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Metallization of solid molecular hydrogen in two dimensions: Mott-Hubbard-type transition
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We analyze the pressure-induced metal-insulator transition in a two-dimensional vertical stack of H2

molecules in (x-y) plane, and show that it represents a striking example of the Mott-Hubbard-type transition.
Our combined exact diagonalization approach, formulated and solved in the second quantization formalism,
includes also simultaneous ab initio readjustment of the single-particle wave functions, contained in the model
microscopic parameters. The system is studied as a function of applied side force (generalized pressure),
both in the H2-molecular and H-quasiatomic states. Extended Hubbard model is taken at the start, together
with longer-range electron-electron interactions incorporated into the scheme. The stacked molecular plane
transforms discontinuously into a (quasi)atomic state under the applied force via a two-step transition: the first
between molecular insulating phases and the second from the molecular to the quasiatomic metallic phase.
No quasiatomic insulating phase occurs. All the transitions are accompanied by abrupt changes of the bond
length and the intermolecular distance (lattice parameter), as well as by discontinuous changes of the principal
electronic properties, which are characteristic of the Mott-Hubbard transition here associated with the jumps
of the predetermined equilibrium lattice parameter and the effective bond length. The phase transition can be
interpreted in terms of the solid hydrogen metallization under pressure exerted by, e.g., the substrate covered with
a monomolecular H2 film of the vertically stacked molecules. Both the Mott and Hubbard criteria at the insulator
to metal transition are discussed.
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I. MOTIVATION

Hydrogen is the first and the simplest of elements in the
Periodic Table, with an elementary structure of the energy
levels. Also, the H2 molecule represents the testing ground of
quantum-mechanical methods [1,2]. This elementary nature
of the atomic or molecular energy levels transforms into
an involved manifold of states and available energies as
exemplified by the abundance of their condensed liquid and
solid phases [3,4]. The resultant phase diagram is complex,
and the catalog of observed phases—especially of the solid
ones—steadily increases [3,5]. The lack of clarity concerning
their crystal structure in many cases is intimately connected
with an incomplete insight into their electronic properties.
However, it has been unclear until very recently [6] whether
the solid-hydrogen atomic and metallic phase may indeed
exist. Nonetheless, the detailed nature of this transition from an
insulating molecular phase to the (quasi-)metallic atomic state,
is still under debate [7,8], starting from the historic paper by
Wigner and Huntington [9]. Once confirmed [10], the recent
work [6] would represent a decisive step in achieving our
understanding of the metallization of molecular hydrogen both
experimentally and theoretically. However, the claim [6] must
first be supported by refutation of the objections [10,11]. The
fundamental question is whether this transition is of the Mott-
Hubbard type, i.e., driven principally by the interelectronic
correlations [12,13] or is it in class of general dielectric–metal
transition driven simply by the formation of overlapping bands
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under strong pressure [14,15]. The principal purpose of the
present paper is to provide an affirmative answer to the former
possibility, albeit limited to a two-dimensional situation.

Our discussion of the problem is based on an original
method of approach, so it is proper to sketch first the context
of the current theoretical methods applied. Many, if not
most of the attempts performed up to now are based on
the density functional theory (DFT) approach. However, as
it was reported by Azadi et al. [16], the results coming
from the DFT are often ambiguous and depend strongly on
a selection of the form of the correlation-exchange potential.
Furthermore, obtaining a proper asymptotic behavior (i.e., the
value of the dissociation energy) for the H2 molecule in the
large-intermolecular-separation limit is also questionable, or
at least not straightforward within that approach. Whereas a
proper description of the dissociation is crucial for the proper
description of the metallization, as well as for the molecular
crystal stabilization by taking into account the long-range
London dispersion forces, a proper account of the electron-
electron correlations is regarded by us as equally important.
Also, the DFT-based methods such as LDA+U, LDA+DMFT
suffer from the so-called double-counting problem, making
their usability still somewhat limited for low-dimensional
systems. In this work we apply a specific, in principle rigorous
method, called the EDABI (Exact Diagonalization Ab Initio
method) which allows one to surpass the last difficulty [17–20].
Most importantly, in distinction with the just mentioned
methods, we calculate both single-particle wave functions (and
thus the microscopic parameters of the interaction) within a
single scheme, i.e., minimally go beyond the parametrized
models such as Hubbard, Anderson, etc. However, the scope
of this work is more general. Explicitly, we treat carefully the
interelectronic interactions in the second quantization scheme
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FIG. 1. Schematic representation of stacked vertically H2 molec-
ular 2D layer forming square lattice. The bond length and the
intermolecular distance are marked by R and a, respectively. There
are eight atoms in the supercell (dark blue spheres). The supercell
is repeated periodically to conform periodic boundary conditions
(PBC). Shaded spheres indicate atoms which are continuations
resulting from the PBC implementation. The indices α, β distinguish
the component atoms of each molecule.

and concurrently readjust variationally the single-particle
wave functions, contained in the microscopic parameters,
when constructing the resultant system correlated state. This
method of approach thus inverts the order of executing the
whole program of determining the electronic properties by
diagonalizing the Hamiltonian including interactions in the
second-quantization language and determining concomitantly
the single-particle wave functions. Also, the present work is
an essential extension of our recent Rapid Communication
[17] on a quasi-one-dimensional hydrogen ladder to the
two-dimensional (2D) situation. Namely, we provide details of
both the general methodological aspects of our approach and
the concrete results for the 2D stack of H2 molecules (depicted
schematically in Fig. 1). We map the whole problem onto the
extended Hubbard model in which we additionally include
the long-range (intermolecular) nature of interaction between
electrons. From this point of view, we investigate the physical
properties in an exact manner within the decomposition
of the whole system into periodic units, each containing
four molecules and include interatomic Coulomb interactions
between the eight-atom clusters. In particular, we focus on
the Mott-Hubbard physics of the system by generalizing it to
the situation when an insulating and diamagnetic molecular
2D solid transforms into a paramagnetic atomic and metallic
bilayer of H atoms.

The structure of the paper is as follows. In the following
section we provide a description of the applied methodology
and detail the model. Next, we discuss the phase transition
induced by an external side force (effective pressure) and relate
it to that of the Mott-Hubbard transition for correlated systems.
Finally, we discuss a possible extension of the method to the
three-dimensional (3D) systems which represent a final, not
yet achieved goal within our method.

