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Ballistic transport in the one-dimensional Hubbard model: The hydrodynamic approach
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We outline a general formalism of hydrodynamics for quantum systems with multiple particle species which
undergo completely elastic scattering. In the thermodynamic limit, the complete kinematic data of the problem
consist of the particle content, the dispersion relations, and a universal dressing transformation which accounts for
interparticle interactions. We consider quantum integrable models and we focus on the one-dimensional fermionic
Hubbard model. By linearizing hydrodynamic equations, we provide exact closed-form expressions for Drude
weights, generalized static charge susceptibilities, and charge-current correlators valid on the hydrodynamic scale,
represented as integral kernels operating diagonally in the space of mode numbers of thermodynamic excitations.
We find that, on hydrodynamic scales, Drude weights manifestly display Onsager reciprocal relations even
for generic (i.e., noncanonical) equilibrium states, and establish a generalized detailed balance condition for
a general quantum integrable model. We present exact analytic expressions for the general Drude weights in
the Hubbard model, and explain how to reconcile different approaches for computing Drude weights from the
previous literature.
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In the past few years, a lot of interest has been devoted to
studying various paradigms of nonergodic many-body physics,
such as quantum quenches, equilibration to generalized Gibbs
ensembles, and the phenomenon of prethermalization [1–3].
One of the prominent recent results is the formalism of
generalized hydrodynamics developed in Refs. [4,5], with a
large number of subsequent studies investigating its various
aspects and applications [6–13], including the exact com-
putation of Drude weights in the Heisenberg model XXZ

spin- 1
2 chain [14]. In analogy to the conventional theory of

hydrodynamics [15], the authors of Ref. [16] just recently
obtained a closed formula for Drude weights expressed in
terms of local equilibrium state functions for the case of
an integrable Bose gas (Lieb-Liniger model) and conjectured
that similar formulas may hold in quantum integrable models
more generally. In this Rapid Communication, we go a step
further and extend the formalism to integrable models which
possess physical particles with internal degrees of freedom
and are solvable by a nested Bethe ansatz. Nesting refers to
the situation when physical degrees of freedom are associated
with a higher rank symmetry group, leading to eigenfunctions
with a hierarchical structure of internal quantum numbers
and elementary excitations of different flavors. While studies
of such models has been traditionally focused on the Gibbs
equilibrium [17–22], they have also been recently studied in
the nonequilibrium context [23,24].

The chief aspect in which interacting quantum integrable
theories differ from widely studied noninteracting systems
is the dressing of (quasi)particle excitations, i.e., a process
in which the bare properties of particle-hole type excitations
renormalize in the presence of interactions with a nontrivial
reference (vacuum) state. The task of classifying excitations
has been traditionally restricted to ground states for some
of the simplest Bethe ansatz solvable models [25], and
subsequently extended to some important examples of exactly
solvable models of correlated electrons [19,20,26,27]. A
comprehensive exposition of the dressing formalism for grand

canonical ensembles in nested Bethe ansatz models can be
found in Ref. [27].

Dressing formalism. Integrable theories exhibit a com-
pletely elastic (factorizable) scattering of particlelike excita-
tions [28]. The properties of such excitations represent the
kinematic data of the theory. In particular, in Bethe ansatz
solvable models (see, e.g., Refs. [20,25]) thermodynamic
excitations relative to a bare vacuum [29] can be inferred from
the solutions to (nested) Bethe equations. The latter in a finite
volume take the form eipα (u(α)

k ) ∏
β

∏Nβ

j=1 Sαβ(u(α)
k ,u

(β)
j ) = 1,

imposing a single-valuedness of many-body eigenstates. Here,
the sets of quantum numbers {u(α)

k } are called the Bethe
roots and represent rapidity variables for distinct species (or
flavors) of elementary excitations. The number and types of
excitations depend on the model and can be inferred with the
aid of the representation theory of the underlying quantized
Lie (super)algebra. Elementary excitations typically form
complexes which are interpreted as bound states. The emergent
thermodynamic particle content, which can be inferred by, e.g.,
analyzing the L → ∞ limit of Bethe equations, is generally
different from elementary excitations and is labeled by a pair
of mode numbers, a particle type index a and a real rapidity
variable u. The complete kinematic data are obtained from
the bare momenta ka(u) and energies ea(u), and interparticle
scattering phase shifts φab(u,w). Once given these functions,
no explicit operator representation of the Hamiltonian and its
conservation laws is ever required. Here, we present the details
of the entire formalism for the nontrivial case of the (fermionic)
Hubbard model.

