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Absorption of circular polarized light in tilted type-I and type-II Weyl semimetals
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We calculate the ac optical response to circularly polarized light of a Weyl semimetal (WSM) with varying
amounts of tilt of the Dirac cones. Both type-I and -II (overtilted) WSMs are considered in a continuum model
with broken time-reversal symmetry. The Weyl nodes appear in pairs of equal energies but of opposite momentum
and chirality. For type I, the response of a particular node to right-hand polarized (RHP) and left-hand polarized
(LHP) light is distinct only in a limited range of photon energy �, 2

1+C2/v
< �

μ
< 2

1−C2/v
with μ the chemical

potential and C2 the tilt associated with the positive chirality node assuming the two nodes are oppositely tilted.
For the overtilted case (type II), the same lower bound applies but there is no upper bound. If the tilt is reversed,
the RHP and LHP responses are also reversed. We present corresponding results for the Hall angle.
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I. INTRODUCTION

A number of new materials have been found to be Weyl
semimetals with pairs of Weyl nodes displaying opposite
chirality. Among these are TaAs [1–5], NbAs [6], YbMnBi2
[7], pyrochlore iridates [8], and HgCr2Se4 [9]. These materials
exhibit exotic properties such as surface states with Fermi arcs
[10,11] and negative magnetoresistance [12,13] associated
with the chiral anomaly. They also exhibit an anomalous Hall
effect [14–18]. The longitudinal dynamic optical conductivity,
which gives direct and valuable information on the dynamics
of the charge carriers, has been experimentally investigated in
a number of Dirac and Weyl semimetals [19–22] for which
a linear in photon energy interband background is expected
[23,24]. This linear dependence reflects the three-dimensional
(3D) nature of the energy bands as well as the linearity of the
dispersion curves. For graphene, which is two dimensional, the
interband background is instead constant [25,26]. Deviations
from these simple laws can arise for more complicated band
structures [27–30] and from correlation effects [31–36], and
these provide additional important information. In a recent
optical study [37] in YbMnBi2, two quasilinear energy regions
are identified as expected in the theoretical [29] model of the
broken time-reversal symmetry of Refs. [27] and [28]. In the
Dirac semimetal Cd3As2 [22], the interband background is
observed to vary with photon energy � as �z′

, where the
exponent z′ = 1.65, which can be identified with a sublinear
ε(k) = |k|z(z = 0.6) electron dispersion, as shown by Bácsi
and Virosztek [38] who derived the relationship z′ = D−2

z
with

D the dimension, here equal to 3.
The Dirac cones in a Weyl semimetal (WSM), which define

the charge carriers’ dispersion curves, can be tilted away from
the vertical axis. A WSM can be classified as type I or type
II, depending on the degree of tilt [39]. For type I, the tilt is
assumed to be smaller than the Fermi velocity v and for the
undoped case the Fermi surface is a single point consistent with
the Weyl node. When the tilt (overtilted case) becomes larger
than v, the Fermi surface is no longer just a point. There exists
a hole and an electron pocket and the density of states at the
Fermi surface is finite. This is referred to as a type-II WSM. For
a WSM with broken time-reversal symmetry, the Weyl nodes
come in pairs of equal energy but are displaced in momentum

from each other and their chirality is opposite. If, in addition,
inversion symmetry is broken, the Weyl points are no longer at
the same energy. Numerous studies of the effect of a tilt on the
physical properties of Weyl semimetals have already appeared.
They include their effect on magnetic response [40,41], Hall
conductivity [17], collective effects [42], Lifshitz transition
[43], valley polarization [44], Andreev reflection [45], Klein
tunneling [46], disorder [47], and the anomalous Nernst effect
[48,49]. There are also some experimental studies that include
superconductivity [50,51]. The effect of a tilt on the dynamical
longitudinal optical conductivity was studied by Carbotte [52]
in the case of broken time-reversal (TR) invariance. It was
found that for a given value of the chemical potential μ, the
expected linear law in photon energy � remained for �

μ
>

2
(1−C2/v) for type I with C2

v
< 1. In the range 2

(1+C2/v) to 2
(1−C2/v) ,

there are characteristic modifications related to the amount
of tilt involved. Below �

