic
field, where the spin-up and -down components move away
from the Fermi level and finally form a spin-polarized band
insulator. In particular, an asymmetric kink appears in the
magnetic susceptibility, which signals the transition from a
paramagnetic metal to a fully polarized band insulator. With
increasing the interaction, the magnetic susceptibility curve
becomes steeper approaching the transition point. Further-
more, we also identify the phase transition by entanglement
measurements. The steplike change in entanglement entropy
and entanglement gap closing faithfully represents a quantum
phase transition, with the critical field consistent with that
obtained from the magnetic susceptibility.
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This paper is organized as follows: In Sec. II, we start
by briefly introducing the model and reviewing the general
framework of the DMFT and the DMRG impurity solver. We
close this section with a discussion on the mapping of the
usual impurity Anderson model to a two-component spinless
model. In Sec. III, we describe the magnetic field dependent
dynamics of the system. We study the evolution of spectral
densities, magnetization curves, and magnetic susceptibilities
with the change of the magnetic field. We also introduce the
entanglement measurements to detect the metal-to-insulator
transition. The conclusion is given in Sec. IV.

II. MODEL AND METHODOLOGY

A. Hubbard model in a magnetic field

We study the two-dimensional Hubbard model in the
presence of a magnetic field:

H = U
∑

i

(
ni,↑ − 1

2

)(
ni,↓ − 1

2

)

− t
∑

〈i,j〉,σ
c
†
i,σ cj,σ + h

∑
i

(ni,↑ − ni,↓), (1)

where c
†
i,σ creates a spin-σ electron at site i. t is the hopping

matrix element between two nearest-neighbor sites and U is the
onsite interaction. Zeeman splitting strength h is determined
by external magnetic field (H ) by h = gμBH/2 (μB is Bohr
magneton and g is Lande factor). In this work, we have made
several assumptions to simplify the problem. First, we consider
the single orbital model. Second, we just consider the external
magnetic field leading to Zeeman effect and neglect the
orbital effect from magnetic field. Third, throughout the work,
we focus on the half-filling case [or Fermi level (chemical
potential) is set to be μ = 0] and t = 1.

In this paper, we study the Hubbard model (1), defined
on the Bethe lattice, and solve it within DMFT. Working on
the Bethe lattice significantly simplifies the self-consistent
calculations within DMFT, as shown in Sec. II B. To be
specific, we only use the property of the Bethe lattice, whose
density of states in the absence of interactions takes the form of

ρ0(ω) = 2

πD2

√
D2 − ω2, (2)

where 2D = 4 stands for the corresponding bandwidth (see
Appendix A for details).

B. Dynamical mean-field theory

The DMFT [15,16] is a nonperturbative treatment of the
electronic structure in strongly correlated systems, which
bridges the gap between the fully itinerant limit and the
fully localized limit of electronic states. The key idea of
DMFT is the mapping of a many-body lattice problem to an
Anderson impurity model, which is solved self-consistently.
The Anderson impurity model describes the hybridization of
interacting electrons located on one or several sites (the impu-
rity sites) with a “bath” of conduction electrons [17]. While the
mapping itself is exact, the approximation made in ordinary
DMFT schemes is to assume the lattice self-energy to be
momentum independent (neglecting all nonlocal correlations),

which only becomes exact in the limit of lattices with an infinite
coordination number (for example, the Bethe lattice).

Generally, the DMFT self-consistent condition is the lattice
Green’s function [Gσ (ω)] coincides with impurity Green’s
function [gσ (ω)] from the Anderson impurity model by (see
Appendix A for details)

Gσ (ω) ≈ gσ (ω) . (3)

This equation is used to set up a DMFT iteration cycle to
find a self-consistent solution. To be specific, on the Bethe
lattice, the self-consistent condition can be represented by (see
Appendix A)

�σ (ω) = D2

4
Gσ (ω). (4)

C. Dynamic DMRG as impurity solver

Solving the Anderson impurity model amounts to comput-
ing observables such as the interacting Green’s function and
related spectral function for a given hybridization function.
There exist a number of ways to solve the Anderson impurity
model [16,17], including exact diagonalization [18–20], the
numerical renormalization group [21,22], iterative perturba-
tion theory [15,23], the Hirsch-Fye [24–28] and continuous-
time [29,30] quantum Monte Carlo methods. Although the
above impurity solvers have been proposed and developed for
decades, they have strength and weakness. For instance, the
numerical renormalization group, being designed for impurity
problems, is unable to resolve a good resolution of spectral
density at high-energy regime, due to the limitation of loga-
rithmic discretization of the bath density of states. Moreover,
related generalization of numerical renormalization group to
the multiorbital or multiband lattice model is still unfeasible.
The quantum Monte Carlo method can efficiently deal with
multiband models, but it lacks high resolution of the spectral
function when formulated in imaginary time, due to the
ill-conditioned analytic continuation from imaginary to real
frequencies. Exact diagonalization naturally works with real
frequencies, but it is severely limited by its accessible system
sizes. This again reduces the spectral resolution considerably.

On the other hand, over more than 20 years of the
development, DMRG [13,14] has become a mature numerical
technique dealing with generalized Hamiltonian, which is
widely accepted as the most successful method for one-
dimensional interacting systems. Since the impurity problem
in DMFT can be transformed to be actually one dimensional,
it is natural to explore the combination of DMFT and DMRG,
and apply DMFT+DMRG method to problems in dimension
higher than one. Along this direction, several promising
schemes have been proposed in the past years, for example,
the dynamical DMRG algorithm [31–36] and the extended
Chebyshev matrix-product impurity solver [37–40]. General
advantages are that the DMRG-based impurity solver works at
zero temperature and real frequency domain, and the spectral
function can be obtained with high precision for all frequency
and calculated with uniform resolution.

In this paper, we choose the scheme proposed by
Refs. [31,32]. To be specific, the ordinary DMRG is just for
targeting the ground state, saying |0〉. To reach the dynamics
of the system, generally speaking, one should know the
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knowledge about excited states or excitation information. As
proposed in Ref. [31], if only the spectral function or dynami-
cal correlation function is concerned, one does not need to tar-
get full excitation energy spectrum. Instead, the spectral func-
tion can be calculated directly using a correction vector state:

|x±
d (ω + iη)〉 = 1

ω ± (E0 − Ĥ ) + iη
d̂±|0〉. (5)

With the help of the correction vector, the Green’s function
can be calculated directly:

Gd (ω + iη) = 〈0|d̂|x+
d (ω + iη)〉 + 〈0|d†|x−

d (ω + iη)〉, (6)

where η is a nonzero positive value for smearing energy
(in this paper we focus on the retarded Green’s function).
Taking these states [|0〉, d̂†|0〉, and |x±

d (ω)〉] as target states
and optimizing the DMRG basis to represent them allow for
a very precise calculation of the Green’s function for a given
frequency ω and the broadening factor η. This is usually
called dynamical DMRG algorithm [31,32].

