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Bloch-Grüneisen nonlinearity of electron transport in GaAs/AlGaAs heterostructures
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We report on nonlinear transport measurements in a two-dimensional electron gas hosted in GaAs/AlGaAs
heterostructures. Upon application of direct current, the low-temperature differential resistivity acquires a positive
correction, which exhibits a pronounced maximum followed by a plateau. With increasing temperature, the
nonlinearity diminishes and disappears. These observations can be understood in terms of a crossover from
the Bloch-Grüneisen regime to the quasielastic scattering regime as the electrons are heated by direct current.
Calculations considering the interaction of electrons with acoustic phonons provide a reasonable description of
our experimental findings.
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Nonlinear transport in semiconductors [1], characterized
by significant changes in the resistance, takes place at strong
electric fields (drift velocities vd � 107 cm/s) when electrons
gain enough energy to cause intense optical-phonon emis-
sion or intervalley transfer. Two-dimensional electron gases
(2DEGs) in heterostructures usually require similar conditions
to show nonlinear behavior [1–3]. However, in a 2DEG placed
in a magnetic field, nonlinear effects are prominent even at
moderate vd as a result of Landau quantization. One such effect
is Hall field-induced resistance oscillations [4–12], which
originate from electron transitions between Landau levels,
tilted by the Hall field, owing to electron backscattering off
impurities [4,13,14]. When the current density j is reduced
(or the magnetic field B is increased) such transitions are no
longer possible and the differential resistivity is suppressed
[6,13–17] (and can even vanish [7,16]). Both of the above
nonlinearities disappear as the magnetic field is lowered due
to increasing overlap between the Landau levels.

In this Rapid Communication we report on another kind of
nonlinearity which takes place at zero magnetic field and is
characterized by an increase in the resistance at moderate drift
velocities (vd � 106 cm/s). This nonlinearity originates from
a crossover between two distinct regimes of electron-phonon
interaction, owing to the existence of the maximal energy
transferred in the process of phonon emission. The temperature
corresponding to this energy is known as the Bloch-Grüneisen
(BG) temperature [18,19], TBG = 2spF /kB , where s is the
sound velocity and pF is the electron Fermi momentum. If the
electron temperature Te < TBG, electron-phonon scattering is
suppressed, as only phonons with energies smaller than kBTe

can be emitted or absorbed. If Te > TBG, there are no such
restrictions, so the scattering no longer depends on the electron
distribution and becomes effectively elastic [20].

The importance of the BG regime (Te < TBG) is recognized
when electron-phonon scattering is of key significance, e.g., in
the energy relaxation of nonequilibrium electrons [21,22] or

*Present address: Department of Physics and Astronomy, Purdue
University, West Lafayette, Indiana 47907, USA.

†Corresponding author: zudov@physics.umn.edu

in phonon-drag thermoelectricity [23]. It is harder to detect
the BG regime in the resistance measurements because it
takes place at low temperatures (TBG � 10 K in a typical
2DEG) when the resistance is limited by impurity scattering.
Observations of the BG regime in the temperature dependence
of the resistance have been accomplished in high-mobility
GaAs/AlGaAs heterostructures [24] and in graphene layers
[25] with high electron density. As we demonstrate below, the
nonlinear response in a 2DEG provides an easier and a more
efficient way to detect the BG regime; with increasing current,
the 2DEG is heated and undergoes a transition from the BG
regime to the quasielastic scattering regime, manifested by a
steplike increase in the resistance.

While we have investigated several samples with a similar
outcome, here we focus on data from a Hall bar (width
w = 25 μm) fabricated from a GaAs/AlGaAs heterostructure
(EA0761) with density ne ≈ 1.6 × 1011 cm−2 and mobility
μ ≈ 4.6 × 106 cm2/V s. The differential resistance was
recorded using a low-frequency lock-in technique as a function
of direct current I at various coolant temperatures T from 2 to
12 K.

In Fig. 1 we present the differential resistivity r as a
function of current I measured at various T , as marked. At the
low T , r first rapidly increases with I , exhibits a maximum
(cf.↓), and then a slight decrease, followed by subsequent
growth at higher I . When T is raised, r increases at all I ,
and, concurrently, the nonlinearity observed at I � 40 μA
gradually diminishes and eventually disappears. The increase
of r at I � 80 μA, however, remains essentially unchanged at
all T studied. The contrasting T dependencies of lower-I and
higher-I nonlinearities suggest that these are characterized by
different energy scales and thus are of distinct physical origins.