μ
= 2

(1+C2/v) , the longitudinal optical
response is zero. This is to be contrasted to the case when the
tilt is zero for which we get zero up to 2μ and an unmodified
linear law above. For type II, with the tilt C2

v
> 1, modifications

to the linear law persist to a high value of �. These again start at
�
μ

= 2
(1+C2/v) , below which the conductivity is zero. Recently,

Steiner et al. [18] gave results for the ac Hall conductivity in
the case of a type-I WSM and we find in our notation that it is
nonzero only in a confined photon-energy range 2

1+ C2
v

< �
μ

<

2
1− C2

v

.

In this paper, we consider the effect of a tilt on the
absorption of circular polarized light. We consider both the
case of type I and type II. Right- and left-handed conductivity
σ+(T = 0,�) and σ−(T = 0,�) are calculated as is the related
Hall angle. In Sec. II, we specify the basic continuum model
Hamiltonian on which all of our calculations are based. The
Green’s function underlying this model is specified and used
in a Kubo formula at zero temperature (T = 0) to obtain the
anomalous Hall conductivity σxy(T = 0,�). For the real part
of σxy(T = 0,�) in the dc limit, we recover the results of
Ref. [17], and for the imaginary part at finite photon energy,
we recover the results of Ref. [18] in the case when the tilt
C
v

is less than one. Analytic results are established in the
overtilted case and these are compared graphically with the
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C
v

< 1 case. In Sec. III, we construct, from the absorptive
(imaginary) part of the Hall conductivity Imσxy(T = 0,�)
and results for the real part of the longitudinal conductivity
[52] (absorptive part) Reσxx(T = 0,�), the conductivities
σ+(T = 0,�) and σ−(T = 0,�) which describe the absorption
right-hand polarized (RHP) and left-hand polarized (LHP)
light, respectively. In Sec. IV, we discuss the Hall angle
associated with polarized light, and in Sec. V, we provide
further discussion and state our conclusions.

II. FORMALISM AND HALL CONDUCTIVITY

Following the notation of Ref. [17], we start with the
simplest continuum Hamiltonian for a pair of Weyl nodes
denoted by 1 and 2 of opposite chirality at kz ∓ Q along the z

axis with tilt C1,C2 and Fermi velocity v,

Ĥ1,2(k) = C1,2(kz ∓ Q) ± vσ · (k ∓ Qez)

= C1,2(kz − s ′Q) + s ′vσ · (k − s ′Qez), (1)

where s ′ = 1 for the Weyl point indexed by 1 and s ′ = −1 for
the Weyl point indexed by 2. ei is the unit vector along the axis
xi , where i = x,y,z. The Pauli matrices are defined as usual
by

σx =
(

0 1
1 0

)
, σy =

(
0 −ı

ı 0

)
, σz =

(
1 0
0 −1

)
. (2)

We define the variable k̃z,s ′ = kz − s ′Q. The continuum
Hamiltonian given by Eq. (1) derived in Ref. [39] has been
widely employed as a minimal description of type-I and type-II
Weyl semimetals [5,17,39,40,42–49]. The Green’s function
corresponding to the above Hamiltonian is given by

Gs ′ (k,z) = [I2z − Ĥs ′ (k)]−1, (3)

where I2 is a 2 × 2 unit matrix. It is straightforward to show
that one can write Eq. (3) explicitly in matrix form as

Gs ′ (k,z) = − 1

2vk̃s ′

∑
s=±

s

z − Cs ′ k̃z,s ′ + svk̃s ′

×
(

z − (Cs ′ − s ′v)k̃z,s ′ s ′v(kx − ıky)
s ′v(kx + ıky) z − (Cs ′ + s ′v)k̃z,s ′

)
,

(4)

where we have introduced the symbol k̃s ′ =√
k2
x + k2

y + k̃2
z,s ′ = |k − s ′Qez|. Following standard algebra,

we can write the full Green’s function as

Gs ′ (k,z) = 1

2

∑
s=±

1

z − Cs ′ k̃z,s ′ + svk̃s ′

×
(

1 − ss ′(k̃z,s ′/k̃s ′ ) −ss ′{(kx − ıky)/k̃s ′ }
−ss ′{(kx + ıky)/k̃s ′ } 1 + ss ′(k̃z,s ′/k̃s ′ )

)
,

which, when written following the notation in Ref. [17], is

G1,2(k,ıωn) =
∑
s=±

1 − ss ′σ · Nk∓Qêz

ıωn − C1,2(kz ∓ Q) + sv|k ∓ Qez| , (5)

where Nk∓Qêz
= kx ex+ky ey+(kz∓Q)ez√

k2
x+k2

y+k̃2
z,s′

.