In Appendixes B and C, we have performed extensive tests
of the above DMRG scheme and DMFT+DMRG scheme.
Through these benchmarks, we conclude the current scheme
can reach reliable dynamical properties efficiently.

D. Two-component mapping of single-impurity Anderson model

Within the DMFT scheme, the key procedure is to map
the original Hamiltonian (1) to a one-dimensional Anderson
impurity model [15,16,22,28]. The linear chain version of the
single-impurity Anderson model, where the bath of conduction
electrons is described by a hybridization function in continued
fraction representation (see Appendix A), can be illustrated in
Fig. 1(a). Note that the interaction term only appears on the
impurity site [square dot in Fig. 1(a)]. Thus, it is possible to
map the single-impurity Anderson model from a spinful model
to a two-component spinless model (ĉi,↑ → âi , ĉi,↓ → b̂i) as

H = U (nd,↑ − 1/2)(nd,↓ − 1/2)

+V (d†
↑a1 + H.c.) +

∑
i

εia
†
i ai +

∑
i

γi(a
†
i ai+1 + H.c.)

+V (d†
↓b1 + H.c.) +

∑
i

εib
†
i bi +

∑
i

γi(b
†
i bi+1 + H.c.),

(7)

where d̂†
σ creates a spin-σ electron at impurity site and â

†
i (b̂†i )

creates spinless electron in the bath [22] (see Appendix D).
After this mapping, it is straightforward to see two fermion
baths are actually decoupled. In numerical calculation, we
use the geometry shown in Fig. 1(b), where two impurity
sites interact through density-density interaction and each is

FIG. 1. (a) Single-impurity Anderson model with the bath as
half-infinite chain. (b) Equivalent model with two impurities coupled
with two half-infinite bath chain. Square and circle dot, respectively,
represent the impurity site and bath site.

coupled with one semi-infinite fermion bath, respectively. In
literature, the geometry of Fig. 1(a) is widely used since this
is the specific setting for numerical renormalization group
calculations [22]. For the DMRG calculation, the alternative
geometry of Fig. 1(b) is a more natural choice [41].

The mapping from the spinful Hubbard model onto a
two-component spinless model has several advantages, due
to the essential realization of DMRG algorithm. First, this
two-component mapping improves the accuracy of DMRG
calculations. The DMRG is a real-space variational scheme
where building blocks of the whole system are enlarged by one
lattice site and then are updated at each iterative step. After
updating, the enlarged building blocks need to be projected
onto a reduced (or “importance”) basis set, therefore, the
projection (truncation) error is relatively smaller if the Hilbert
space of enlarged building blocks is kept small. In the current
case, the two-component mapping makes the original Hilbert
space be the direct product of two local Hilbert spaces (spin up
and spin down), so that the fermionic Hilbert space at each site
is reduced from four to two. Thus, adding a single spinless site
instead of a spinful site in each DMRG step leads to a much
smaller truncation error or higher resolution. Second, this
two-component mapping saves the computational resources in
DMRG calculations. Generally, when we work on the problem
with smaller local Hilbert space, the numerical cost in DMRG
is exponentially reduced. But, this is not transparent here
because the total Hilbert space is not changed (as we split
each spinful site into two spinless sites). In Appendix G, we
compare the computational performance of spinful Hubbard
model and two-component spinless model. It is found that the
performance of the two-component spinless model is faster
by an approximate factor of 2. To sum up, we conclude that
two-component mapping has a great advantage for solving the
Anderson impurity model based on DMRG.

III. RESULTS AND DISCUSSION

A. Spectral density

First of all, we examine the effect of magnetic field on
spectral density function defined as

ρ(ω) = − 1

π
ImGR(ω) = − 1

π
lim

η→0+
ImGd (ω + iη). (8)

The impurity Green function Gd (ω + iη) is obtained from
DMFT+DMRG scheme:

Gd (ω + iη) = 〈0|d̂σ

1

ω + iη + E0 − Ĥ
d̂†

σ |0〉

+ 〈0|d̂†
σ

1

ω + iη − E0 + Ĥ
d̂σ |0〉, (9)

where E0 stands for the ground-state energy and η is the small
broadening parameter (see Appendix E for details). Figure 2
shows the spectral density for the majority (minority) spin-
down (spin-up) electrons for various magnetic field h by setting
interaction strength U = D and 1.5D. We can see that, by
increasing magnetic field h, the more and more spectral weight
of spin-up (spin-down) component is shifted to higher (lower)
energy regime. When magnetic field reaches a threshold h �
hc, the spectral density is completely spin polarized (chemical
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FIG. 2. Spin-dependent spectral density of Bethe lattice for various values of magnetic field strength h: spin down ρ↓(ω) (red dashed line),
spin up ρ↑(ω) (blue dashed line), and total density ρ(ω) = ρ↓(ω) + ρ↑(ω) (green solid line). The left column corresponds to the interaction
strength U = D = 2.0 and the right column to U = 1.5D = 3.0. As to the DMFT impurity solver, we use a chain enclosing L = 80 fermionic
sites, which is solved by DMRG algorithm by keeping 128 states. The DMRG projection error in each variational step is less than 10−8. DMFT
iterations are stopped by the condition 
ρ(ω) = ρi+1(ω) − ρi(ω) < 0.01 for every ω [
ρ(ω) is the spectral density difference between two con-
secutive DMFT iterations]. Before the use of deconvolution scheme, the smearing energy in calculating the Green’s function is set by η = 0.2D.

potential setting as half-filling), indicating the system becomes
a polarized band insulator.

Next, we discuss the behavior of Kondo resonance peak.
It is found that the Kondo resonance peak survives in weak
magnetic field. Importantly, we observe that the Kondo
resonance peak of spin up (or spin down) is not pinned at zero
frequency since the electron-hole symmetry is broken due to
the magnetic field. The Kondo peak in the spin-up (spin-down)
spectral density shifts towards low- (high-) frequency regime,
with increasing magnetic field. Interestingly, the total spectral
density (green solid curve in Fig. 2) forms a resonance peak
centered at zero frequency before entering the fully polarized
regime (see below). In high magnetic field, the Kondo reso-
nance peak disappears; instead we observe a dip at Fermi level.

B. Magnetization

Figure 3 shows the occupation density at the impurity site
as a function of magnetic field strength h. With increasing
h, occupancy n↑ decreases while n↓ increases [note the
definition of exchange field in Eq. (1)], which effectively

reduces the double occupancy. To be specific, it is found
that the occupation density n↑ (↓) monotonically decreases
(increases) with h. In the relatively high magnetic field, the
system is close to the fully polarized. Further increasing h will
drive a metal-insulator transition near hc, which is determined
by the kink in magnetization curve.

To understand the physics in the regime of weak correla-
tions, the Stoner approximation provides a good description
for the field dependent magnetization m(h) [3,4]. According
to the Hartree-Fock decoupling of the interaction,

Uni,↑ni,↓ = U (〈ni,↑〉 + δni,↑)(〈ni,↓〉 + δni,↓)

≈ U 〈ni,↑〉ni,↓ + U 〈ni,↓〉ni,↑ − U 〈ni,↑〉〈ni,↓〉.