A distinguished feature of integrable systems is a macro-
scopic number of local conservation laws which can be
formally expressed in terms of a discrete basis of local
charges Qi = ∑

x qi(x), with x labeling lattice sites. The
associated currents Ji = ∑

x ji(x) are defined with the aid
of the continuity equation, ∂t Q̂i + ∂xĴi = 0. The key concept
of the hydrodynamic approach is the dressing of bare energies
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ea �→ εa and momenta ka �→ pa of particle excitations, which
can be presented in a compact form,

ε′
a = �ab � e′

b, p′
a = �ab � k′

b, (1)

with convolution (�ab � fb)(u) = ∑
b

∫
dw �ab(u,w)fb(w).

In interacting quantum integrable models solvable by a
(nested) Bethe ansatz, the matrix convolution kernel � takes a
universal form,

(�−1)ab(u,w) = δabδ(u − w) + Kab(u − w)ϑb(w)σb, (2)

with kernels Kab(u,w) defined as derivatives of the scattering
phase shifts φab(u,w) = φab(u − w), Kab(u) = 1

2πi
∂uφab(u),

and σa = sgn[k′
a(u)]. The (Fermi) filling functions ϑa(u)

specify the fraction of occupied modes with rapidities inside a
small interval around u.

The dispersion relations of excitations εa(u) depend on
a many-body vacuum which is uniquely specified by the
rapidity distributions ρa(u). In terms of (thermodynamic)
particle excitations, the equilibrium averages of charge and
current densities decompose as qi = ∑

a

∫
du qi,a(u)ρa(u),

ji = ∑
a

∫
du qi,a(u)ja(u), where ja(u) = ρa(u)vdr

a (u) are the
current densities per mode [4,5]. The group velocities of
propagating particles are thus state dependent, vdr

a (u) =
ε′
a(u)/p′

a(u).
We furthermore introduce the effective charges as the bare

charges renormalized under transformation �, namely, the
effective value of a local charge density qi is obtained as

qeff
a,i = �ab � qb,i = ∂μi

log
(
ϑ−1

a − 1
)
. (3)

Here, the parameters μi are the chemical potentials of a
local (generalized) equilibrium ensemble parametrized as
�̂ � exp (−∑

i μiQ̂i) [30–32]. It is important to emphasize
that despite the derivatives of dressed energies satisfying ε′

a =
�ab � e′

b = (e′
a)eff , the effective charges are not the proper

dressed charges associated with an excitation, and specifically
εa �= eeff

a . We moreover note that with the aid of fusion
identities among the scattering kernels, the transformation (2)
can be decoupled to a quasilocal form in the mode space [cf.
the Supplemental Material (SM) [33] for the explicit form for
the Hubbard model].

Drude weights. In this Rapid Communication, we shall
mainly be concerned with general off-diagonal Drude weights

D(i,j ) = β

2
lim
t→∞

∫ t

τ=0
dτ 〈Ĵi(τ )ĵj (0)〉c, (4)

which represent the magnitudes of the singular parts
of the zero-frequency generalized conductivities [34,35],
Re σij (ω) = 2π D(i,j )δ(ω) + σ

reg
ij (ω). We use 〈·〉c to denote the

connected part of the equilibrium expectation values. Although
we shall restrict ourselves to grand canonical equilibria, our
formalism applies (without modifications) to general local
equilibrium states.