The current-current correlation function associated with the
xy component of the Hall conductivity is defined as

�xy(�,q) = T
∑
ωn

∑
s ′=±

∫
d3k

(2π )3

×Jx,s ′Gs ′ (k + q,ωn + �m) × Jy,s ′Gs ′ (k,ωn)

= T e2v2
∑
ωn

∑
s ′=±

∫
d3k

(2π )3

×σxGs ′ (k + q,ωn + �m) × σyGs ′ (k,ωn), (6)

where the current operators are

J{x,y},s ′ = s ′evσ{x,y}. (7)

The dynamic Hall conductivity σxy(T ,�) is given in terms of
the off-diagonal current-current correlation function �xy,

σxy(T ,�) = −�xy(�,0)

ı�

= − e2

ı�

∑
s ′=±

s ′
∫ �−s ′Q

−�−s ′Q

dkz

2π

∫ ∞

0

k⊥dk⊥
2π

×{f (Cs ′kz + vk) − f (Cs ′kz − vk)}2v2�
kz

k

×
[
πδ(4v2k2 − �2) − ı

4v2k2 − �2

]

= e2v2

2π2

∑
s ′=±

s ′
∫ �−s ′Q

−�−s ′Q
kzdkz

∫ ∞

0

k⊥dk⊥
k

×{f (Cs ′kz + vk) − f (Cs ′kz − vk)}

×
[

1

4v2k2 − �2
+ ıπδ(4v2k2 − �2)

]
, (8)

with f is the Fermi-Dirac distribution at temperature T . Here
we have introduced a large cutoff � on the kz axis. Also since
k =

√
k2
⊥ + k2

z , we can replace the integration variable k⊥ by
k (treating kz as constant). The real part of the dc transverse
conductivity Reσxy is

Reσxy(T ,� = 0) = e2

8π2

∑
s ′=±

s ′
∫ �−s ′Q

−�−s ′Q
kzdkz

∫ ∞

0
dk

×{f (Cs ′kz + vk) − f (Cs ′kz − vk)} 1

k2
,

(9)

which can be reduced to the known result (Eq. (8) of Ref.
[17]), namely,

Reσxy(T = 0,� = 0) = e2Q

4π2

∑
s ′=±

min

[
1,

v

|cs ′ |
]
. (10)

Returning to Eq. (8) for the dynamic Hall conductivity at finite
� and taking its imaginary part, we get

Imσxy(T ,�) = e2v2

2π

∑
s ′=±

s ′
∫ �−s ′Q

−�−s ′Q
kzdkz

∫ ∞

0

k⊥dk⊥
k

×{f (Cs ′kz+vk)−f (Cs ′kz−vk)}δ(4v2k2−�2).

(11)
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We use the following property of the Dirac δ function to write the imaginary part in simpler form:

δ(f (x)) =
∑
xi

δ(x − xi)

|f ′(xi)| , (12)

where xi’s are the zeros of the function f (x). We substitute this in the expression for Imσxy(�) in Eq. (11) to get

Imσxy(T ,�) = e2v

8π�

∑
s ′=±

s ′
∫ �−s ′Q

−�−s ′Q
kzdkz

{
f

(
Cs ′kz+�

2

)
−f

(
Cs ′kz−�

2

)}[
1 − 


(
|kz| − �

2v

)]

= e2v

8π�

∑
s ′=±

s ′
∫ �

2v

− �
2v

kz

{
f

(
Cs ′kz+�

2

)
−f

(
Cs ′kz−�

2

)}
dkz. (13)