II. METHOD: EXACT DIAGONALIZATION ab ini t i o
APPROACH (EDABI)

Our methodology of approach is based on the variational
approach which is an extension of the scheme elaborated

earlier in our group exact diagonalization ab initio (EDABI)
in the following manner [17–20]. EDABI combines both
the first- and the second-quantization schemes. What is
fundamentally important is that in this work we go both
beyond the parametrized-model methodology [21–23] and
put the emphasis first on the interelectronic correlations and
simultaneously renormalize the single-particle wave functions
when constructing the resultant correlated state. To achieve
this goal we start with the general electronic Hamiltonian in a
second-quantization form representing an interacting system
of fermions [24], i.e.,

Ĥ =
∑

σ

∫
d3r �̂†

σ (r)Ĥ1(r)�̂σ (r) + 1

2

∑
σσ ′

∫∫
d3r d3r ′

× �̂†
σ (r)�̂†

σ ′(r′)V̂ (r − r′)�̂σ ′(r′)�̂σ (r). (1)

Hamiltonians in the first (canonical) quantization are for single
(Ĥ1) and pair of particles [V̂ (r − r′)], respectively. �̂σ (r) and
�̂†

σ (r) are the field operator and its adjoint, respectively. By
introducing fermionic creation and anihilation operators (ĉ†iσ
and ĉiσ ), conforming the usual anticommutation relations

{ĉ†iσ ,ĉ
†
jσ ′ } ≡ {ĉiσ ,ĉjσ ′ } ≡ 0 and {ĉ†iσ ,ĉjσ ′ } ≡ δij δσσ ′, (2)

where σ denotes spin variable, the field operators can be
represented by an expansion in the creation (annihilation)
operators, weighted with the amplitudes which represent
single-particle wave functions {wi(r)} forming a complete and
orthogonal basis in the Hilbert space, i.e.,

�̂σ (r) =
∑

i

wi(r)ĉiσ , �̂†
σ (r) =

∑
i

wi(r)ĉ†iσ . (3)

Hamiltonian (1) consists of one-electron part associated
with the Hamiltonian for a single particle

Ĥ1(r)
a.u.= −∇2 −

NS∑
i=1

2

|Ri − r| , (4)

where Ri refers to the coordination of atomic center and NS

is the number of sites, and of the electron-electron interaction
part

V̂ (r − r′) a.u.= 2

|r − r′| . (5)

In both equations we used atomic units (a.u). Combining
Eqs. (1) and (3) leads to the Hamiltonian expressed in the lan-
guage of creation and annihilation operators in the usual form

Ĥ =
∑
ij

∑
σ

tij ĉ
†
iσ ĉjσ +

∑
ijkl

∑
σ,σ ′

Vijkl ĉ
†
iσ ĉ

†
jσ ′ ĉlσ ′ ĉkσ , (6)

where tij and Vijkl are one- and two-electron interaction
parameters defined as

tij ≡ 〈wi(r)|Ĥ1|wj (r)〉

=
∫

d3r w∗
i (r)Ĥ1(r)wj (r), (7a)

Vijkl ≡ 〈wi(r)wj (r′)|V̂ |wk(r)wl(r′)〉

=
∫∫

d3r d3r ′w∗
i (r)w∗

j (r′)V̂ (r − r′)wk(r)wl(r′).

(7b)
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In the computationally tractable scheme expansion (3) is
truncated, i.e., the sum in (3) is assumed as finite. Additionally,
the functions {wi(r)} in the expansion have their own, or
may be supplied with, internal parameters {λ}, in addition
to the quantum numbers characterized by the set {i}. These
parameters might be used in the variational procedure to
optimize the finite-size basis composing an approximate form
of �̂σ , in the correlated state, i.e.,

�̂σ (r) ≈
M∑
i

w
({λ})
i (r)ĉiσ , (8)

where M is a finite number. In that situation,the integrals
defined in (7) depend also on {λ} and, in effect, we obtain a
trial Hamiltonian Ĥ({λ}), for which we solve the eigenequation
(in our case by means of the Lanczos diagonalization method)
for the many-electron problem, i.e.,

Ĥ({λ})∣∣�({λ})
T

〉 = E
({λ})
T

∣∣�({λ})
T

〉
, (9)

where E
({λ})
T is a trial eigenvalue related to the |�({λ})

T 〉 trial
many-body state. The variational procedure relies on finding
the minimum of E

({λ})
T with respect to {λ}. Accordingly, the

procedure is limited to relatively small systems, containing
typically over a dozen electrons and corresponding single-
particle states, providing an exact solution, at least in principle.
As we have shown previously [18], the calculation of integrals
(7) can be expensive in terms of the computational time.
Below we provide the procedure of evaluating them. Note
that the diagonal hopping element tii , i.e., the single-particle
atomic energy, is also important here as we discuss the system
evolution with pressure which alters also the atomic energy.

III. STARTING SYSTEM: TWO-DIMENSIONAL STACK OF
H2 MOLECULES

We consider hydrogen molecules stacked vertically on a
2D square (x-y) lattice (cf. Fig. 1). This 2D molecular crystal
is parametrized by the bond length R and the intermolecular
distance (lattice parameter) a. It must be stressed that even
though we consider a finite system, we emulate the transla-
tional invariance by imposing the periodic boundary conditions
(PBC). The supercell contains four H2 molecules. Let us assign
each molecule in the lattice by integers 1,2,3, . . . i,j,k, etc.
Additionally, we introduce the indices α and β to distinguish
the two atoms within the ith molecule. Since it is assumed that
single-particle states form an orthogonal and normalized basis
with one Wannier orbital per site labeled as “i”, we have〈

w
μ

i (r)
∣∣wν

j (r)
〉 = δij δμν, (10)

where μ,ν ∈ {α,β}.
In this manner, each atom is labeled with the pair (i,μ) of

the indices which also results in the labeling of the microscopic
parameters, i.e., tij → t

μν

ij and Vijkl → V
μντρ

ijkl . Effectively, we
consider a degenerate two-orbital system.

Functions w
μ

i (r) are approximated by means of the tight-
binding approach, i.e., as a linear combination of 1s Slater
orbitals which are defined as

ψ
μ

i (r) ≡
√

ζ 3

π
e−ζ |r−Rμ

i |, (11)

where ζ becomes a single variational parameter to be adjusted
in the correlated and Rμ

i stands for the atomic position. In
effect, the orthogonal (Wannier) functions constructing the
microscopic parameters [cf. Eqs. (7a) and (7b)] are defined in
the form

wi(r) ≈
L(i)∑
j (i)

∑
μ∈{α,β}

cjμψ
μ

j (r), (12)

with the summation related to j extended up to the 13th
coordination zone (cf. Fig. 2).The mixing coefficients cjμ for
a given set {a,R,ζ } are to fulfill condition (10) with the help
of the previously elaborated procedure [17,18]. Both one- and
two-electron integrals [Eqs. (7a) and (7b), respectively] are
taken into account up to the 13th coordination zone, i.e., extend
beyond the supercell; in this sense we include longer-range
interactions than the four-molecule unit depicted in Fig. 1.
Note that subscript indices in the hopping and the interaction
terms in (7) are related to the positions of the atomic centers,
i.e., each pair refers to the |Ri − Rj | distance. We choose the
indexing in such a manner that the coordination zone number
z for i = 0 fulfills relation z = j . In accordance with our
previous investigations [17], we consider only the two-electron
terms with the following coupling constants:

V
μμμμ

iiii ≡ U, V
μνμν

ijij ≡ K
μν

ij , (13)

with μ �= ν when i = j . In effect, taking into account the
classical electrostatic interactions between the protons, as
well as the interactions within single molecule, the total
Hamiltonian describing the system is taken in the atomic units
in the following form:

Ĥ =
∑
iμ

ε
μ

i n̂i +
∑

ijμνσ

′tμν

ij ĉ
†
iμσ ĉjνσ

+U
∑
i,μ

n̂iμ↑n̂iμ↓ + 1

2

∑
ijμν

′Kμν

ij n̂iμn̂jν

+ 1

2

∑
ij

2

|Ri − Rj| , (14)

where ε
μ

i ≡ t
μμ

ii and n̂iμ ≡ n̂iμ↑ + n̂iμ↓ = ĉ
†
iμ↑ĉiμ↑ +

ĉ
†
iμ↓ĉiμ↓. The primed summations exclude the case of

concurrent i = j and μ = ν. Also, we have neglected
here direct exchange-interaction terms and the additional
many-site terms, as they are regarded as not essential to
the physics of the problem, when considering the threshold
of metallicity approached from the molecular side. Note
that here we consider only the square bilayer system, as
the principal message of the paper is to formulate the
highly nontrivial problem of proper account of electronic
correlations and accompanied by them the diamagnetic
molecular—quasiatomic paramagnetic transition. A detailed
discussion of different (e.g., close-packed) structure is
deferred to a separate analysis [25].
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FIG. 2. Schematic representation of nonzero hoppings (a) and electron-electron interaction terms (b), taken into account in the Hamiltonian
(14). The corresponding nonzero terms included are listed explicitly and represent the matrix elements between site pairs marked also as the
solid or bold circles. Note that the parameters tαβ = Kαβ = 0 determine the range of the corresponding dynamical processes accounted for in
an exact manner.

IV. COMPUTATIONAL METHOD AND PHYSICAL
RESULTS: FROM 2D MOLECULAR CRYSTAL TO

QUASIATOMIC METALLIC BILAYER

A. Enthalpy and the pressure definition in two dimensions

The 2D system is studied here at temperature T = 0, under
action of an external side force (effective pressure). However,
in such a two-dimensional situation the pressure has to be
redefined. Namely, an external homogeneous force is exerted
on the 2D crystal in the planar (x-y) directions. Therefore, this
situation is a 2D analog of the action of hydrostatic pressure
onto a three-dimensional system. The elementary volume of
2D crystal is simply

v2D ≡ a2, (15)

and thus the pressure in the present case is

p ≡ p2D ≡ f

a
, (16)

where f is the force per “unit cell” exerted homogeneously on
the system in the planar directions. By taking this definition
of pressure we have the usual definition of the work part of
the internal energy (or the enthalpy) as f a = pv2D . Note that
an infinite nature of the system is considered here preserved
by means of applying PBC. Finally, a proper function of state,
which in this case is 2D enthalpy per molecule can be defined as

h ≡ E(a,R)

N
+ p2Dv2D, (17)

where E(a,R) is the ground state energy for given structural
parameters a and R (cf. Fig. 1). We scan the space (a,R)
of the parameters to obtain the energy landscape of E(a,R).

Note that the meaning of f arises from the notion that the
enthalpy should be defined as an extensive function of the
system volume v2DN , where N is the number of molecules in
the system. Also, as an outcome of our approach, we obtain
evolution of the system as a function of the applied force as
the only independent variable, i.e., E(a,R) ≡ E(a(f ),R(f )).
In this manner, the theory is fully microscopic, as all the
microscopic parameters of the Hamiltonian (14), as well as a

and R, are determined explicitly, within our EDABI procedure.

B. Computational details

The whole procedure is composed of the three stages:
(i) selection and orthogonalization of the starting trial basis
{wμ

i (r)}, (ii) calculation of integrals t
μν

ij and K
μν

ij , and
(iii) diagonalization of Hamiltonian matrix and concomitant
minimization of the ground state energy with respect to {λ}.

The orthogonal single particle basis is obtained (i) in terms
of the numerical solution of the bilinear set of equation (10)
with the desired accuracy (10−6 in our case is assumed as
sufficient). Step (ii) is also performed numerically by means
of the previously elaborated method [18]. Each of the Slater
1s orbitals, which are the building blocks of {wμ

i (r)} functions
[see Eq. (12)], are approximated by three Gaussian functions
that simplify the calculation of the two-electron integrals
composing {V μν

ijkl} [17,18]. Note also that according to the
spatial cutoff assumed for the repulsive Coulomb interactions,
there are 23 + 1 = 24 (intersite plus one intrasite, respectively)
K

μν

ij integrals to be computed, carried out each time when the
variational parameter ζ is updated during the minimization
procedure. This stage is the most time consuming in the
whole procedure. The step (iii), i.e., the Hamiltonian matrix
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diagonalization, is performed for the moderately sized matrix
(12870 × 12870), and results from the assumed model, i.e.,
that with the half filling for the eight-site system. The
periodic booundary conditions (PBC) are imposed in the
standard manner by means of inclusion of up-to-cutoff terms
in the Hamiltonian matrix (cf. Fig. 2) which is diagonalized
subsequently with the help of the Lanczos algorithm. The
diagonalization of (14) results thus in obtaining the trial value
of the trial ground state energy EG(ζ ). The latter is minimized
with respect to ζ by means of numerical procedure devoted
for a single variable function numerical scheme (e.g., Brent,
as in this case or golden section search), implemented within
the Gnu Scientific Library (GSL) used by us in this context.
The typical numerical accuracy of the energy evaluation is
10−4 Ry. As the phase transition to the quasiatomic phase is
of the first-order nature, such accuracy is sufficient as we can
trace the evolution of the involved enthalpies in a systematic
manner, as a function of applied pressure.