To examine our findings in more detail, we normalize r by
its linear-response value ρ0 at each T and present the results
in Fig. 2 as a function of j = I/w (bottom axis) and electron
drift velocity vd = j/ene (top axis). To quantify the lower-I
nonlinearity, we introduce δrh = rh − ρ0, where rh is the value
of the differential resistivity at the broad minimum occurring
near vd = 10 km/s. In the inset, we present the T dependence
of δrh/ρ0, which highlights its rapid disappearance with
increasing T .
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FIG. 1. r vs I measured at T from 2.0 to 12.0 K, as marked.
Arrows mark the crossover from BG to the quasielastic regime.

We next argue that our observations can be explained in
terms of the modification of electron-phonon scattering rate
νph due to I -induced heating of the 2DEG. A considerable
T dependence of the resistivity ρ � m�(νim + νph)/e2ne (m�

is the effective mass) suggests that νph is comparable to
the electron-impurity scattering rate νim. The nature of the
dependence of νph on T and on the electron temperature Te

Ρ

Δ Ρ

FIG. 2. r/ρ0 vs j (bottom axis) and vd (top axis) at the same T

as in Fig. 1. Inset: δrh/ρ0 vs T .

is different; increasing T leads to a steady growth of νph

because of an increasing number of phonons, while increasing
Te enhances νph only in the BG regime, T < Te < TBG (TBG ≈
7 K in our sample). For stronger heating, Te > TBG, one may
expect a weaker and, generally, nonmonotonic change of ρ

when kBTe becomes comparable to the chemical potential η.
To demonstrate that the mechanisms of the nonlinearity

discussed above are indeed relevant in our experiment, we have
carried out detailed calculations of the differential resistivity.
The distribution function of electrons fp is found from the
classical Boltzmann equation vp · ∇fp + eE · (∂fp/∂p) = Jp,
where vp = p/m� is the electron velocity and E is the electric
field. The collision integral Jp comprises electron-impurity,
electron-phonon, and electron-electron contributions.
Assuming that the isotropic part of fp is controlled by
electron-electron collisions, we write it in the Fermi-like
form,

fε =
[

exp
ε − η

Te

+ 1

]−1

, (1)

where ε = εp = p2/2m� is the electron energy (here and
below we set kB to unity). The remaining anisotropic part
of fp is determined by electron-impurity and electron-phonon
scattering. For moderate I relevant to our experiment, this
part is small compared to the isotropic one and can be found
by linearizing the kinetic equation. In spite of the inelastic
nature of the electron-phonon scattering, the solution of the
linearized equation can be represented analytically, owing to
the smallness of phonon energies compared to the average
electron energy,

fp � fε − τ (ε)vp ·
[
eE

∂fε

∂ε
+ ∇fε

]
. (2)

Here, τ (ε) = 1/[νim(ε) + νph(ε)] and

νph(ε) = 2m�

h̄3

∑
i

∫ π

0

dθ

π
(1 − cos θ )

∫ ∞

0

dqz

π

×
∫ π

0

dϕq

π
CiQI (qz)

[
Nω − Ne

ω + Ne
ω

(
1 + Ne

ω

) h̄ω

Te

]
,

(3)

where i labels phonon modes, ω = ωiQ is the phonon
frequency, Q = (q,qz) is the phonon wave vector, q is its
in-plane component described by magnitude q = 2kε sin(θ/2)
(kε = √

2m�ε/h̄) and polar angle ϕq , θ is the scattering angle,
Nω = [eh̄ω/T − 1]−1 (Ne

ω = 1/[eh̄ω/Te − 1]) is the Planck dis-
tribution with T (Te), CiQ is the squared matrix element of the
electron-phonon interaction, and I (qz) = | ∫ dz|ψ(z)|2eiqzz|2
is the squared overlap determined by the electron wave
function ψ(z).