An exact representation for D(i,j ) can be given in terms of
the static covariance matrix C, Cij = 〈Qiqj 〉c, with diagonal
components χi = Cii representing (generalized) static suscep-
tibilities, and charge-current correlators (overlaps) O, Oij =
〈Qijj 〉c. Explicit expressions in terms of thermodynamic
state functions can be found in Ref. [33]. The time-averaged
current-current correlator Eq. (4) can be projected onto the

subspace formed by local conserved quantities which yields
the well-known Mazur-Suzuki equality [36,37] and proves
useful for bounding dynamical susceptibilities [38]. In matrix
notation the latter reads D(i,j ) = β

2Oik(C−1)kl Olj [39].
A central result of our work is that on the hydrodynamic

scale, static charge-charge, charge-current correlations, and
generic Drude weights all assume a universal mode decompo-
sition (writing formally A ∈ {C,D,O}),

Aij =
∑

a

∫
du qeff

a,i(u)Aa(u)qeff
a,j (u), (5)

which has exactly the same form as in the case of a
single-component interacting integrable Bose gas derived in
a recent paper [16]. Importantly, in the above formula the
kernels Aa(u) and effective charges qeff

a,i are expressible in
terms of the properties of equilibrium states which can be
efficiently computed within the thermodynamic Bethe ansatz
(TBA) method [40–42]. It is noteworthy that Eq. (5) is
written solely in the mode space, i.e., it acts (diagonally) on
particle labels and rapidities, and that no explicit knowledge
of a complete set of local charges is ever required in a
computation. Indeed, the thermodynamic expectation values of
local charges are expressible as linear functionals of particles’
rapidity distributions (see, e.g., Refs. [32,43]) which are a
natural extension of momentum distribution functions of free
theories [44].

Linearized hydrodynamics. The hydrodynamic approach
[4,5] is based on the notion of local quasistationary states,
characterized by the local continuity equation in the mode
space ∂tρa(u) + ∂xja(u) = 0. In the simplest scenario, one
can think of a quantum quench in which an inhomogeneous
initial state is initialized as two homogeneous equilibrated
macroscopic regions brought in contact at t = 0 (see Refs.
[45–47]). In such a scenario, an emergent nonequilibrium
state remains confined to the light cone region determined
by the particles’ dressed velocities, leading eventually to a
quasistationary state which depends on the ray coordinate
ζ = x/t and is determined by the condition of the vanishing
convective derivative [∂t + vdr

a (u)∂x]ϑa(u) = 0.
The setting proves particularly useful for studying nonequi-

librium transport properties and, in particular, the computation
of Drude weights. The latter can be conveniently defined as
asymptotic current rates in the limit of vanishing bias δμj

(while keeping other chemical potentials fixed),

D(i,j ) = β

2
lim

δμj →0

∂

∂ δμj

lim
t→∞

Ji(t)

t
. (6)

The above prescription has been initially used in Ref. [50] and
employed in a recent numerical study [48], while an analogous
formula already appeared in an earlier work [39]. Equation
(6) has been recently evaluated in Refs. [14,51] using the
hydrodynamic approach, transforming it first in the light cone
coordinates, D(i,j ) = (β/2) limδμj →0

∫
dζ ∂ji(ζ )/∂δμj , and

then computing quasistationary currents which are generated
by joining together two nearly identical equilibrium states,
i.e., imposing a small chemical potential drop at the origin
μL

i = μi + δμi/2 and μR
i = μi − δμi/2. Here, δμi has the

role of a thermodynamic force, e.g., to study energy transport
we identify μe = β.
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Just very recently in Ref. [16] the authors applied Eq. (6) to
the Lieb-Liniger model and obtained closed-form expressions
analogous to Eq. (5). Below, we generalize this result to
interacting quantum models which involve multiple species
of excitations and internal degrees of freedom. It is quite
remarkable, however, that the final outcome remains a bilinear
functional operating diagonally in the mode-number space,
while the effect of interparticle interactions gets absorbed into
a universal renormalization of bare charges [see Eq. (3)].