C. Discontinuous H2 → 2H transition and its overall
characteristics

We start our discussion with the remark that the solid
hydrogen dissociation from molecular to the quasiatomic
state, and associated with it metallization, represents one
of the fundamental transitions in Nature, as it involves one
of the simplest condensed systems in which the electronic
correlations play a decisive role, as we discuss next. In Fig. 3
we present exemplary results for the ground-state energy
versus the bond length R for the four selected values of the
lattice parameter a. With the decreasing a, the molecular bond
length evolves from the value R � a at ambient pressure to
that close to a. Such a changeover speaks directly about the
transition from molecular to quasiatomic configuration. The
detailed character of the transformation is shown in Fig. 4,
where we have displayed the enthalpies of two molecular
(R � a) phases and the atomic one (R ∼ a) as a function of
applied pressure. Two discontinuous (first-order) phase tran-
sitions are seen at the critical pressures pc1 ∼ 0.1102 Ry/a2
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FIG. 3. Ground-state energy per molecule as a function of the
bond length (intramolecular distance) R for four selected values of
the lattice parameter a. The minima are marked by the vertical arrows.
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FIG. 4. Enthalpy (per molecule) versus pressure p. At lower pres-
sure, two molecular phases are stable; the transition to the quasiatomic
phase occurs at pc2 ∼ 0.1954 Ry/a2

0 , as marked. EB (p = 0) =
−2.3858 Ry, Reff (p = 0) = 1.4031a0, and a(p = 0) = 4.3371a0.
Thin lines extrapolate the enthalpies of the particular phases beyond
the regime of their stability. Insets show some detail on the transitions.
For details, see main text.

and pc2 ∼ 0.1954 Ry/a2
0 , respectively, where a0 is the Bohr

radius. Note that at p = 0 the equilibrium values of the
binding energy and the bond length are EB = −2.3858 Ry
and R = 1.4031a0 = 0.7425 Å, respectively. These values can
be compared with those for H2 molecule: EB = −2.295 Ry
and R = 0.74144 Å [1]. So the solid molecular bilayer is
stable against the dissociation into individual molecules and
the bond length in the former case is larger by 0.14%. This
result provides a crucial test of our method reliability when
applied to the multimolecular systems. Obviously, the values
of EB at p = 0 prove only that the solid molecular phase
is stable for p < pc2 from the electronic point of view, as
we have not included as yet the zero-point motion. Those
will be estimated later. The application of pressure will help
additionally to stabilize it.

In Fig. 5 we plot the equilibrium lattice parameter (in units
of a0 ≈ 0.53 Å) versus pressure and observe a discontinuous
lattice contraction for both the transitions by about 3% and
9% at the pressures pc1 and pc2, respectively. In an analogous
manner, the bond length versus pressure jumps from the
equilibrium value Reff � a to Reff ∼ a at the critical pressure
pc2, as shown in Fig. 6. Hence the transitions are strongly
discontinuous between each of the two pair of three stable
phases. The phase diagram for the scanned space of (a,R)
is composed of three phases. Those referring to p � pc1 and
pc1 � p � pc2 we recognize as both being of a molecular
kind and label them as phases I and II, respectively, while
the phase referring to p � pc2 is the quasiatomic one. This
distinction may seem at this stage as somewhat arbitrary and
is legitimate only by making the observation that the ratio
a/R � 2 for stable phase referring to p � pc2 and a/R ≈ 1
for p � pc2. However, a more convincing argument which
originates from the diversity of electronic properties for both
of the two groups of phases is provided in the next subsection.
As supplementary information we have plotted in Fig. 7 the
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BIBORSKI, KĄDZIELAWA, AND SPAŁEK PHYSICAL REVIEW B 96, 085101 (2017)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

pc1 pc2 0  0.08  0.16  0.24

in
te

rm
ol

ec
ul

ar
 d

is
ta

nc
e,

 a
 (

a 0
)

pressure, p (Ry/a0
2)

molecular I
molecular II
quasiatomic

FIG. 5. Intermolecular distance (lattice parameter) a for 2D
bilayer crystal as a function of pressure p. The transitions are clearly
of discontinuous (first-order) nature at temperature T = 0. Note a
spectacular decrease of lattice parameter by 8.47% (corresponding to
16.22% volume decrease) at the transition (pc2) from molecular to
quasiatomic phase. The thin lines denote the lattice parameter of the
phases in the regime, where they are not of the lowest enthalpy. The
arrows mark the jump of the intermolecular distance at the transitions
with the increasing pressure.

inverse Bohr radius ζ−1 versus p for the Slater functions
composing the Wannier functions. The jumps take place by
∼27% at pc1 and by ∼30% at pc2, so the wave-functions site
is strongly altered at both the transitions. Note that ζ−1 value
in the H2 phase is close to that for the hydrogen atom (within
∼3%) even though the actual value in the quasiatomic solid
phase is only about 75% of the single-atom value. This last
result is certainly counterintuitive. Interelectronic correlations,
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FIG. 6. Intramolecular distance (bond length) R as a function
of pressure p. An abrupt change by 70.69% at the transition
from molecular to quasiatomic state (at pc2) is clearly visible.
The spectacular increase of the optimized bond length R = Reff

at pc2 is taking place towards quasiatomicity (cf. Fig. 5). Only
a small difference between Reff in both of the molecular phases
(3.21%—close to pc1) is observed. The arrows mark the interatomic
distance jump at pc1 and pc2 when increasing p.
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FIG. 7. Effective Bohr radius 1/ζ of the renormalized Slater
orbitals composing the Wannier functions for a 2D system, as a
function of pressure p. The atomic function size changes by 27.02%
at the transition to the molecular phase II and by 29.97% at the
transition to the quasiatomic (metallic) state. The arrows mark the
Slater-orbital size jumps when increasing p.

induced by the interatomic repulsive interactions, reduce the
effective Bohr radius by over 17% in the molecular phase II.

D. Principal electronic characteristics of the Mott-Hubbard
H2 → 2H transition

For the sake of completeness, we list in Table I principal
parameters of the three states calculated at the critical
pressures. Particularly interesting are t

αβ

00 and tαα
01 , the intra-

and intermolecular hopping integrals, since they change
remarkably at the transition. The same concerns the values
of the Hubbard gap U−W (with the bare bandwidth W

calculated in Appendix A) and the U/W ratio (cf. Figs. 8 and 9,
respectively). The last characteristic is particularly important
since at the transition at pc2 it jumps from U/W = 1.3112
(>1) in the molecular state to the value 0.6000 (<1) and
represents a typical trend for the Mott-Hubbard transition,
albeit this time from an originally diamagnetic molecular
insulator to a paramagnetic metal. The negative value of
the Hubbard gap means that the two lowest bands overlap
appreciably and therefore the system can be regarded as
metallic. Also, there is a principal difference between the
present approach and the canonical treatments [13,22,23]
of the Hubbard model, as here the value of the bandwidth
changes at the transition and, in effect, the U/W ratio is
not changing in a continuous manner, as one would have
in all the parametrized-model considerations [26–28]. Also,
a relatively large value of the intersite Coulomb interactions
may mean that either the spin (SDW) or the charge (CDW)
-density-wave states become a stable phase on the quasiatomic
side, at least in the low-temperature range. This topic should be
analyzed separately, as it is more complicated than the present
analysis. Such an analysis would allow for differentiating in
detail between the present transition from the diamagnetic
insulator and the canonical Mott-Hubbard transition which
takes place from an antiferromagnetic (Mott) insulator to
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TABLE I. Values of the principal parameters at both the transition pressures and on both sides of those discontinuous transitions. For
explanation of notation see Fig. 2 and main text. The numerical accuracy is at the level of the last digit.