It is necessary to take into account the spatial dependence of
fp because heating of the 2DEG appears to be inhomogeneous
due to the heat transfer caused by drift and diffusion in a finite-
size sample. We have found that this spatial dependence leads
to a sizable modification of r compared to a homogeneous
approximation and is likely a reason for slight asymmetry
with respect to I direction observed on Figs. 1 and 2. The
approximation in Eq. (2) means that fp depends on coordinate
r parametrically, through η and Te. As η is expressed through
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Te by the requirement of fixed local density, it suffices to find
Te(r), for which we use the energy balance equation

∇ · G − j · E + P = 0, (4)

where P = −2(2πh̄)−2
∫

dpJpεp is the energy density
dissipated per unit time due to collisions and G =
2(2πh̄)−2

∫
dpvpεpfp is the energy density flux. Application

of Eq. (2) leads to the standard expressions [26]

j = σ [E − ∇η/e − S∇Te], (5)

G = (STe + η/e)j − κ∇Te, (6)

where S is the Seebeck coefficient, κ is the electronic thermal
conductivity, and σ = e2neτ/m� is the electrical conductivity,
where τ is found using a standard averaging procedure, τ =
(m�/πh̄2ne)

∫ ∞
0 dε(−∂fε/∂ε)ετ (ε). We neglect the energy

dependence of νim(ε) because it is determined by the scattering
potential which is generally not known, so the dependence τ (ε)
comes from νph(ε) given by Eq. (3).

Substituting Eqs. (5) and (6) into Eq. (4), one gets a
nonlinear differential equation

∇(κ∇Te) − Tej · ∇S + j 2/σ − P = 0, (7)

which has been solved numerically to find Te(r). Given our
sample geometry, we assume that Te depends only on the coor-
dinate x along the Hall bar. The differential resistance dV/dI

is found from V = R(I )I , where R(I ) = w−1
∫ x2

x1
dxρ(x)

is the total resistance expressed through ρ = 1/σ (which
depends on I because of electron heating), and x1,x2 mark the
locations of the voltage probes. Since the voltage leads stay
in equilibrium (regardless of Te), there is no thermoelectric
contribution to the response.

Based on this formalism, we now present a qualitative anal-
ysis of the effects of electron heating on the resistance. Even
if we assume that the 2DEG is degenerate [νph(ε) = νph(η)]
and uniformly heated, its resistivity ρ = m�(νim + νph)/e2ne

depends on Te through νph given by Eq. (3). In particular,
ρ increases with Te in the BG regime, Te < TBG. When
Te � TBG, Ne

ω ≈ Te/h̄ω − 1/2, the term in square brackets in
Eq. (3) reduces to Nω + 1/2, and νph (and hence ρ) becomes
independent of Te. Therefore, with increasing I , the resistivity
changes from ρ0 to a saturated value ρh (as ρh is independent of
I , r also changes from ρ0 to rh ≡ ρh). The current at which this
change takes place is determined by Te ≈ TBG and corresponds
to vd ≈ 5 km/s, according to our estimates.

At higher I , such that Te ∼ η, the degenerate approximation
is no longer valid and there appears another nonlinearity
associated with the energy dependence of νph(ε). The factors
determining νph are the deformation and piezoelectric mecha-
nisms of the electron-phonon interaction. For the first one, the
rate increases with ε, while for the second one it decreases, so
the resistance may depend on I nonmonotonically when the
Fermi distribution is broadened due to electron heating. When
Te � η, the average energy of the 2DEG starts to increase with
I and the deformation mechanism becomes more important,
leading to the enhancement of resistance. Therefore, instead
of a simple saturation at r = rh, one expects a nonmonotonic
dependence on I , with a steady growth at high I , in agreement
with our data.

Further, we notice that thermoelectric effects cause the
appearance of the term linear in j in the balance equation (7).
In nonsymmetric Hall bars, as the one used in our experiment,
this term brings in the sensitivity of Te(r) to the direction of
I . Consequently, r also becomes sensitive to the I direction,
and the asymmetry with respect to j should increase at higher
I because the inhomogeneity increases with Te, owing to the
enhancement of temperature gradients determining heat fluxes.
The asymmetry in Figs. 1 and 2 very likely originates from the
inhomogeneous heating described above.