Equation (6) indicates that Drude weights are ex-
pressible as the variation of the equilibrium expec-
tation values of total current [14] with respect to
thermodynamic forces δμj , D(i,j ) = β

2 (∂Ji/∂ δμj )δμj =0 =
β

2

∑
a

∫∫
dζ du qa,i(u; ζ )[∂ja(u; ζ )/∂ δμj ]δμj =0, being the

susceptibility of a system to develop ballistic currents. On each
ray ζ , the averages of the particle current densities are given
by [4] ja(ζ ) = [σaϑ

−1
a (ζ )δab + Kab]−1 � e′

b(ζ ), where rapidity
dependence has been suppressed for brevity. Given the filling
functions inside the light cone ϑa(u; ζ ) = ϑL

a (u) + �(vdr
a (u) −

ζ )[ϑR
a (u) − ϑL

a (u)], with the left/right boundary conditions
ϑL,R

a , and neglecting corrections of order O(δμ2), one can
integrate out the dependence on the light cone coordinates
(see SM [33] for details). This leads to the form of Eq. (5),
with

Da(u) = ρa(u)(1 − ϑa(u))
(
vdr

a (u)
)2

. (7)

On detailed balance. The symmetry under exchanging
indices i and j in representation (5), D(i,j ) = D(j,i), indicates
that the Onsager reciprocal relations [52] remain valid for any
stationary state, not only in thermal Gibbs equilibrium. This
is indeed a general property of the hydrodynamic equation
of motion [15]. Moreover, we here show that in a general
local equilibrium state of an integrable quantum model,
there exists a generalized detailed balance condition on the
hydrodynamic scale (i.e., for small κ and ω), similarly as
in the Lieb-Liniger model found recently in Refs. [53,54].
More specifically, given a conserved quantity of the model
Q̂ = ∑

x q̂x , the corresponding dynamical structure factor
defined as Sq̂(κ,ω) = ∑

x

∫
dtei(κ x−ω t)〈q̂x(t)q̂0(0)〉 decom-

poses in terms of individual particle contributions, Sq̂(κ,ω) =∑
a Sq̂,a(κ,ω). In the low-momentum limit κ → 0, each term

is determined by a single matrix element of a particle-hole
excitation on a reference equilibrium state [33]. Therefore,
following the logic presented in Ref. [53], we derive the
following generalized reversibility property,

Sq̂,a(κ, − ω) = e−Fa (k,ω)Sq̂,a(κ,ω) + O(κ2), (8)

with Fa(κ,ω) = κ ∂
∂pa (u) log [ϑ−1

a (u) − 1], with u fixed

by the energy constraint vdr
a (u)κ = ω. In the case

of thermal (canonical) equilibrium, given by ϑa =
[1 + exp (β εa + ∑

i μa,ina)]−1, we have Fa(κ,ω) = βω,
which is the usual detailed balance relation.

Hubbard model. The Hamiltonian of the one-dimensional
(1D) Hubbard model [55,56] is given as

Ĥ =
L∑

x=1

T̂x,x+1 + 4u

L∑
x=1

V̂x,x+1, (9)

where T̂x,x+1 = −∑
σ=↑,↓ ĉ

†
x,σ ĉx+1,σ + ĉ

†
x+1,σ ĉx,σ is electron

hopping and V̂x,x+1 = (n̂x,↑ − 1
2 )(n̂x,↓ − 1

2 ) is the Coulomb
interaction. This model has received a lot of attention in the
past decades [17,57–60] as well as in the last years [48,61–73].
We consider the repulsive case u � 0, featuring a u-dependent
charge gap and gapless spin degrees of freedom.

The Hubbard model is diagonalized by means of a nested
Bethe ansatz [17,20]. Eigenstates in a finite system of length L

are characterized by quantum numbers which are solutions to
the Lieb-Wu equations [74] (cf. SM [33]) The model involves
two elementary degrees of freedom; the physical particles are
momentum-carrying electrons, while spin degrees of freedom
represent internal (nondynamical) excitations described by
auxiliary quantum numbers. In a thermodynamic system one
finds various types of charge and/or spin-carrying bound
states. Specifically, the thermodynamic particle content of
the Hubbard model has been derived in Ref. [75] (see
also Refs. [20,27]) and comprises (i) spin-up momentum-
carrying electronic excitations which carry a unit bare (elec-
tronic) charge, (ii) spin-singlet electronic bound states, and
(iii) charge-neutral nondynamical spin-carrying magnonic