Thus, the Hamiltonian becomes

H = −t
∑

〈i,j〉,σ
c
†
i,σ cj,σ +

∑
i

(h + U 〈ni,↓〉 − U/2)ni,↑

+
∑

i

(−h + U 〈ni,↑〉 − U/2)ni,↓. (10)
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FIG. 3. Impurity site spin-dependent occupation density nσ in a magnetic field for interaction strength U = 0.5D = 1.0 (left), U = D =
2.0 (middle), and U = 1.5D = 3.0 (right), where the occupation density is defined by integrating the spectral density up to Fermi level:
nσ = ∫ 0

−∞ dω ρσ (ω). Inset: the magnetization m(h) = n↑ − n↓ as a function of magnetic field h (black dotted line). The metal-to-insulator
transition point is determined to be hc, determined by a kink in magnetization curve and |m(h > hc)| > 0.9. The red dashed line shows the
mean-field result.

The corresponding self-consistent equation is

〈ni,↑〉 =
∫ 0

−∞
dω ρ(ω − h − U 〈ni,↓〉 + U/2),

〈ni,↓〉 =
∫ 0

−∞
dω ρ(ω + h − U 〈ni,↑〉 + U/2).

Using the fact that 〈ni,↑〉 + 〈ni,↓〉 = 1, the self-consistent
equation reduces to 〈mi〉 = 〈ni,↑〉 − 〈ni,↓〉 = 〈m〉:

〈m〉 =
( ∫ −h+U〈m〉/2

−∞
dω −

∫ h−U〈m〉/2

−∞
dω

)
ρ(ω). (11)

The obtained magnetization curve from the mean-field
calculation (red line) is shown in inset of Fig. 3. It is found
that, in the weakly interacting regime U < D, the calculated
magnetization curve agrees well with the Stoner prediction.
The magnetization exhibits an approximately linear behavior,
when the magnetic field strength is weak (h � hc), indicating
a nearly constant low-field magnetization susceptibility χ (h <

hc) = m/h. In the relatively high magnetic field h > hc, the
magnetization is almost flat by increasing magnetic field, thus
the related high-field magnetization susceptibility χ (h > hc)
becomes much smaller.

When we tune up the Hubbard interaction strength, the mag-
netization deviates from the Stoner prediction. For example, in
Fig. 3(c) for the magnetization curve at U = 1.5D approaching
the transition point hc, the magnetization curve is nonlinear
and magnetic susceptibility is field dependent. To visualize this
correlation effect, we plot the magnetization for various values
of the interaction strength in Fig. 4. For a stronger interaction,
the magnetization is steeper near the phase transition point.
Importantly, a kink in magnetization curve around h ≈ hc

indicates the phase transition. If we continuously tune the
magnetic field from low field to high field, the magnetization
curve is always continuous, without sudden jump which is also
predicted by the Gutzwiller method [5]. However, by checking
the hysteresis curve, we find a mismatch for increasing and
decreasing fields, as shown in Fig. 4 (inset). The hysteresis
curve indicates the field-induced transition is of the first
order, consistent with the previous DMFT+ED calculation [7].
The hysteresis curve and related coexistence regime partially
support the metamagneticlike transition in strong interaction

regime. In the weakly interacting regime U < 1.5D = 3.0, the
hysteresis vanishes, thus, the transition there is of the second
order or at least weakly first order.

C. Magnetic susceptibility

Let us examine the magnetic properties further. Here,
we calculate the local magnetic susceptibility χloc(ω) of the
impurity site defined as

χloc(ω) = −〈0|Ŝz
d

1

ω + iη − (Ĥ − E0)
Ŝz

d |0〉

+ 〈0|Ŝz
d

1

ω + iη − (E0 − Ĥ )
Ŝz

d |0〉, (12)

where Ŝz
d = (nd,↑ − nd,↓)/2 is the z component of spin

operator at the impurity site. Physically, the real part of

FIG. 4. Magnetization as a function of the magnetic field h for
various values of the interaction strength U . In the strong interaction
regime, the insulator transition point is determined by a kink in
magnetization curve. Here, the magnetization curve is obtained
by sweeping the magnetic field h upward. Inset: hysteresis curve
(U = 1.5D = 3.0) by continuously increasing h (black diamond)
and by continuously decreasing h (red cross).
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FIG. 5. Local magnetic susceptibility at the impurity site calculated for various magnetic field h by setting U = D = 2.0: (a) real part
Reχloc(ω) and (b) imaginary part Imχloc(ω). (c) Reχloc(ω = 0) as a function of h. Dotted line is the best fit to guide for eyes. The phase transition
point is determined by the kink around hc.

magnetic susceptibility reflects the slope of magnetization
curve, while the imaginary part of magnetic susceptibility is
the spin fluctuation, which is related to the energy absorption
or loss according to the fluctuation-dissipation theorem.

We show the calculated magnetic susceptibility χloc(ω) in
Fig. 5. For the real part of susceptibility, we find several fea-
tures signaling the phase transition. First, for a given frequency
ω, the absolute value of χloc(ω) monotonically decreases with
the increase of magnetic field. Second, Reχloc(ω = 0), the
static susceptibility directly relating to magnetization curve,
shows a kink around hc [Fig. 5(c)]. In h > hc, the ground state
is approximately fully polarized, leading to a vanishingly small
magnetic susceptibility. The kink around h ≈ hc provides a
way to define the phase boundary between metallic phase
and band insulating phase. Third, before entering insulating
phase h < hc, it is found that the magnetic susceptibility
curve becomes steeper for increased Hubbard interaction when
approaching hc [Fig. 5(c)]. This is against the prediction of
the Stoner description [7]. Instead, the current observation
supports that phase transition follows metamagnetic type of
transition [7]. Note that, although the metamagnetic transition
was first predicted by the Gutzwiller approximation three
decades ago [5], we do not find the jump or discontinuity in the
susceptibility. It suggests that the Gutzwiller approximation
would overestimate the ferromagnetism at the low field. We
notice a discrepancy between the magnetic susceptibility
Reχloc(ω = 0) and the magnetization curve m(h). In Fig. 4,
the magnetization curves are directly obtained from the spin-
polarized electron density, where the slope of m(h) is slightly
increasing when approaching critical field hc, while this
behavior does not show up in the magnetization susceptibility
Reχloc(ω = 0) in Fig. 5(c). This discrepancy comes from the
fact that, except in the limit of h → 0, the two quantities
Reχloc(ω = 0) (a local quantity) and ∂m/∂h (a uniform quan-
tity) can rightfully differ when h enters as a control parameter
in the model rather than as an infinitesimal probing field [7].