For a detailed numerical analysis, we use the model of
isotropic phonons with ωiQ = siQ and the following expres-
sion for the squared matrix element of the electron-phonon
interaction,

CiQ = h̄

2ρMsiQ
[D2Q2δi,l + (eh14)2Fi],

Fl = 9q4q2
z

2Q6
[1 − cos(4ϕq)],

Ft = 2

Q6

[
q2q4

z + q6

8
+

(
q4q2

z − q6

8

)
cos(4ϕq)

]
. (8)

Here, sl = 5.14 km/s and st = 3.04 km/s are the sound
velocities of longitudinal (l) and two transverse (t) modes,
ρM = 5.31 g/cm3 is the crystal density, D = 12 eV is the
deformation potential, and h14 = 1.2 V/nm is the piezoelectric
constant. The contributions proportional to cos(4ϕq) are not
important in the isotropic model, as they are averaged out
in Eq. (3). Further, we use the overlap integral I (qz) =
1/[(qzb)2 + 1]3, based on the Fang-Howard approximation
ψ(z) = (2b3)−1/2ze−z/2b. The variational parameter b is given
by b = [aB/(33ne/8 + 12nd )]1/3, where aB = 10 nm is the
Bohr radius and nd is the depletion charge density. We
treat b as an adjustable parameter, with a constraint b <

[8aB/(33ne)]1/3 ≈ 11 nm, to get the closest fit between the
theoretical and the experimental temperature dependence of
the linear resistivity ρ0. The electron-impurity scattering rate
νim is extracted from ρ0 at T → 0, while the electron-phonon
scattering rate νph is modeled with Eq. (3) where we set Te =
T . In Fig. 3(a) we present measured (circles) and calculated

Ρ
Ω

(a) (b)

FIG. 3. (a) Measured (circles) and calculated (line) ρ0 vs T . (b)
Calculated Te vs vd for T = 2, 4, 6, and 10 K.
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FIG. 4. r/ρ0 vs vd calculated for T = 2, 4, 6, and 10 K. Dashed
lines represent the degenerate electron gas approximation. Inset:
Measured (circles) and calculated under degenerate approximation
(line) rh/ρ0 vs T .

(line) values of ρ0 as a function of T . A good agreement is
reached at b = 9.6 nm, which we use in all further calculations.

In Fig. 3(b) we present the calculated Te averaged between
the voltage probes, Te = |x1 − x2|−1

∫ x2

x1
dxTe(x), at several

T from 2 to 10 K, demonstrating that the electrons are
strongly heated by I . The calculated values of r/ρ0 are
presented in Fig. 4 as a function of vd for several T . The
results obtained in the approximation of degenerate electron
gas and homogeneous heating are shown by dashed lines,
demonstrating that such an approximation is reliable at small
vd and low T . The T dependence of rh/ρ0 obtained in this
approximation is plotted in the inset of Fig. 4, together with
the experimental data. The characteristic features of the data
shown in Fig. 2 are reproduced reasonably well. They include
a rapid initial rise of r with increasing vd at T = 2 K, a
disappearance of this rise at T ∼ 10 K, the nonmonotonic
dependence of r on vd , and the asymmetry of r with respect
to the sign of I .

To get a better quantitative agreement between theory
and experiment, one needs to know the energy dependence
of νim(ε), which was neglected in our calculations. Also,

instead of the effective electron temperature approximation,
one may apply more sophisticated approaches, e.g., based
on the numerical Monte Carlo solution of the kinetic equation
[27,28], taking into account a strongly inelastic interaction
of electrons with optical phonons which becomes relevant at
Te � 50 K.

In summary, we have investigated nonlinear transport in a
high-mobility 2DEG at electron drift velocities up to 20 km/s.
We identify two mechanisms of nonlinearity related to differ-
ent energy scales determined by the current. At small currents,
the nonlinearity is caused by the heating of electrons above
the Bloch-Grüneisen temperature TBG, which results in a rapid
growth of the differential resistance if the lattice temperature is
smaller than TBG. At higher currents, the nonlinearity reflects
a breakdown of the state of a strongly degenerate electron
gas, when the electron temperature becomes comparable to or
exceeds the Fermi temperature so the differential resistance
becomes sensitive to the energy dependence of the scattering
time. All the basic features observed are well explained by a
spatially inhomogeneous hot-electron model considering the
interaction of electrons with impurities and acoustic phonons.
The observed effect represents a convenient technique for the
detection of the Bloch-Grüneisen regime and is promising for
further studies of electron-phonon interactions in solids. While
the observation of a sizable resistance growth at low electron
density requires high-mobility systems, we believe that the
Bloch-Grüneisen nonlinearity should also be observable in
other systems of contemporary interest, including 2DEGs in
MgZnO/ZnO heterostructures and graphene, in which TBG can
be made high owing to the gate-induced enlargement of the
electron density.
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