FIG. 1. Charge Drude D(c) ≡ D(c,c) and spin Drude D(s) ≡ D(s,s)

weights as functions of magnetization density 〈Ŝz〉/L = m or electron
filling 〈N̂〉/L = n, shown for different values of chemical potentials:
Ranging from red to green, with integer k = 0, . . . ,6, chemical
potentials are parametrized in each plot as (a) B = 2k, (b) μ =
30 + 5k, (c) B = k, (d) μ = k. Red dots are DRMG numerical
computations reported in Ref. [48]. Notice that charge and spin Drude
weights are exactly zero at vanishing chemical potentials μ = 0
(n = 1) and B = 0 (m = 1

2 ), respectively, which is a consequence
of the particle-hole symmetry of the Gibbs ensemble [14]. From the
viewpoint of dressing excitations, this can now be understood as the
vanishing of the effective charge/spin [see Eq. (5)].
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FIG. 2. Thermal Drude weight D(e) ≡ D(e,e) (rescaled by β) as a
function of temperature 1/β, presented for three different values of
coupling u. The dotted vertical lines represent the charge gap. The
inset plot magnifies the region around 1/β ∼ 0. Our results confirm
the presence of the low-temperature bump in the thermal Drude
weight which comes from the dominant spin-carrying excitations,
suggested and observed numerically in Refs. [48,49]. The dots drawn
on top of the theoretical predictions (solid curves) are the results of
numerical DMRG calculations presented in Ref. [48].

excitations. A detailed description of the particle content
and other information, including explicit expressions for their
bare momenta, energies, scattering phases, and the dressing
transformation, are reported in SM [33].

Numerical results. We present the temperature de-
pendence of charge and spin (see Fig. 1) and ther-
mal Drude weights (see Fig. 2) in grand canonical
equilibrium �̂GCE � exp (−β Ĥ − μ N̂ + B Ŝz), where N̂ =∑L

x=1 (ĉ†x,↑ĉx,↑ + ĉ
†
x,↓ĉx,↓) is the total electron charge, and

Ŝz = 1
2

∑L
x=1 (ĉ†x,↑ĉi,↑ − ĉ

†
x,↓ĉx,↓) the total magnetization.

We compared our data with the recent density matrix
renormalization group (DMRG) computation presented in
Refs. [48,72]. Most notably, at low temperatures appreciably
below the charge gap, we confirm the “Hubbard to Heisenberg
crossover” in the thermal Drude weight observed previously
in Refs. [48,49] (see Fig. 2). In Ref. [33] we also present
an exact computation of the asymptotic charge and current
profiles inside a light cone and make comparisons with the
numerical results of Ref. [72].

Conclusions. We presented a general theoretical and
computational framework to access the singular components
(Drude weights) of generalized transport coefficients in
quantum integrable models. We exemplified our approach by
computing the exact numerical values of (diagonal) charge,
spin, and thermal Drude weights in the one-dimensional
fermionic Hubbard model in grand canonical equilibrium at
finite temperatures and chemical potentials. Using the two-
partition protocol, we additionally computed the quasistation-
ary energy and charge density profile and the corresponding
current [33].

Our results finally permit us to establish the equivalence
of various approaches for computing the spin Drude weight
employed in the previous literature: (i) using projections onto
local conserved subspaces by virtue of the Mazur-Suzuki
equality [38,76,77], (ii) taking the linear-response limit of
the asymptotic current rates [14,51], and (iii) computing the
energy-level curvatures [78–81] under the twisted boundary
conditions in accordance with the Kohn formula [82]. The
latter has been evaluated within the TBA framework in
Refs. [79,80], yielding a closed formula expressed in terms of
filling functions, magnonic dispersion relations, and O(1/L)
corrections to the Bethe spectrum induced by the twist. Re-
markably, however, it is easy to see that the twist dependence
of the energy levels can be directly linked to the effective
spin as given by Eq. (2). This in turn reconciles the results of
Ref. [80] with Eq. (7), representing the equilibrium analog of
definition (6) used previously in Refs. [14,51] (further details
are given in SM [33], which also includes Refs. [83–94]).

Finally, our results show that a generalized version of the
detailed balance [53,54,95] is valid on hydrodynamic scales in
any stationary state.

As a future task, it would be interesting to find an extension
of the presented approach which would allow resolving the
diffusive time scale from the microscopic picture (see, e.g.,
Refs. [96,97]).
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