For the imaginary part, it is clearly observed that Imχloc(ω)
always turns to zero in the limit of ω → 0, which is guaranteed
by the fact that Imχloc(ω) should be an odd function of
frequency. Again, in the high-field regime h > hc, it is found
that the imaginary part of susceptibility is vanishing small,
indicating that the spin fluctuation is strongly suppressed for a
fully spin-polarized state.

D. Quantum phase transition from entanglement
characterization

Next, we discuss the quantum phase transition driven by
magnetic field. As shown in Fig. 2, spectral density clearly
shows that the high magnetic field drives the system from
a metallic phase to a band insulator. To locate the phase
transition point, usually one can use the magnetization curve
as shown in Fig. 3, where the kink of magnetic susceptibility
separates the low-field regime from the high-field regime and
indicates the phase boundary. Here, we utilize a state-of-the-art
method to determine the phase boundary of quantum phase
transition, taking advantage of the benefit of DMRG calcu-
lations. Currently, there is growing interest on characterizing
quantum phase transitions through the quantum entanglement
information [42,43]. Despite several attempts of applying
these quantum entanglement diagnosis on impurity problems
[44,45], to the best of our knowledge, the implementation of
such kind of entanglement measurements in DMFT calculation
is still lacking. Here, we provide an example of phase transition
determined by quantum entanglement measurements in DMFT
calculations.

In the DMRG method, the system is divided into two
parts, thus, the wave function is generally represented as
|ψ〉 = ∑

i

∑
j ψi,j |i〉L ⊗ |j 〉R , where |i〉L and |j 〉R indicate

the bases of the left and right blocks, respectively. The reduced
density matrix ρ̂L for the left block is (ρ̂L)i,i ′ = ∑

j ψi,jψ
∗
i ′,j

and the eigenvalue of ρ̂L is denoted as ξk . The eigenvalues
should satisfy the sum rule:

∑
k ξk = 1. Here, we introduce

two entanglement measurements related to ξk . One is von
Neumann entanglement entropy defined as S = −∑

k ξk ln ξk ,
and the other one is entanglement spectrum as − ln ξk [42].
Next, we consider the left block enclosing impurity site only
[as shown in Fig. 1(a)] and right block enclosing electron bath.

Figures 6(a) and 6(b) show the magnetic field dependence
of the entanglement entropy, and its derivative with respect
to the magnetic field, respectively. The main feature is that
the entropy curve exhibits a steplike drop around critical
field hc, which is a direct evidence for a significant change
around the phase boundary in the degree of the quantum
entanglement between the impurity site and electron bath.
Physically, in the band insulating phase, high magnetic field
suppresses the effect of interaction and the fluctuation of the
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FIG. 6. Quantum phase transition determined by the evolu-
tion of entropy and entanglement spectrum for U = 1.5D = 3.0.
(a) Entanglement entropy (black dotted line) for the ground state
of the single-impurity Anderson model versus magnetic field h.
(b) Derivative of entropy (orange dotted line), where the dip indicates
the phase boundary. (c) Low-lying entanglement spectrum for the
ground state of the single-impurity Anderson model versus magnetic
field h. We denote δ1 as the “entanglement gap” between the largest
eigenvalue and the second largest eigenvalue of the reduced density
matrix. The red circle marks the entanglement gap closing δ1 = 0.
The dashed line is the guide for eyes. For the entanglement cut, we
separate the whole chain into two blocks: left block enclosing the
impurity site and one bath site, and the right block enclosing electron
bath [see Fig. 1(a)].

spin, thus, the correlation effect in the fully polarized state
is effectively avoided. Therefore, it is expected that entropy
reduces significantly from the metallic phase to the insulating
phase by tuning the magnetic field.

Moreover, we observe some more evidence of quantum
phase transition from the entanglement spectrum, as shown in
Fig. 6(c). In particular, in the vicinity of the phase boundary,
the two largest eigenvalues of the reduced density matrix cross
with each other when the magnetic field is increased. The
corresponding “entanglement gap” closes (δ1 = 0) just before
entering the insulating phase, and then reopens. In the high

FIG. 7. Quantum phase diagram versus interaction strength U

and magnetic field h. The red line represents the phase boundary
determined by DMFT+DMRG calculations. The black dashed line
represents the classical phase boundary: 2D − 2h − U = 0, where
2D = 4.0 is the bandwidth of the Bethe lattice. The shaded area
marks the regime without stable solution in current scheme.

magnetic field regime, most of the weight of the reduced
density matrix is carried by only one eigenvalue (the largest
eigenvalue max{ξk} > 0.9), suggesting that the fully polarized
state is actually close to the direct product state with small
entanglement correlations. Finally, we point out that the phase
boundaries obtained from different methods agree very well
with each other. For example, for U = 1.5D = 3.0 the critical
field hc ≈ 0.4 obtained from the entropy jump [in Fig. 6(a)],
is very close to hc ≈ 0.42 obtained from the magnetic suscep-
tibility (in Fig. 5). Therefore, we conclude confidently that the
entropy change and corresponding level crossing in the entan-
glement spectrum directly reveal the quantum phase transition.

E. Quantum phase diagram

Our systematic analyses presented above enable us to
present a quantum phase diagram for the Hamiltonian (1),
as functions of interaction strength U and magnetic field h

in Fig. 7. We find two different phases: a metallic phase and
a band insulator phase. [At h = 0, we identify a coexistence
regime (marked by shadow) starting from Uc ≈ 4.5, which
is consistent with the estimation of Uc(h = 0) ≈ 4.76 in
Refs. [12,46].] When both h and U are small, the ground state
is metallic but with finite magnetization m �= 0. By increasing
h, the magnetic field drives the system into a band insulator
phase with spin being fully polarized. The phase boundary
is determined by the kink of magnetization curve. We find
this boundary is very close to the one determined by the
entanglement entropy, so we do not distinguish these two phase
boundaries. The dashed line in Fig. 7 is the classical phase
boundary U + 2h − 2D = 0. Overall, in Fig. 7, we find that
the stronger the Hubbard interaction, the weaker the critical
magnetic field is for the quantum phase transition. Physically,
stronger interaction tends to quench the kinetic degrees of
freedom so that a weaker magnetic field is sufficient to split
spin-up and -down bands. By comparing the classical and

085118-7



W. ZHU, D. N. SHENG, AND JIAN-XIN ZHU PHYSICAL REVIEW B 96, 085118 (2017)

quantum phase boundaries, it is found that classical method
overestimates the phase boundary for the weak interaction
(U < 3.2), while the quantum critical field hc is higher than
classical estimation in the regime 3.2 < U < 4.4.