Here we have also changed the variable k⊥ to k as was described for the dc case. At this point, we see that when C1 = C2, i.e.,
when both the cones are tilted in the same direction, then Im[σxy(�)] is identically zero. On the other hand, when C1 = −C2

(oppositely tilted case; see Fig. 1), which means making the replacement Cs ′ = −s ′C2 in the above equation, we instead get

Imσxy(T ,�) = e2v

8π�

∑
s ′=±

s ′
∫ �

2v

− �
2v

dkzkz

{
f

(
−s ′C2kz + �

2

)
− f

(
−s ′C2kz − �

2

)}

= e2v

8π�

∑
s ′=±

s ′
∫ −s ′ �

2v

s ′ �
2v

kz

{
f

(
C2kz + �

2

)
− f

(
C2kz − �

2

)}
dkz, (14)

where we have replaced s ′kz by kz,

Imσxy(T ,�) = − e2v

8π�

∑
s ′=±

s ′
∫ s ′ �

2v

−s ′ �
2v

dkzkz

{
f

(
C2kz + �

2

)
− f

(
C2kz − �

2

)}
dkz

= − e2v

4π�

∫ �
2v

− �
2v

kz

{
f

(
C2kz + �

2

)
− f

(
C2kz − �

2

)}
dkz. (15)

Now we take the limit of temperature T going to zero and replace the Fermi function by Heaviside step function 
 as shown
below,

lim
T →0

{
f

(
C2kz + �

2

)
− f

(
C2kz − �

2

)}
= 


(
−C2kz − �

2
+ μ

)
− 


(
−C2kz + �

2
+ μ

)

= 


(
C2kz − �

2
− μ

)
− 


(
C2kz + �

2
− μ

)
, (16)

which gives

Imσxy(T = 0,�) = − e2v

4π�

∫ �
2v

0
dkzkz

[



(
C2kz − �

2
− μ

)
− 


(
C2kz + �

2
− μ

)
+ 


(
−C2kz + �

2
− μ

)]
. (17)

We see that simplifications can be made to Eq. (17) depend-
ing on the relative magnitude of the chemical potential μ and
the photon energy �. For μ > �

2 , the third θ function drops
out as its argument becomes negative under this condition. On
the contrary, when �

2 > μ, the second θ function in the square
bracket always produces one. Considering these together with
the conditions 0 < C ′

2 < 1 or C ′
2 > 1, we arrive at the results,

which we summarize below. To state our results, we have
assumed that for any variable a, a′ = a/v.

For 0 < C ′
2 < 1, which corresponds to the WSM type I, we

get only a finite region in � within which the imaginary part of
the anomalous Hall conductivity Imσxy(T = 0,�) is nonzero.
Namely,

Imσxy(T = 0,�)

μ′e2/8π
= β for �U > �̃ > �L. (18)

Here, �̃ = �′/μ′ = �/μ. Also we use the shorthand β =
1
4 (1 − 1

C ′2
2

)�̃ + 1
C ′2

2
− 1

C ′2
2

1
�̃

. This agrees with Ref. [18] when
the change in notation is accounted for. The limits �U =

2
|1−C ′

2| and �L = 2
1+C ′

2
are identified as the onsets of possible

interband optical transitions in Fig. 1 including a tilt C ′
2 < 1.

For the overtilted case satisfying the condition C ′
2 > 1

which corresponds to WSM type II, we get two distinct
regions in � where the imaginary part of the anomalous Hall
conductivity Imσxy(T = 0,�) is nonzero,

Imσxy(T = 0,�)

μ′e2/8π
= β, for �U > �̃ > �L,

= 2

C ′2
2

, for �̃ > �U. (19)
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FIG. 1. Here we schematically show two oppositely tilted Weyl
cones which correspond to the case C1 = −C2 and for 0 < C ′

2 < 1.
We also show, with black vertical arrows, the limiting transitions
possible for the tilted case with a specific chemical potential μ for
circularly polarized light of photon energy �.