p (Ry/a2
0 ) a (a0) Reff (a0) ζ (a−1

0 ) U (Ry) K
αβ

00 (Ry) Kαα
01 (Ry) t

αβ

00 (Ry) tαα
01 (Ry)

Molecular I 0.1102 2.7626 1.1511 1.1667 1.8268 1.0725 0.7173 −1.1985 −0.1933
Molecular II 0.1102 2.6791 1.1881 0.9466 1.6751 0.9847 0.7289 −1.1177 −0.1422
Molecular II 0.1954 2.4378 1.1296 0.9186 1.7486 1.0244 0.7945 −1.2456 −0.1596
Quasiatomic 0.1954 2.2313 1.9281 1.3516 2.0392 0.9380 0.8760 −0.7660 −0.3884

either SDW or a paramagnetic correlated metal. Also, as said
above, the Mott-Hubbard transition is analyzed customarily
as a function of U/W ratio changing continuously [26–29].
As our results show explicitly this is not the case, when the
renormalization (readjustment) of the orbitals is taken into
account in the correlated state. In this respect, our approach is
fully microscopic (parameter free).

The transition can be elaborated further by calculating
directly the intramolecular (〈ĉ†0αĉ0β〉) and the intermolecular
hopping correlation functions, both displayed in Fig. 10. Note
that the value of correlation function 〈ĉ†iμĉjν〉 ≡ ∑

σ 〈ĉ†iμσ ĉjνσ 〉
reaches the value 1

2 in the quasiatomic phase which we identify
with the system metallicity. This is because this value reaches
an amazing value n(1 − n

2 ) = 1
2 for n = 1 electrons per atom,

characteristic of the uncorrelated lattice fermionic gas [30].
On the contrary, the value of 〈ĉ†0αĉ1α〉 in the molecular phases
is close to zero, whereas 〈ĉ†0αĉ0β〉 ≈ 1 then, both characteristic
of a molecular insulator. It is amazing that such spectacular
switching from an almost ideal insulator to an almost ideal
fermionic gas takes place in this situation. The situation
described here is in accord with an old argument of Mott
[31] that switching to a metallic state can take place only
in a discontinuous manner as a creation of a small number
of carriers in a nominally insulating state would largely
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FIG. 8. Estimate of the Hubbard gap, U − W , with the bare
bandwidth W computed for the single-electron part of Hamiltonian
(14) as a function of p in the molecular and quasiatomic correlated
states. The bandwidth changes radically at pc2. The negative gap
value means that the two bands overlap and hence the system is in
metallic state (for a detailed discussion, see main text). The arrows
mark the sequence of jumps with the increasing pressure.

increase the system energy due to the lack of screening
of the long-range repulsive Coulomb interaction between
them. Here, this argument is fully qualified and includes also
the Hubbard argument [21] in the same manner. In effect,
the solid hydrogen may be indeed regarded as the model
example of the transition from a correlated, albeit diamagnetic
insulator to a moderately/weakly correlated paramagnetic
metal, if we only account properly for its original molecular H2

structure in a solid at ambient pressure, and subsequently the
renormalization of both the molecular and the atomic (Slater)
orbitals by the interelectronic correlations. The values of the
lattice and microscopic parameters at the transitions are listed
in Table I.

E. Electron density evolution and renormalized single-particle
band characteristics in the correlated state

To complete our picture of the metallization we have also
determined the electron densities n(r) ≡ 〈�̂†(r)�̂ (r)〉 in the
many-particle states; those are displayed in Figs. 11 and
12, in both the molecular and the quasiatomic states. The
nature of the states does not alter qualitatively in Fig. 11;
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FIG. 9. Ratio between the intra-atomic (Hubbard) repulsion
amplitude U and the lower-bandwidth W in the correlated state, as
a function of p. Both quantities are calculated for the renormalized
orbitals composing the Wannier functions. At the critical pressures
the ratio jumps: from the value 1.3880 to 1.5778 at pc1 (at the
transition between the two molecular phases), and from 1.3112 to
0.6000 at pc2, i.e., at the transition to the quasiatomic phase. The latter
defines the Mott-Hubbard-type transition to a moderately correlated
state. Close to the transition, even in the molecular phases the value
of the bare bandwidth W is not decisively smaller than U . The arrows
mark the jumps when increasing the pressure.
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FIG. 10. Principal hopping correlation functions 〈ĉ†iμĉjν〉 versus

pressure p. 〈ĉ†0αĉ0β〉 corresponds to the intramolecular hopping and

〈ĉ†0αĉ1α〉 to the intermolecular one. Note that some of the straight lines
coincide. Note that whereas for the molecular crystal the dominant
hopping is 〈ĉ†0αĉ0β〉 = 1 and the remaining one is almost equal to zero,
for the quasiatomic phase the presented correlation functions in the
metallic state are almost equal to those for free electrons, i.e., ≈1/2.
Such a behavior provides us with a clear sign of both quasiatomic
nature and metallic character of the highest-pressure state, as the
renormalized hoppings are practically the same and equal to 1

2 .

they represent indeed the two molecular states, differing
only by the bond length, etc. On the contrary, the nature of
the molecular–quasiatomic transition is very clear, since the
density shown in Fig. 12(b) splits with respect to (a) into two
disjoint regions representing well separated states of atoms.
The latter states are called quasiatomic because their size
(cf. Fig. 7) differs remarkably with respect to that of an isolated
H atom.

FIG. 11. Electronic density n(r) in 3D near the molecular I (a) →
molecular II (b) transition at pc1 = 0.1102 Ry a−2

0 . The ellipsoidal
character of density is a signature of H2 molecular states with the
symmetric character (with respect to the molecule center of mass) of
its spatial distribution.

FIG. 12. Electronic density n(r) in 3D near the molecular II
(a) → quasiatomic (b) transition (pc2 = 0.1954 Ry a−2

0 ). Note a clear
changeover from the molecular ellipsoidal (top) to the quasiatomic
(spherical) configuration shape of the density, characteristic for
symmetric-in-space molecular states and quasiatomic nature of
the single-particle states, respectively. Also, the electronic-density
profiles illustrate directly the character of the Mott-Hubbard transition
at p = pc2.