In addition, in the vicinity of the Mott insulator phase (U >

4.4), we identify a band insulator phase by tuning magnetic
field h > 0.2, however, we do not find a convergent solution
within DMFT scheme for small magnetic field h < 0.2 (as
shown in the shaded area near the right corner at the bottom of
the phase diagram). This can be understood by the strong
interaction limit of Hubbard model at half-filling. That is,
the effective Hamiltonian reduces to the Heisenberg model
with only spin degree of freedom frozen on each local site,
which reads as H = ∑

〈ij〉 JijSiSj with Jij = J ∼ 4t2/U .
Therefore, in the absence of a magnetic field, the system
intrinsically favors an antiferromagnetic state, which is beyond
the single-site DMFT study without breaking the original
lattice translational invariance [8]. Note that, in Fig. 7, the
metal-to-insulator phase boundary is determined by sweeping
the magnetic field h upward. We caution here that the phase
boundary shown here is the up limit of the metallic phase.
Although we identify a hysteresis curve near U ≈ 3.0 (as
shown inset of Fig. 4), the coexistence region is tiny and we
do not show it in Fig. 7.

IV. CONCLUDING REMARKS

We have studied the magnetic field-driven metal-to-
insulator transition in a half-filled Hubbard model on the Bethe
lattice (or in the limit of infinite dimensions). To do so, we have
developed a scheme within the DMFT by solving the impurity
model by means of DMRG. First, the high-resolution field-
dependent spectral density shows that the Kondo resonance
peak splits in the weak magnetic field; while in high magnetic
field, the spin-up and -down bands move away from the Fermi
level and finally form a spin-polarized band insulator. Second,
in weak interaction regime, we have identified a smooth
crossover from paramagnetic metal to the fully polarized band
insulator, with magnetization continuously increasing to unity.
In the strong interaction regime, hysteresis curve indicates
a metamagneticlike phase transition despite the coexistence
regime being very small. Third, the phase boundary has been
determined by two different methods. One is the kink in
magnetic susceptibility, which separates the low-field regime
from the high-field regime. The other one is the steplike jump
of the entanglement entropy and corresponding entanglement
gap closing, which reveal distinct quantum entanglements
between impurity site and electron bath in two different phases.

Experimentally, the liquid 3He, which is regarded as a
canonical Landau Fermi liquid, is believed to be a test bed for
the field-driven metal-to-insulator transition. However, earlier
study [10] found a smooth variation of the magnetization with
the applied field, instead of a metamagneticlike transition,
which is more compatible with the Stoner’s description [3,4].
Our study has shown that the metamagneticlike transition only
occurs in the strong interaction regime. The magnetization is
always continuous when one increases magnetic field upward.
One reasonable explanation for previous 3He experiment [10]
is that the effective interaction strength is less than the estimate
made in earlier work [5]. To settle down this controversy,

we suggest a hysteresis curve measurement in liquid 3He.
Aside from the liquid 3He, many attempts have been made
to search for metamagnetism in different systems, including,
for example, quasi-two-dimensional organic conductor
κ-(BEDT-TTF)2Cu[N(CN)2]Cl [47]. To sum up, this work
suggests to look for experimental systems, which can be
reasonably modeled by the single-band Hubbard model,
with its effective interaction strength tunable from weak to
strong regimes. Considering the recent rapid development in
optical lattice, we expect that the cold-atom systems would
serve as an ideal playground to realize the Stoner-type and
metamagneticlike transitions in laboratory.
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APPENDIX A: DMFT SELF-CONSISTENT CONDITION
FOR THE BETHE LATTICE

In this Appendix, we briefly discuss the self-consistent
condition, hybridization function for the Bethe lattice, with
or without magnetic field. The Bethe lattice is interesting due
to its specific form of density of states (DOS), which can
simplify the DMFT self-consistent condition. It enables us not
to use any other feature from the Bethe lattice other than the
DOS form.

1. Zero magnetic field

On the Bethe lattice, the single-particle DOS (in the absence
of interaction term) takes a semielliptic form

ρ0(ω) = − 1

π
ImG0(ω) = 2

πD2

√
D2 − ω2, (A1)

where 2D stands for the bandwidth of system and the bare
lattice Green’s function G0(ω) takes a particularly simple
continued fraction representation with constant coefficients

G0(ω) = 1

ω − D2
4

ω−
D2
4

ω−···

. (A2)

With the help of the Dyson equation, the full lattice Green’s
function G(ω) can be expressed to be

1

G(ω)
= 1

G0[ω − �(ω)]

= ω − �(ω) −
D2

4

ω − � − D2
4

ω−�−
D2
4

ω−�...

= ω − �(ω) −
(

D2

4

)
G(ω), (A3)
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where �(ω) is the self-energy function. Importantly, several
remarks are in order. First, we have assumed that self-energy
function �(ω) is uniform in real space, thus, it is independent
of momentum quantum number, which is one key assumption
of DMFT. Due to this assumption, self-energy function
behaves as a global energy shift to frequency ω. Last, but
not least, the continued fraction does not change when it is
evaluated at a deeper level because its coefficients are constant.

On the other hand, we can write the bare Green’s function
of the Anderson impurity model g0(ω) with the help of the
so-called hybridization function �(ω) as

g0(ω) = 1

ω − �(ω)
, (A4)

where the continued fraction of �(ω) is

�(ω) = V 2

ω − ε0 − γ 2
0

ω−ε1− γ 2
1

ω−···

. (A5)

For an infinite homogeneous system we have γi = D/2,
εi = 0, and V = D/2. From the Dyson equation, the impurity
Green’s function of Anderson impurity model reads as

1

g(ω)
= 1

g0(ω)
− �(ω) = ω − �(ω) − �(ω). (A6)

Based on the self-consistency condition (3), we set
Eqs. (A3) and (A6) equal and obtain the simpler self-
consistency condition

�(ω) = D2

4
G(ω). (A7)

This equation is simple and it provides a direct way to compute
the hybridization function �(ω) [Eq. (A5)] of the next iteration
of the Anderson impurity model from the lattice propagator
G(ω).

2. Nonzero magnetic field

We now discuss the case in the presence of magnetic field h

(exchange field in spin space). In the noninteracting limit U =
0, under the effect of magnetic field h, it is easy to see the form
of single-particle spin-resolved DOS ρ0

σ (ω) := − 1
π

ImG0
σ (ω)

as

ρ0
↑(ω) = 2

πD2

√
D2 − (ω − h)2,

ρ0
↓(ω) = 2

πD2

√
D2 − (ω + h)2, (A8)

where the semielliptic DOS has the relation to Eq. (2) as
ρ0

σ (ω) = ρ0(ω + σh), and they host a symmetry relation as

ρ0
−σ (ω) = ρ0

σ (−ω). (A9)

The related spin-resolved Green’s function G0
σ with semiel-

liptic ρ0
σ (ω) can be represented, similar to Eq. (A2):

G0
σ (ω) = 1

ω + σh − D2
4

ω+σh−
D2
4

ω+σh−···

= G0(ω + σh). (A10)

Via the Dyson equation and introducing related self-energy
function �σ (ω), the full Green’s function lattice can be
expressed to be

1

Gσ (ω)
= 1

G0
σ (ω − �σ )

= ω + σh − �σ

−
D2

4

ω + σh − �σ − D2
4

ω+σh−�σ −
D2
4

ω+σh−�σ ...