In Fig. 2, we show our result for the imaginary part of the
finite-frequency (�) anomalous Hall conductivity Imσxy(T =
0,�) at zero temperature T = 0 in units of μ′e2

8π
as a function of

�/μ. Here, μ′ means μ/v. The chemical potential scales out of
these curves. Results for three values of C ′

2 are shown, namely,
C ′

2 = 0.1 (solid green), C ′
2 = 0.5 (dashed red), and C ′

2 = 0.9
(dash-dotted blue). In all three cases, the Hall conductivity is
nonzero only in the photon-energy range �L < �

μ
< 2

1−C ′
2

for

C ′
2 < 1. These results are to be contrasted with those for C ′

2 >

1 (overtilted) which are presented in Fig. 3. Here, five values
of C ′

2 are shown. The dashed red curve is for C ′
2 = 1.5, the

solid green curve is for C ′
2 = 2.0, the dash-dotted blue curve

is for C ′
2 = 3.0, and the double-dash-dotted purple curve is for

C ′
2 = 4.0. Now, Im[σxy(T = 0,�)] is still zero for �

μ
< �L,

FIG. 2. Imaginary anomalous Hall conductivity Imσxy(T = 0,�)

in units of μ′e2

8π
(where μ′ = μ/v) is plotted against the photon energy

� normalized by μ for three different values of the tilt parameter C ′
2

which represent the type-I WSM. For all C ′
2, we see the domelike

structures as described in Eq. (18) in the range �L < �

μ
< 2

1−C′
2
. For

photon energies outside this range, Imσxy(T = 0,�) becomes zero.

FIG. 3. Imaginary anomalous Hall conductivity Imσxy(T = 0,�)

in units of μ′e2

8π
(where μ′ = μ/v) is plotted against the photon energy

� normalized by μ for four different values of the tilt parameter C ′
2

which represent the overtilted case or type-II WSM. Here, Imσxy(T =
0,�) is described by the same functional form as in the type-I WSM
case in the range �L < �

μ
< 2

C′
2−1 . But unlike type-I WSM, it acquires

some finite constant value 2
C′2

2
which is independent of � for �

μ
>

2
C′

2−1 as described in Eq. (19).

but has a similar functional dependence in a slightly different
range, �L < �

μ
< 2

C ′
2−1 , than in Fig. 2 and, more importantly,

Imσxy(T = 0,�) is not zero for �
μ

> 2
C ′

2−1 , rather it takes on a

constant value which depends only on the size of C ′
2.

III. AC CONDUCTIVITY FOR RIGHT- AND
LEFT-HANDED POLARIZATION

Now we work on the dynamic diagonal optical conductivity
in the same spirit as for the anomalous conductivity. The
dynamic diagonal conductivity σxx(�) is defined in the same
way from the current-current correlation �xx(�,q) and we get
the following form for σxx(T ,�):

σxx(T ,�) = − e2v3

2π2�

∑
s ′=±

∫ �−s ′Q

−�−s ′Q
dkz

∫ ∞

0

k⊥dk⊥
k

×{f (Cs ′kz + vk) − f (Cs ′kz − vk)}(2k2
z + k2

⊥
)

×
[
πδ(4v2k2 − �2) − ı

(4v2k2 − �2)

]
. (20)

The real part Reσxx(T ,�) is the absorptive part and can be
written as

Reσxx(T ,�) = − e2v2

8π�2

∑
s ′=±

∫ �/2v

−�/2v

dkz

{
f

(
Cs ′kz + �

2

)

−f

(
Cs ′kz − �

2

)}(
k2
z + �2

4v2

)
. (21)

It has already been worked out in Ref. [52].
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FIG. 4. Here we show the variation of both σ+(T = 0,�) and σ−(T = 0,�) in the units of μ′e2

8π
(where μ′ = μ/v) against the variation of

�/μ for three representative values of C ′
2, namely, (a) C ′

2 = 0.1, (b) C ′
2 = 0.5, and (c) C ′

2 = 0.9. As shown in Eq. (25), both σ+(T = 0,�) and
σ−(T = 0,�) are zero below �

μ
= �L. In the intermediate range 2

1−C′
2

> �

μ
> �L, both of them vary differently with �/μ in such a way that

σ−(T = 0,�) is always greater than σ+(T = 0,�) and together they form a “leaf”-like structure which varies in shape or thickness with the
varying amount of tilt C ′

2. We consider it as a very important signature for WSM type-I materials with two oppositely tilted cones and can be
probed experimentally. Beyond this range of �/μ, both σ+(T = 0,�) and σ−(T = 0,�) merge together into a single straight line, independent
of C ′

2.