The above evolution of electron density for
molecules/atoms placed in the milieu of all other particles is
supplemented with the selected relevant parameters displayed
in Table II, where we list the values at the consecutive
transitions (marked withe subscript c in each case): p = pc,
a = ac, R = Reff,c, as well as provide the critical values of
the Hubbard ration (U/W )c ∼ 1 and of the Mott criterion
“n1/D

c aB ∼ 0.22”, here adopted to the two dimensional
(D = 2) case, for which the effective Bohr radius is aB ≡ ζ−1

c

and the particle density nc = 1
a2

c
. Those three quantities are

listed in the last two columns. It is amazing that those two
sets of values, introduced via a rough estimates, are not far
off from the standard estimates [12] at the transition to the
quasiatomic state.

In Figs. 13(a) and 13(b) we have determined the two
lowest bare-bands dispersion relations calculated with the
renormalized hopping parameters and at the transition from
the molecular phase I to II, as well as in Figs. 13(c) and 13(d)
at the transition from phase II to the quasiatomic phase. As
the interactions are not included in those calculations, we do
not have the Hubbard-subband structure at the transition from
I to II. Nevertheless, since then U/W > 1.5, the structure
represents that of an insulators, whereas the quasiatomic phase
is metallic, as there is an appreciable band overlap is that
state and the correlations are moderate to weak (U/W ∼ 0.5).
The phases I and II are both insulating; they differ only by
different values of the microscopic parameters. It is tempting
to suggest that while the phase I is diamagnetic, the phase II
may be insulating and (antiferro)magnetic. However, this point
requires a separate analysis.

To provide illustrative evidence for the existence of two
distinct molecular phases, the enthalpy minima corresponding
to them at those two transitions have been visualized in
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TABLE II. Values of the equilibrium lattice parameters, as well as the Mott-Hubbard and Mott criteria at both transitions.

pc (Ry/a2
0 ) ac (a0) Reff,c (a0) ζ−1

c (a0) (U/W )c (ζcac)−1

Molecular I 0.1102 2.7626 1.1511 0.8571 1.3870 0.3103
Molecular II 0.1102 2.6791 1.1881 1.0564 1.5778 0.3943
Molecular II 0.1954 2.4378 1.1296 1.0887 1.3112 0.4466
Quasiatomic 0.1954 2.2313 1.9281 0.7398 0.6000 0.3316

Figs. 14(a) and 14(b). We see that even in 2D there are two
states and this circumstance may be regarded as a precursory
effect for a number of such phases appearing in experiment on
3D systems [3,8].

To illustrate the changes in the single-particle func-
tions at the transitions, we have drawn the Wannier func-
tions at the I→II- (cf. Fig. 15) and II→quasiatomic-state
(cf. Fig. 16) transitions along in-plane [x (a)] and molecular
[z (b)] directions. The two equilibrium lattice and bond
parameters have been supplied in each of the figures. Their
evolution reflects perfectly the trend of the Slater-orbital size
(ζ−1) jumps shown in Fig. 7. It is amazing that they look more
atomiclike in the last, metallic phase. However, the situation
is not so simple, since at the same time the lattice parameter a

decreases appreciably in a discontinuous manner at the same
time and therefore the change of Hamiltonian parameters is
also influenced by that. Nonetheless, the bond-length changes
are most important (cf. Fig. 14).

Concluding this section, the results presented in Figs. 8 to 16
provide unequivocal evidence for the molecular to quasiatomic
phase transition at the critical pressure pc2 = 0.1954 Ry/a2

0 .
Obviously, further evidence of metallicity in the latter phase
would require a direct calculation of the electric conductivity.
Namely, it would require an extension of the present approach
to nonzero temperature, as here the conductivity σc at T = 0
would take the values σc = 0 in the molecular phases and
σc = ∞ in the metallic ground state. However, the gap
closure at the II →quasiatomic discontinuous phase transition
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FIG. 13. (a),(b) Dispersion relations for bare bands at the molecular I → molecular II transition (pc1 = 0.1102 Ry/a2
0 ). (c),(d) The same

at the molecular II → quasiatomic transition (pc2 = 0.1954 Ry/a2
0 ). One expects that the lowest band in (a)–(c) will split additionally into the

Hubbard subbands in those states as then U/W > 1.5, whereas in the state (d) they will overlap as the U/W ≈ 0.5, i.e., the system eventually
becomes a moderately correlated metal.

085101-9
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FIG. 14. Enthalpy isolines on the plane a-R at the border between
I and II states (a) and at the II-quasiatomic border (b). The points mark
the minima with the arrow connecting them as a guide to the eye. Note
that both transitions involve primarily a radical change in the effective
molecule size Reff .

(cf. Fig. 13) provides a clear sign of metallicity in the latter
phase.

V. OUTLOOK

A. Brief summary and zero-point motion of atoms

Let us summarize first our effort here. We have discussed
the metallization of a 2D stack of molecular hydrogen within
the EDABI method. The fully microscopic model relies on an
exact diagonalization of the extended Hubbard Hamiltonian
describing the dynamic processes within a supercell containing
4H2 molecules; this cluster is subsequently repeated period-
ically in both planar directions, with additional inclusion of
hopping and interelectronic interactions extending beyond the
supercell (cf. Fig. 2). In this respect, our approach represents a
version of the coupled-cluster approach [32]. Furthermore,
at each step of the iterative diagonalization procedure by
Lanczos method we readjust the single-particle (Wannier)
wave function until a fully microscopic ground-state energy
configuration is reached. Therefore, the input parameters are
solely the initial structure of the molecules (cf. Fig. 1) and

the finite single-particle basis, limited here to 1s-type Wannier
states. As a result, we obtain the principal characteristics such
as the lattice constant, the effective bond length, renormalized
band structure and single-particle wave functions, and the
ground-state enthalpy, all as a function of applied force. But
first and foremost, we obtain the sequence of discontinu-
ous phase transitions and, in particular, the insulator–metal
transition from the H2 insulator to H metal. The atomization
process is illustrated directly in Figs. 12(a) and 12(b), where
the many-particle electron-density profiles have been drawn.
All this provides the evidence that the hydrogen metallization
represents a transition of the Mott-Hubbard type, though the
starting material at ambient pressure is a diamagnetic (not
antiferromagnetic) insulator. Hence our approach represents
an essential extension of the concept of the canonical Mott-
Hubbard transition. Additionally, the microscopic parameters
of the extended Hubbard Hamiltonian have been calculated
within the scheme.