= ω + σh − �σ (ω) −
(

D2

4

)
Gσ (ω), (A11)

where we explicitly show that the continued fraction does
not change when it is evaluated at a deeper level because its
coefficients are constant.

On the other hand, the bare Green’s function of the
Anderson impurity model becomes

g0
σ (ω) = 1

ω + σh − �σ (ω)

= 1

ω + σh − �(ω + σh)
= g0(ω + σh), (A12)

where the spin-resolved hybridization function �σ (ω) as

�σ (ω) = �(ω + σh) = V 2

ω + σh − γ 2
0

ω+σh− γ 2
1

ω+σh−···

. (A13)

Again, using Dyson equation, the full Green’s function of the
Anderson impurity model reads as

1

gσ (ω)
= ω + σh − �σ (ω) − �σ (ω). (A14)

Based on the self-consistency condition (3), we set
Eqs. (A14) and (A11) equal and obtain the simpler self-
consistency condition

�σ (ω) = D2

4
Gσ (ω). (A15)

This was first derived by Ref. [7], and is similar to Eq. (A7),
except that the spin-up and -down parts are not equivalent due
to the presence of external magnetic field. Note that the spin-
dependent Green’s function satisfies the following relation:

G−σ (ω) = Gσ (−ω). (A16)

APPENDIX B: DMRG SOLUTION FOR
SINGLE-IMPURITY ANDERSON MODEL

WITHOUT MAGNETIC FIELD

In this Appendix, to numerically verify the two-component
mapping scheme, we apply the dynamical DMRG technique
to the single-impurity Anderson model at half-filling, which
provides a very good benchmark and testing ground. The usual
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single-impurity Anderson model is written as

H = U (nd,↑ − 1/2)(nd,↓ − 1/2) +
∑

σ

Vσ (d†
σ c1,σ + H.c.)

+
L−1∑

i=1,σ

εic
†
i,σ ci,σ +

∑
i,σ

γi(c
†
i,σ ci+1,σ + H.c.), (B1)

where the coefficient of bath electrons comes from the
hybridization function �(ω) [Eq. (A5)] [or DOS ρ0(ω) given by
Eq. (2)] of the Bethe lattice: εi = 0, γi = D/2, and Vσ = D/2
(2D is bandwidth of Bethe lattice). The d electron represents
impurity that is correlated due to the repulsive interaction
U > 0.

We are interested in the dynamical properties relating to the
one-particle impurity Green function:

Gσ (ω) = lim
η→0+

〈0|d̂†
σ

1

Ĥ − E0 + ω − iη
d̂σ |0〉

+ 〈0|d̂σ

1

E0 − Ĥ + ω + iη
d̂†

σ |0〉, (B2)

where |0〉 stands for the ground state and E0 is ground-state
energy. The spectral density is therefore obtained by ρ(ω) =
− 1

π
ImG(ω).

Here, we show the spectral density ρ(ω) and real part of
Green function Gσ (ω) for Hamiltonian (B1) in Fig. 8. Without
magnetic field (or any other mechanism breaking symmetry
between spin up and spin down), the Green function has no
dependence on the spin index σ . For finite-size calculations,
we choose a chain with L = 80 fermionic sites (after two-
component mapping in Sec. II D, we actually work on a chain
with L′ = 160 spinless fermion sites). We conclude that our
calculation can recover all features known for this model [11].
First, in the absence of interaction U = 0, the spectral density
shows a semielliptic form, which almost repeats the result
from continuous version of the single-impurity Anderson
model. Second, it is found that spectral density is pinned to
ρ(ω = 0) = 2

Dπ
which is a requirement from the Friedel sum

rule [48]. This fact serves as a convincing evidence for the
reliability of our numerical algorithm. Third, for the Kondo
resonance peak around the Fermi surface, the half-width
of central Kondo resonance peak is the rapidly narrowing
by increasing the interaction strength U . This behavior is
also consistent with the expectation that the Kondo energy
scale (Kondo temperature) monotonically decreases with
interaction strength. Fourth, when interaction strength is larger
than bandwidth U � 2D, two symmetric noncoherent peaks
(Hubbard satellites) develop in the high-frequency regime.
The noncoherent peak structure proves the great advantage
of DMRG, compared to normal NRG calculations: Since the
low- and high-frequency regimes are dealt with equivalently
in DMRG, both Kondo resonance and noncoherent peaks can
be fairly viewed. We also compared our results with the recent
publications using DMRG-based techniques, and the results
are consistent with the publications as well [12].

FIG. 8. Dynamical DMRG solution for one-dimensional single-
impurity Anderson model [by setting V = D/2, γi = γ = 1.0 in
Eq. (A5)] for different interaction strength U = 0,D,2D: (left)
spectral densities (imaginary part of Green function by scaling a
global constant πD) and (right) real part of Green functions as a
function frequency ω. For DMRG simulation, we choose a chain
length L = 80 fermionic sites (after mapping into two-component
spinless model, we have L′ = 160 lattice sites). We kept 128 states
in each DMRG block and the resulting projection error is less than
10−10. In the dynamical DMRG calculation, we use a smearing energy
η = 0.1D before deconvolution calculation.

APPENDIX C: DMFT + DMRG SOLUTION OF
SINGLE-ORBITAL HUBBARD MODEL ON THE BETHE

LATTICE WITHOUT MAGNETIC FIELD

In this Appendix, we solve a single-orbital Hubbard model
on the Bethe lattice in the absence of magnetic field, which is
given by the Hamiltonian

H = U
∑

i

(
ni,↑ − 1

2

)(
ni,↓ − 1

2

)
− t

∑
〈i,j〉,σ

c
†
i,σ cj,σ , (C1)

where c
†
i,σ creates one electron with spin − σ at site i and

ni,σ is occupation operator. The basic physics of the Hubbard
model comes from the competition between the local repulsive
interaction and kinetic term consisting of hopping from one site
to the other site. The interaction is diagonal in real space and
hence tends to make the electrons local in real space, while the
kinetic energy is diagonal in momentum space and hence tends
to make the electrons extended in real space. So, the interaction
favors an insulating phase, whereas the kinetic energy favors
a metallic phase, depending on the relative strength of U/t .

Here, we solve the Hamiltonian (1) with DMFT scheme.
The related key DMFT self-consistent condition has been
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FIG. 9. Spectral densities of single-orbital Hubbard model on the Bethe lattice obtained by DMFT scheme. We choose the impurity model
enclosing L = 80 fermionic sites, which is solved by DMRG algorithm by limiting each DMRG block with dimension M = 128. Before the
deconvolution calculation, we select the broadening parameter as η = 0.1D.

discussed in Appendix A. Figure 9 shows our results for
various interaction strengths U in the metallic phase (U <

Uc ≈ 2.6D). Here, we choose the one-dimensional impurity
model enclosing L = 80 fermionic sites, which is solved
by DMRG algorithm by limiting each DMRG block with
dimension M = 128. The obtained projection errors in DMRG
calculations are all negligibly small (less than 10−10), indicat-
ing good convergence of DMRG output from core impurity
model. As to computational performance, by setting parameter
U = 2D, the typical (physical) time cost is 63 min for each
DMFT loop (on two 3.90 GHz cores). Here, we set the
simulation parameter as the broadening energy η = 0.1D and
frequency scan step 
ω = η (ω ∈ [−6.0,6.0]), and use the
mixed Bath discretization (see Appendix D). For more details
about computational performance, please see Appendix G.