In our notation, we get, for 0 < C ′
2 < 1 (WSM type-I case),

Reσxx(T = 0,�)

μ′e2/8π
= 0, for �̃ < �L,

= γ, for �U > �̃ > �L,

= 2�̃

3
, for �̃ > �U, (22)

where γ = 1
12 (4 + 3

C ′
2
+ 1

C ′3
2

)�̃ − 1
2 ( 1

C ′
2
+ 1

C ′3
2

) + 1
C ′3

2 �̃
−

2
3C ′3

2 �̃2 . For C ′
2 > 1 (overtilted WSM type-II case), we get

Reσxx(T = 0,�)

μ′e2/8π
= 0, for �̃ < �L,

= γ, for �U > �̃ > �L,

= 1

6

(
3

C ′
2

+ 1

C ′3
2

)
�̃+ 2

C ′3
2 �̃

, for �̃ > �U.

(23)

We can construct, from Eqs. (18) and (19) for Imσxy(T =
0,�) and Eqs. (22) and (23) for Reσxx(T = 0,�), the absorp-
tive part of the conductivity associated with polarized light,
namely, for right and left polarization,

σ±(T = 0,�) = Reσxx(T = 0,�) ∓ Imσxy(T = 0,�). (24)

Here we will stick to the assumption that C1 = −C2 (i.e., C2

is assumed to be positive and C1 is negative). Assuming C2 =
−C1 (i.e., C1 is positive and C2 is negative) merely changes
the sign of Imσxy(T = 0,�) in Eq. (24), which reverses the
role of σ+(T = 0,�) and σ−(T = 0,�). This does not affect
the features that we will describe in the remaining part.
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FIG. 5. Here we show the variation of both σ+(T = 0,�) and σ−(T = 0,�) in the units of μ′e2

8π
(where μ′ = μ/v) against the variation

of �/μ for four representative values of C ′
2, namely, (a) C ′

2 = 1.5, (b) C ′
2 = 2.0, (c) C ′

2 = 3.0, and (d) C ′
2 = 4.0. As shown in Eq. (26), both

σ+(T = 0,�) and σ−(T = 0,�) are zero below �

μ
= �L. In the intermediate range 2

C′
2−1 > �

μ
> �L, both of them vary differently with �/μ

in such a way that σ−(T = 0,�) is always greater than σ+(T = 0,�). Beyond this range of �/μ, σ+(T = 0,�) and σ−(T = 0,�) are parallel
to each other by an amount 4

C′2
2

(independent of �/μ). This characteristic is very special to WSM type-II materials for which the tilt is greater

than one and the two cones are oppositely tilted.

For 0 < C ′
2 < 1 (WSM type-I case), we get

σ±(T = 0,�)

μ′e2/8π
= 0, for �̃ < �L,

= δ±, for �U > �̃ > �L,

= 2�̃

3
, for �̃ > �U, (25)

where we defined two new quantities as

δ+ = 1

12

(
1 + 3

C ′
2

+ 3

C ′2
2

+ 1

C ′3
2

)
�̃

−1

2

(
1

C ′
2

+ 2

C ′2
2

+ 1

C ′3
2

)
+

(
1

C ′2
2

+ 1

C ′3
2

)
1

�̃
− 2

3C ′3
2 �̃2

,

δ− = 1

12

(
7 + 3

C ′
2

− 3

C ′2
2

+ 1

C ′3
2

)
�̃

−1

2

(
1

C ′
2

− 2

C ′2
2

+ 1

C ′3
2

)
−

(
1

C ′2
2

− 1

C ′3
2

)
1

�̃
− 2

3C ′3
2 �̃2

.