Our analysis would be complete if we supplemented the
present work with the study of stability of the assumed protonic
lattice in the metallic state. In other words, a separate question
can be asked if the metallization is not associated with the
transition to a liquid proton-electron plasma [4,33–36], though
the corresponding transition in the liquid state is also observed
[37]. The latest experimental results [6] support the view taken
here that the lattice survives the strong first-order transitions
(see, however, Ref. [38]). The stability of the lattice can be
justified by two features of our results. First, we have shown
that at the transition the electron orbit shrinks remarkably
(cf. Figs. 7 and 16), screening the charges on a short-distance
scale and thus diminishing the repulsive energy. Second,
in Appendix B we have estimated the amplitude and the
energy contribution of the zero-point motion in the harmonic
approximation [20,39] and both in the inter- and intramolecular
directions. The inclusion of the zero-point motion can change
only slightly the transition points without changing the overall
features of our results. Note that the ZPM energy does not
exceed 1% of the total enthalpy value (cf. Fig. 4), but up to
about 4% of the ground-state-energy value.
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FIG. 15. Single-electron wave functions w
β

0 (r = (x,0, − R/2)), in the planar direction (a) and w
β

0 (r = (0,0,z − R/2)) (b) (along the
molecule, z direction) in the molecular phases I [a = 2.76261(a0), Reff = 1.1511(a0), ζ = 0.8571(a−1

0 )] and II [a = 2.67911(a0), Reff =
1.1881(a0), ζ = 1.0564(a−1

0 )] near the transition (at pc1 = 0.1102Ry/a2
0 ).
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FIG. 16. Single-electron wave functions w
β

0 (r = (x,0, − R/2)) (a) and w
β

0 (r = (0,0,z − R/2)) (b) (along the z direction) in molecular phase
II [a = 2.43783(a0), R = 1.1296(a0), ζ = 1.0887(a−1

0 )] and in the quasiatomic phase [a = 2.23133(a0), R = 1.9281(a0), ζ = 0.7398(a−1
0 )]

near the transition (at pc2 = 0.1954 Ry/a2
0 ). Note the shrinking in the quasiatomic phase.

B. Relation to other works

Our approach relies on (i) implementing a combined first-
and second-quantization scheme which allows for a full
ab initio analysis of the correlated state without the appearance
of the notorious double-counting problem, (ii) determining the
renormalized Wannier orbitals which supplement the whole
picture qualitatively with respect to that obtained within
the parametrized models, and (iii) applying the concepts of
the Mott-Hubbard transition to the canonical solid hydrogen
system with 1s orbitals. The transition is accompanied by
a simultaneous two-step transition from the correlated dia-
magnetic molecular insulator to the two-dimensional metal as
a function of applied pressure. The inclusion of long-range
Coulomb interaction should also be noted. The question
remains as to whether such a bilayer system can be realized
experimentally by, e.g., covering a substrate with a plane of
such stacked H2 molecules, with the substrates of variable
lattice parameter emulating the pressure applied to the system
edges. Such an experiment could provide a direct realization
of a bilayer crystal in a metallic state. In this case of a bilayer
deposited on the substrate one would have to account also
for the dynamics of the protons and electrons in the presence
of external trapping (surface) potential which, if sufficiently
strong, would suppress their zero-point vibrations.

This work is by no means complete. Even though the present
planar square structure is stable at p = 0 against dissociation
into gas of molecules, other (close-packed) structures such as
triangular should also be considered. However, in the case of
the triangular lattice the frustration effects must be considered
carefully and hence the exchange interactions included in
the starting Hamiltonian. In effect, such an effort requires
a separate analysis [25]. The principal features of two-step
metallization appear also there, so the “Mottness” of the system
seems to be independent of the starting crystal structure.

Other theoretical works involve among others recent
diffusion quantum Monte Carlo simulations [8,40] and ad-
vanced DFT methods [41,42]. Both methods predict the
metallization for pressures in the range 400–500 GPa in the

three-dimensional case. Here we show that the transition in
the bilayer case is of the Mott-Hubbard type. The same type
of the transition has been shown to exist in a one-dimensional
case [17] for the molecular ladder. Therefore, we expect that
the same type of results can be expected in the 3D case, but a
proof of that hypothesis requires a more involved approach and
should employ the incorporation of the Monte Carlo methods
into our scheme. The reason why our results are to a certain
degree independent of the lattice dimensionality is the fact
that we include long-range Coulomb interactions between
the electrons which makes the results look more like those
of mean field theory of those correlated fermion systems,
results of which are only weakly dependent on the system
dimensionality.

At the end we would like to note about a very recent
extensive review on many-electron states in atomic hydrogen
chain [43]. Here we consider a two-dimensional situation in
this context and include a fundamental question of atomization
of a bilayer of hydrogen molecules. The present situation is
also reflected in the case of a hydrogen ladder dissociating into
two linear chains [17].

C. Concluding remarks

So far we have analyzed the normal states only. As our
bilayer metallic phase represents a moderate correlated system
we can treat it as a bilayer system with correlation-driven
pairing, analogous to our recent approach of the cuprates
within the extended Hubbard model [44–46]. However, the
situation is not that simple as here the electron-lattice inter-
actions can be quite strong, as one can see already on the
H2 and (H2)2 examples [39]. In effect, both the correlation
and electron-lattice parts should be treated on equal footing.
In that case, one can estimate their relative contributions to
the superconducting critical temperature and in such a manner
complement the estimates based purely on the electron-lattice
contribution [42,47,48]. We should be able to see progress
along these lines in the near future.
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APPENDIX A: BARE BANDWIDTH W OF THE
ELECTRONS IN THE CORRELATED STATE

To compute U/W ratio, the bandwidth W can be obtained
from diagonalization of the single-electron part of Hamiltonian
(14), i.e.,

Ĥ =
∑
iμσ

ε
μ

i n̂iσ +
′∑

ijμνσ

t
μν

ij ĉ
†
iμ,σ ĉjν,σ . (A1)

In accordance with the translational invariance of the system
in the x-y plane, Eq. (A1) can be rewritten in the momentum
(k) representation in the form

Ĥ =
∑
kμσ

εμn̂kσ+
′∑

kμνσ

ĉ
†
kμ,σ ĉkν,σ

∑
l

t
μν

p(l,μ)q(l,ν)exp
(−ik · rμν

l

)

=
∑
kμ

εμn̂k +
′∑

kμνσ

ĉ
†
kμ,σ ĉkν,σ

∑
l

Z
μν

k , (A2)

where primed summation refers to μ �= ν and index l

enumerates molecules in the assumed neighborhood, i.e.,
rμν

l = Rμ

0 − Rν
l . The functions p(l,μ) and q(l,ν) map l,μ,ν

to proper indexing of the hoppings. Note that one may
select k = ( 2πn

ax
, 2πm

ay
) = ( 2πn

a
, 2πm

a
), where m,n are integers,

as we did in our considerations. In effect, the single-electron
Hamiltonian can be recast in the matrix form for each
spin, i.e.,

Ĥσ =
(
ĉ
†
kα,σ ĉ

†
kβ,σ

)(
εα

k Z
αβ

k

Z
βα

k ε
β

k

)(
ĉkα,σ

ĉkβ,σ

)
≡ c† H c.