The obtained spectral densities faithfully recover the
previous DMFT+DMRG calculations [12], with key fea-
tures including the pinning criterion ρ(ω = 0) = 2

πD
for all

interaction strengths, and the side peaks at the inner edges
of Hubbard bands in strong interaction regime (U = 2D).
Compared with previous numerical renormalization group
calculations, the current DMFT+DMRG scheme deals with
low and high frequencies with the equal weight, thus, we
can get correct both Kondo resonance peak in the low-
frequency and Hubbard satellite bands (noncoherent peak)
in the high frequency. Compared with the Chebyshev-based
simulations, the current DMFT+DMRG reaches a better
convergence. [In Ref. [39], the pinning criterion violates when
interaction strength becomes strong or simulation system
size increases larger than L = 80. The authors argued that
the linear prediction overestimates the height of the central
Kondo peak (see Appendix in Ref. [39]). We did not observe
these drawbacks in our current DMFT+DMRG realization.]
In a word, under DMFT+DMRG scheme, by using the two-
component mapping, a better convergence and computational
performance is available.

APPENDIX D: BATH DISCRETIZATION SCHEME

Since the numerical calculations are performed on the
lattice system, we have to discretize the continuous bath
band or continuous hybridization function and construct lattice
model. Here, we discuss different bath discretization schemes

for DMFT calculation: a linear discretization, a logarithmic
discretization, and a hybridization discretization.

When we have a continuous bath band [or DOS function
ρ(ω)], it can be proved that the effective coupling between a
single-impurity site and continuous bath is reproduced exactly
by the following Hamiltonian:

Himp-bath =
∑

σ=↑,↓

∫
dω ωc†ω,σ cω,σ

+V
∑

σ=↑,↓

∫
dω

√
ρ(ω)(d†

σ cω,σ + H.c.), (D1)

where c†ω,σ (cω,σ ) is the creation (annihilation) operator of a
bath electron which represents the eigenstate with energy ω

and spin σ .
Next, we discretize the energy ω with three ways:
(i) Linear discretization: {ωm} = ωmin + 
ωm, where


 = (ωmax − ωmin)/L is the energy step.
(ii) Logarithmic discretization: {ωm} = {ω+

m} ⊕ {ω−
m},

ω±
m = ±D�−m, where 2D is the bandwidth, � (> 1) is a

parameter which sets a series of intervals in ω±
m’s with

m = 0,1, . . . ,M − 1, and we set ω±
M = 0. This is the original

scheme applied to numerical renormalization group introduced
by Wilson [21].

(iii) Mixed discretization: {ωm} = {ωI
m} ⊕ {ωO

m }, ωI
m =

±D�−m for |ωm| < ωhyb, {ωO
m } = ωmin + 
ωm for |ω| >

ωhyb. This is actually a combination of linear and logarithmic
discretization schemes.

Defining a representative fermion operator c
†
m,σ for each

energy interval [ωm−1,ωm], the coupling between impurity and
bath can now be expressed as

Himp-bath =
∑
m

∑
σ=↑,↓

ξmc†m,σ cm,σ

+
∑
m

∑
σ=↑,↓

μmd†
σ cm,σ + H.c., (D2)

where

μm = V

[ ∫ ωm

ωm−1

dω ρ(ω)

]1/2

, ξm =
∫ ωm

ωm−1
dω ρ(ω)ω∫ ωm−1

ωm
dω ρ(ω)

. (D3)
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FIG. 10. Comparison of different bath discretization schemes for
spectral densities: (left) logarithmic discretization and (right) mixed
discretization. For logarithmic discretization, we choose � = 1.2.
For mixed scheme, we choose ωhyd = 0.45 and � = 1.4. We choose
single impurity of Anderson impurity model with chain length L = 80
fermionic sites, solving DMRG using kept state M = 128. We select
parameters as U = 3.0 and h = 0.2. Here, we show spectral density
for spin-up electrons.

The last step is to map the preceding Hamiltonian on a chain
Hamiltonian with only nearest-neighbor hoppings (εi,γi in
main text) by using the Lanczos algorithm. This step is the
same with the one employed in the numerical renormalization
group method [22].

The logarithmic discretization scheme has much denser
energy meshes in the low-frequency regime, but has much
less energy meshes for the high-frequency regime. Therefore,
the logarithmic discretization scheme cannot capture the
properites in high-energy scales with a high accuracy. In
contrast, the linear discretization scheme distributes the energy
meshes equally for all frequency scales and deals with all
frequency scales with equal weight. Unfortunately, the linear
discretization scheme usually takes much longer time to
converge in DMFT calculation. One balanced way is to use the
mixed (hybridization) scheme. We use logarithmic discretiza-
tion in the low-energy regime while the linear discretization
in the high-frequency regime, which gives reliable results
in both the low- and high-frequency regimes. As shown in
one example in Fig. 10 (left), for logarithmic discretization
scheme, the spectral density shows unexpected fluctuation
in high-frequency regime (or logarithmic discretization doe
snot reach convergence within the same parameter setting).
However, for mixed discretization scheme (right), we can reach
a smooth curve in all frequency regimes. Here, we conclude
that mixed scheme shows better performance than the other
two schemes, thus, in this paper we used the mixed scheme
throughout.

APPENDIX E: DECONVOLUTION SCHEME

In DMRG calculation, we have to introduce a broadening
factor parameter η in the retarded Green’s function. Physi-
cally, this broadening factor removes the singularity on real
frequency axis. Numerically, this broadening factor makes
each single energy level is broadened by a Lorentzian peak
with half-width η. To reach the intrinsic physics, we need a
scheme to extract the behavior at purely real frequencies or
η → 0. That is, the Green’s function on real frequency axis

takes

GR(ω) = lim
η→0+

G(ω + iη),

where G(ω + iη) is calculated by dynamical DMRG intro-
duced in Sec. II C. Thus, the intrinsic spectral density is

ρ(ω) = − 1

π
ImGR(ω) = lim

η→0+
ImG(ω + iη).

Here, we use a generalized scheme, maximal entropy
method [11,49], to extract the information on the spectral
density ρ(ω). Let us assume that the spectral density gi from
DMRG at given values of ω = ξi for finite values of η has the
relation with intrinsic spectral density ρ(ω):

gi = − 1

π
ImG(ξi + iη) =

∫
Lη(ξi − ω)ρ(ω)

= 1

π

∫
dω

η

(ξi − ω)2 + η2
ρ(ω). (E1)

Hence, the necessary step for retrieving ρ(ω) is usually called
the deconvolution process.