For C ′
2 > 1 (overtilted WSM type-II case),

σ±(T = 0,�)

μ′e2/8π
= 0, for �̃ < �L,

= δ±, for �U > �̃ > �L,

= α±, for �̃ > �U, (26)

where α± = 1
6 ( 3

C ′
2
+ 1

C ′3
2

)�̃ ∓ 2
C ′2

2
+ 2

C ′3
2 �̃

. Results for σ±(T =
0,�) based on Eq. (25) for 0 < C ′

2 < 1 are presented in Fig. 4,
while results for the case C ′

2 > 1 (overtilted) based on Eq. (26)
are shown in Fig. 5. These two regimes show quite distinct
behaviors. In both figures, σ±(T = 0,�) is presented in units
of μ′e2

8π
(where μ′ = μ/v) as a function of photon energy �

also normalized to the chemical potential μ. σ+(T = 0,�) and
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σ−(T = 0,�) are compared and results for the three values of
C ′

2 are shown: C ′
2 = 0.1 by green curve (upper left frame),

C ′
2 = 0.5 by red curve (upper right frame), and C ′

2 = 0.9 by
blue curve (bottom frame). The range of photon energies for
which σ+(T = 0,�) and σ−(T = 0,�) is nonzero is, of course,
restricted by the range for which σxy(T = 0,�) is nonzero, as
shown in Fig. 2, which applies to the case 0 < C ′

2 < 1. As C ′
2

is increased, the range of interest expands both to lower and
to higher energies �

μ
, with the upper limit getting even longer

as C ′
2 approaches one, at which point 1

(1−C ′
2) tends towards

infinity and σ±(T = 0,�) will remain finite to high energies.
Note that σ+(T = 0,�) is always smaller than σ−(T = 0,�).
For the overtilted case C ′

2 > 1, the behavior of σ+(T = 0,�)
and σ−(T = 0,�) is shown in Fig. 5 and is very different
from that in Fig. 2. In particular, there is now a large range of
� over which σ+(T = 0,�) and σ−(T = 0,�) are parallel to
each other. That this is so can be seen from our analytic result
(26). For �

μ
> 2

C ′
2−1 , only the constant term 2

C ′2
2

is different. It
appears with a plus sign in σ−, while its sign is negative in σ+.

IV. THE HALL ANGLE AS A FUNCTION
OF PHOTON ENERGY

The Hall angle θH (T = 0,�) as a function of photon energy
� is defined as

θH (T = 0,�) = Reσ+(�) − Reσ−(�)

Reσ+(�) + Reσ−(�)
= − Imσxy(�)

Reσxx(�)
. (27)

For 0 < C ′
2 < 1 (WSM type-I case), θH (T = 0,�) is nonzero

only within a range of values for �̃ as given below,

θH (T = 0,�) = η, for �U > �̃ > �L, (28)

where η = − 3C ′
2{(C ′2

2 −1)�̃3+4�̃2−4�̃}
(4C ′3

2 +3C ′2
2 +1)�̃3−6(C ′2

2 +1)�̃2+12�̃−8
. At �

μ
= �L, the

algebraic expression in Eq. (28) reduces to one.
For C ′

2 > 1 (overtilted WSM type-II case), we have two
regions of nonzero values of θH (T = 0,�),

θH (T = 0,�) = η, for �U > �̃ > �L,

= − 12C ′
2�̃

(3C ′2
2 + 1)�̃2 + 12

, for �̃ > �U. (29)

Again, θH (T = 0,�) = 1 at �
μ

= �L and, for �
μ

= ∞, we get

θH (T = 0,�) = − 12C ′
2(

3C ′2
2 + 1

)
�̃

, (30)

so that in this case, θH (T = 0,�) remains finite above �
μ

= �L

and decays as ∼ 1
�̃

, while for type I, θH (T = 0,�) is zero
above �

μ
= 2

C ′
2−1 .