(A3)

Diagonalization of matrix H provides the bare dispersion
relation ε̃(k). For our 2D molecular crystal two, spin-
degenerate, branches ε̃up(k) and ε̃down(k) appear. The matrix
H is constructed in a straightforward manner for particular
k, i.e., by computing numerically Z

μν

k with rμν

l up to the
13th coordination zone. Subsequently, H is diagonalized and
the two eigenvalues ε̃up(k), ε̃down(k) are obtained. For the
half filling considered here, only ε̃down band is occupied by
electrons. Therefore, W is defined in a standard manner,
i.e.,

W = ε̃down
max − ε̃down

min . (A4)

Both the maximal and the minimal values, ε̃down
max and ε̃down

min ,
are obtained numerically for k by scanning the eigenvalues in
the first Brillouin zone. Those values were used when plotting
U − W and U/W in Figs. 9 and 8 in the main text. Note that in
the molecular state the lower band is nominally filled, whereas
in the metallic state the bands overlap.

APPENDIX B: ASSESSMENT OF ZERO-POINT MOTION
IN HARMONIC APPROXIMATION

We estimate the zero-point motion (ZPM) of our system by
introducing a ion position uncertainty

δr ≡ (δx,δy,δz), (B1)

and then by splitting the problem into two parts: (i) ZPM
in a molecule [δri ≡ (0,0,δz)]; (ii) ZPM of a molecule in
the crystal field [δrii ≡ (δx,δy,0)]. In both cases the kinetic
energy of the H2 molecule is

Ekin ≡ 2
h̄2δp2

2M
, (B2)

where h̄
a.u.≡ 1, M

a.u.≡ 1836.15267247 × 1
2 , and δp is approxi-

mated via the Heisenberg uncertainty principle

δp2δr2 � 3h̄2

4
est.→ δp2 = 3h̄2

4δr2
. (B3)

Hence Ekin = 3h̄4

4Mδr2 .
The potential energy is calculated separately for the cases

(i) and (ii).

1. ZPM for H2 molecule

We base our approach on our earlier work [20,39]. We
define the potential

Vm(R,δri) ≡ E(R + δz) − EB, (B4)

where E(R) is the energy of the molecule of the molecular size
R, and EB ≡ E(1.43042a0), the minimum of energy for the
static molecule (so that our potential used static equilibrium is
a reference point).

The energy gain from the ionic movement is given by an
expression

�E(R,δri) = Ekin(δri) + Vm(R,δri)

= 3h̄4

4Mδz2
+ E(R + δz) − EB. (B5)

For the given molecular size R we minimize expression (B5)
with respect to δz.

2. ZPM per molecule in the crystal

For the case of the molecule in the crystal field we assume
that the electrons do not contribute to the ionic potential; hence

Vcrystal(a,R,δri) ≡
∑

interaction cell

e2

|Ri(a) + (0,0, − R/2) − δr|

+
∑

interaction cell

e2

|Ri(a) + (0,0,R/2) − δr|
−Vstatic(a,R), (B6)

where a is the intermolecular distance, R is the molecule size,
e

a.u.≡ √
2 is the charge of a hydrogen ion, interaction cell refers

to the molecules we considered as our background (cf. Fig. 2
for the background considered in this paper) at the positions
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TABLE III. Magnitude of the zero-point motion and all possible modes at the transitions and for the ambient pressure (p = 0). Energy
values are in Rydbergs per molecule.

p (Ry/a2
0 ) Phase a (a0) Reff (a0) EG (Ry) Emode (Ry) Direction of the mode

0 Molecular I 4.3371 1.4031 −2.3858 2 × 0.01605 (± 1√
2
, ± 1√

2
,0) or (± 1√

2
, ∓ 1√

2
,0)

2 × 0.01608 (±1,0,0) or (0, ± 1,0)

0.01837 (0,0,1)

EZPM = 0.08263 Ry |EZPM|/|EG| = 3.46%

0.1102 Molecular I 2.7626 1.1511 −2.0674 2 × 0.03035 (± 1√
2
, ± 1√

2
,0) and (± 1√

2
, ∓ 1√

2
,0)

2 × 0.03044 (±1,0,0) and (0, ± 1,0)

0.00452 (0,0,1)

EZPM = 0.1261 Ry |EZPM|/|EG| = 6.10%

Molecular II 2.6791 1.1881 −2.0173 2 × 0.03140 (± 1√
2
, ± 1√

2
,0) and (± 1√

2
, ∓ 1√

2
,0)

2 × 0.03150 (±1,0,0) and (0, ± 1,0)

0.00557 (0,0,1)

EZPM = 0.13137 Ry |EZPM|/|EG| = 6.51%

0.1954 Molecular II 2.4378 1.1296 −1.8362 2 × 0.03584 (± 1√
2
, ± 1√

2
,0) and (± 1√

2
, ∓ 1√

2
,0)

2 × 0.03596 (±1,0,0) and (0, ± 1,0)

0.00402 (0,0,1)

EZPM = 0.14762 Ry |EZPM|/|EG| = 8.04%

Quasiatomic 2.2313 1.9281 −1.6478 2 × 0.03478 (± 1√
2
, ± 1√

2
,0) and (± 1√

2
, ∓ 1√

2
,0)

2 × 0.03493 (±1,0,0) and (0, ± 1,0)

0.00162 (0,0,1)

EZPM = 0.14104 Ry |EZPM|/|EG| = 8.56%

Ri(a), and Vstatic(a,R) is the potential of static molecules,

Vstatic(a,R) ≡
∑

interaction cell

e2

|Ri(a) + (0,0, − R/2)|

+
∑

interaction cell

e2

|Ri(a) + (0,0,R/2)| .

(B7)

The energy gain from the ionic movement is given by an
expression

�E(R,δrii) = Ekin(δrii) + Vcrystal(a,R,δrii)

= 3h̄4

4M(δx2 + δy2)
+ Vcrystal(a,R,(δx,δy,0)).

(B8)

For the given intermolecular distance a and molecular size R

we minimize expression (B8) with respect to δx and δy.

3. Numerical results at the transitions

In Table III we present both absolute and relative magnitude
of ZPM, as well as all the possible modes with their
corresponding energies (in Rydberg per molecule).
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