The maximal entropy method is to obtain a continuous,
non-negative spectral density ρ(ω), which is consistent with
the numerically determined values of the raw data {gi}. The
advantage of the maximal entropy method is completely
unbiased. That means it does not use any information other
than the one provided by the raw data. The information content
of a density ρ(ω) is measured up to a constant by its negative
entropy

−S =
∫ ∞

−∞
dω ρ(ω) ln ρ(ω). (E2)

The least biased ansatz is the one with the least information
content which is still compatible with the raw data. Hence,
we have to look for the density ρ(ω) which minimizes −S

(maximizes S) under the conditions (E1) given by the raw data
{gi}. To find this least biased ansatz is a straightforward task.
Using the Lagrange multipliers λi for the p conditions set by
the raw data {gi}, the least biased ansatz is characterized by
δS = 0:

min

{
−S +

∑
i

λi

(∫
Lη(ξi − ω)ρ(ω) − gi

)}
⇒ 0

= −1 − ln ρ(ω) +
p∑

i=1

λiLη(ω − ξi).

This equation implies that the least biased ansatz reads as

ρ(ω) = exp

[
−1 +

p∑
i=1

λiLη(ω − ξi)

]
. (E3)

The Lagrange multipliers are determined by the nonlinear
equations (E1):

gj =
Nmesh∑
n=1

η/π

(ξj − ωn)2 + η2

× exp

[
−1 +

p∑
i=1

λi

η/π

(ξi − ωn)2 + η2

]
. (E4)
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FIG. 11. Spectral densities of single-orbital Hubbard model on
the Bethe lattice obtained by DMFT+DMRG scheme. We choose the
impurity model enclosing L = 80 fermionic sites (black), L = 120
fermionic sites (red), and L = 160 fermionic sites (green).

They can be solved by nonlinear equations solver package
(for example, MINIPACK [50]). Via the ansatz (E3), the p

Lagrange multipliers determine the most unbiased spectral
density ρ(ω) which is still compatible with the numerically
measured information on ρ(ω).

APPENDIX F: FINITE-SIZE ANALYSIS

In this paper, the main results are based on the Anderson
impurity model enclosing L = 80 fermion sites. One natural
question is whether or not the physical results depend on
system sizes. Here, we briefly compare the spectral densities
obtained from different system sizes. As shown in Fig. 11,
the obtained spectral densities from system size for L = 80,
120, and 160 completely merge together, which shows the
system size does not influence the calculations here. We also
partly checked other parameters and confirmed that there is no
significant difference between solution from L = 80 to 160.
Thus, we conclude that a system size of L = 80 sites is already
sufficient to quantitatively capture the features of the spectral
properties for the current problem.

APPENDIX G: COMPUTATIONAL PERFORMANCE OF
TWO-COMPONENT SPINLESS MODEL

In this Appendix, we compare the computational perfor-
mance of the spinful Hubbard model and two-component
spinless model using DMRG calculation. We set all of physical
and simulation parameters the same for two different models.
The convergence of DMRG calculations is shown for the
finite size L = 40 for spinful Hubbard model (equivalent
two-component spinless model enclosing 80 fermion sites)
by keeping the number of states M = 128 or 256 kept in
the reduced basis set, respectively. Figure 12 shows the
comparison between the two models for each DMFT loop. It is
found that the two-component spinless model is faster than the
spinful model by an approximate factor of 2.0. Furthermore,
we point out that the two-component spinless model is not
only faster, but also provides a better converged resolution.
In our extensive test, DMRG kept state M = 128 is sufficient
for two-component spinless model to reach converged results
for most of cases. However, for the intermediate interaction

FIG. 12. CPU times for a DMRG run performed with spinful
Hubbard model and two-component spinless model. We set all
parameters in single-impurity Anderson impurity model are the same.
The time unit is the time cost of each DMFT loop for spinful Hubbard
model by solving DMRG using kept state M = 256.

regime, the spinful Hubbard model has not even converged
using DMRG kept state up to M = 256, despite having used
a large amount of CPU time and iterations. The key reason is
that, adding a single spinless site instead of a spinful site in
each DMRG step leads to a much smaller truncation error or
higher resolution (see Sec. II D for discussion).

APPENDIX H: SELF-ENERGY FUNCTION

In the main text, we have shown the spectral density which
directly relates to the full local Green function Gσ (ω). Here,
we show the related self-energy function �(ω). Generally, the
self-energy can be obtained by the Dyson equation through
�(ω) = G−1

0 (ω) − G−1(ω). Here, we choose an alternative
way to calculate self-energy function, which was first proposed
by Bulla [51]. This method of calculating self-energy turns
out to be considerably more reliable and accurate than via the
Dyson equation alone.

Following Bulla [51], we can calculate the quantity F (ω)
first:

Fσ (ω) = 〈0|d̂σ (n−σ − 1/2)
1

ω + iη + E0 − Ĥ
d̂†

σ |0〉

+ 〈0|d̂†
σ

1

ω + iη − E0 + Ĥ
d̂σ (n−σ − 1/2)|0〉 (H1)

and then the self-energy function is obtained by

�σ (ω) = U
Fσ (ω)

Gσ (ω)
. (H2)

We show the obtained self-energy function of spin-up
electrons at impurity site in Fig. 13. Since the magnetic
field breaks particle-hole symmetry, the self-energy is not
symmetric. And, the imaginary part of self-energy shows
a asymmetric two-peak structure. With increasing magnetic
field, the peak in the hole regime becomes more visible and
the other peak in the electron regime tends to diminish. That
means, after phase transition, interaction only modifies the
filled band electrons.
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FIG. 13. Self-energy function of single-orbital Hubbard model
on the Bethe lattice obtained by DMFT scheme. Interaction strength
is set to be U = 3.0. We choose the impurity model enclosing L = 80
fermionic sites, which is solved by DMRG algorithm by limiting each
DMRG block with dimension M = 128.

While the imaginary part of self-energy relates to quasi-
particle lifetime, the real part of self-energy reflects the
quasiparticle weight or effective mass. Here, we define the
quasiparticle weight Zσ , which describes how good the single-
particle picture works:

Zσ =
[

1 − ∂ Re�σ (ω)

∂ω

∣∣∣∣
ω=0

]−1

. (H3)

Interestingly, the inverse of the quasiparticle weight Z−1
σ

corresponds to the enhancement of the effective mass me
σ (h)

FIG. 14. Inverse of quasiparticle weight as a function of magnetic
field h, by setting U = 3.0.

by

me
σ

/
me

0 = Z−1
σ . (H4)

The inverse of quasiparticle weight, shown in Fig. 14, shows
a sharp rise before entering the insulator phase. This signals
the enhancement of quasiparticle weight around the quantum
phase transition. This behavior provides another evidence of
metamagnetic phase transition in this system. When the ground
state is fully polarized, quasiparticle weight should approach
Z−1

σ ≈ 1.0, corresponding to the band insulator discussed in
the main text.
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