Our results based on the simple algebraic expressions
(28) for type I and (29) for type II are shown in Figs. 6
and 7, respectively. The same three values of C ′

2 that we
used in previous sections are shown as a solid green line
(C ′

2 = 0.1), dashed red line (C ′
2 = 0.5), and dash-dotted

blue line (C ′
2 = 0.9) in Fig. 6 for the type-I case. Note how

the range of photon energies for which θH (T = 0,�) is finite
increases as C ′

2 increases. For the type-II case, we present
in Fig. 7 results for four values of the tilt, namely, C ′

2 = 1.5
(dashed red curve), C ′

2 = 2.0 (solid green curve), C ′
2 = 3.0

FIG. 6. Here we show the variation of the negative of the Hall
angle θH (T = 0,�) in radians against the variation of �/μ for three
representative values of C ′

2, namely, 0.1,0.5, and 0.9, specific to the
WSM type-I case. It is only nonzero in the range 2

1−C′
2

> �̃ > �L as

described in Eq. (28). Both below and above this range, they go to
zero.

(dash-dotted blue curve), and C ′
2 = 4.0 (double-dash-dotted

purple curve). For this case, the Hall angle remains finite
for all �

μ
> �L, although it becomes small as �

μ
becomes

large.

FIG. 7. We show the variation of the negative of the Hall angle
θH (T = 0,�) in radians against the variation of �/μ for four
representative values of C ′

2, namely, 1.5,2.0,3.0, and 4.0, specific
to the WSM type-II case. We see that the Hall angle is zero only
in the range �

μ
< �L. It has the same functional dependence as in

the WSM type-I case in the range 2
C′

2−1 > �̃ > �L as described in

Eq. (29). Above this range, it decays as ∼ 1
�̃

.
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V. SUMMARY AND CONCLUSIONS

We find that the dynamic anomalous Hall conductivity
σxy(T = 0,�) normalized to the chemical potential μ in units
of e2

8πv
(v the Fermi velocity) as a function of photon energy

� normalized to μ is a universal function dependent only on
the tilt of the Dirac cone. For a pair of Weyl nodes oppositely
tilted and of opposite chirality, the absorptive part of the Hall
conductivity Imσxy(T = 0,�) in type-I WSM is nonzero only
in a finite interval of photon energies, 2

1−C ′
2

> �
μ

> �L. In
sharp contrast, for type II, there is no upper bound on �.
The Imσxy(T = 0,�) remains zero below �L, rises sharply
in the interval 2

C ′
2−1 > �

μ
> �L, and becomes constant equal

to 2
C ′2

2
above �

μ
= 2

C ′
2−1 . This can be taken as a signature for

overtilting.
The absorptive part of the ac optical conductivity associated

with right- and left-handed polarized light σ± in units of μe2

8πv
as

a function of �
μ

is again a universal function dependent only on

the tilt C ′
2 and �

μ
, and is given by specific algebraic expressions

[Eq. (25)]. For a type-I WSM, σ+(T = 0,�) and σ−(T = 0,�)
differ from each other only in the interval �L < �

μ
< 2

1−C ′
2
,

with σ+(T = 0,�) always smaller than σ−(T = 0,�) except
at the boundaries where they are equal. Both σ±(T = 0,�) are
zero for �

μ
< �L, and, for �

μ
> 2

1−C ′
2
, they both reduce to the

same value equal to Reσxx(T = 0,�) because in the interval

the anomalous Hall conductivity is zero. In the overtilted
regime (type-II WSM), σ±(T = 0,�) behaves very differently
than for the type-I case. There still exists a lower frequency
�
μ

= �L below which the right- and left-hand optical response

is zero. This is followed by a frequency range �L < �
μ

< 2
1−C ′

2

in which σ−(T = 0,�) rises faster than σ+(T = 0,�). But
above �

μ
= 2

C ′
2−1 , the two curves become parallel to each other,

displaced by a constant amount to 4
C ′2

2
in our chosen units.

We give simple analytic algebraic formulas for the Hall
angle θH (T = 0,�) as a function of the photon energy �

μ
.

These appear as Eqs. (28) and (29). The Hall angle is zero for
�
μ

< �L. Just above this photon energy, it has value one and

this value gets reduced as �
μ

is increased. For the type-I WSM

case, there is an upper photon energy �
μ

= 2
1−C ′

2
above which

the Hall angle is zero. For type-II WSM, no such upper photon
energy exists and θH (T = 0,�) remains finite and decays as

12C ′
2

(3C ′2
2 +1)(�/μ)

as �/μ → ∞.
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