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Magnetic correlations in the two-dimensional repulsive Fermi-Hubbard model
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The repulsive Fermi-Hubbard model on a square lattice has a rich phase diagram near half-filling (n = 1):
at n = 1 the ground state is an antiferromagnetic insulator, at 0.6 < n � 0.8 the ground state is a dx2−y2 -wave
superfluid (at least for moderately strong interactions, U � 4), and the region 1 − n � 1 is likely subject to
phase separation. Much less is known about the nature of strong magnetic fluctuations at finite temperature and
how they change with the doping level. Recent experiments on ultracold atoms have now reached this interesting
fluctuation regime. In this work we employ the skeleton diagrammatic method to quantify the characteristic
temperature scale TM (n) for the onset of magnetic fluctuations with a large correlation length.
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Introduction. The fermionic Hubbard model [1–4], defined
by the square lattice Hamiltonian

H = −t
∑

〈i,j〉σ
ĉ
†
i,σ ĉj,σ + U

∑

i

n̂i,↑n̂i↓ − μ
∑

i,σ

n̂i,σ , (1)

has for years played a crucial role in studies of correlated
electrons in solids; it is regarded as one of the “standard
models” of condensed matter physics to introduce and discuss
Mott insulating phases, antiferromagnetic (AFM) correlations,
novel mechanisms of superconducting pairing, non-Fermi-
liquid behavior, etc. In Eq. (1) and in what follows, the
nearest-neighbor hopping amplitude t is set to be the energy
and temperature unit (distances are measured in units of the
lattice constant); U is the on-site repulsive coupling constant;
μ is the chemical potential; ĉ

†
i,σ and ĉi,σ create and annihilate,

respectively, a fermion of the spin component σ ∈ {↑ , ↓} at
site i; and n̂i,σ counts the number of fermions of a particular
spin at a given lattice site.

On the one hand, Eq. (1) involves a number of cru-
cial simplifications that make it qualitatively different from
real materials, such as high-Tc superconductors. The most
important ones include (i) two-dimensional, as opposed
to the strongly anisotropic three-dimensional, geometry;
(ii) neglect of long-range Coulomb interactions; (iii) suppres-
sion of hopping matrix elements beyond the nearest-neighbor
ones (t ′ = 0); (iv) single-band approximation; and (v) absence
of electron-phonon coupling. Correspondingly, the model (1)
cannot feature an ordered AFM phase at finite temperature but
is allowed to have a first-order transition between phases with
different electron densities, not to mention that t ′ = 0 leads
to the Fermi surface nesting and particle-hole symmetry at
n = 〈n̂i↑ + n̂i↓〉 = 1. As a result, the schematic phase diagram
of (1) in the doping-temperature plane shown in Fig. 1 (see
discussion below) is distinct from the “canonical” picture
of high-Tc-type materials [4]. On the other hand, advances
in ultracold-atomic experiments have made it possible to
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accurately emulate the model (1) on optical lattices [5–14].
This remarkable progress brings ultracold-atom experiments
into the region of the phase diagram (Fig. 1), where they can
cooperate with the state-of-the-art numerical methods to reveal
the underlying physics. Numerical results can now be directly
compared to experiments (and vice versa), which dramatically
increases the importance of producing reliable data sets.

Recent years have seen a remarkable progress in unveiling
the T = 0 phase diagram of (1). Well-understood regions
include the limit of vanishing densities n → 0 [15–21] and
vanishing interaction strength [22–25]. For densities n � 0.7
and coupling strength U � 4, the ground state is a BCS
superfluid (with dx2−y2 -wave symmetry at density n > 0.6)
[26]. At half-filling n = 1, the ground state is an AFM
insulator for any U [27–31]. Being a qualitative property,
AFM order can only disappear (with doping) by a quantum
phase transition. The simplest scenario is the first-order
one, implying phase separation (PS). PS into the insulating
AFM and a superfluid is a natural—but still not the only
possible—way of doping-driven transitioning between the two
ordered ground states. The first PS state was proposed to be
a mixture of AFM and ferromagnetic orders in the region
of small doping, δ = 1 − n � 1, and large U [32–34]; this
conjecture was later supported numerically for U > 25 [35].
The instability of the model towards incommensurate AFM
and domain wall formation was also reported in Refs. [36]
and [37]. Recently, PS for small values of U was observed in
auxiliary-field quantum Monte Carlo [38,39] and variational
[40] studies.

Much less is known conclusively about the finite-
temperature behavior. Given that the correlation length ξ for
AFM correlations at n = 1 diverges exponentially rapidly
when T → 0, there exists a relatively high temperature TM

below which magnetic correlations extend over many lattice
sites and electronic degrees of freedom are getting locked
in collective magnetic modes. The characteristic temperature
scale TM (n) is supposed to decrease with increasing doping
level. Since magnetic correlations and fluctuations are con-
sidered to be the prime reason for PS and BCS phenomena
near half-filling, quantifying their behavior is paramount to
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FIG. 1. Schematic phase diagram of the repulsive Fermi-Hubbard
model on a square lattice near half-filling, showing the Fermi liquid
(FL), superfluid (SF), and putative phase separation (PS) regimes,
as well as the antiferromagnetic ground state (AFM) at half-filling.
Strong magnetic correlations with large correlation lengths, ξ 
 a,
are observed below the dashed red line.

understanding the finite-temperature phase diagram of the
Fermi-Hubbard model in two dimensions.

In this communication, we employ the skeleton diagram-
matic approach to quantify the TM (n) scale (see Fig. 2)
and shed light on the structure of dominant fluctuations.
The most recent setups with ultracold 6Li fermions have
reached temperatures low enough to directly observe magnetic

FIG. 2. Onset of strong (incommensurate) magnetic fluctuations
as calculated by the lowest-order GGGW method (see text) for values
of 1 � U � 6. The region of strong fluctuations increases with U and
reaches its maximum at around U = 4 at n = 1.
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FIG. 3. Simple geometric series that can be constructed by
connecting bare interaction vertexes using various pairs of bare
single-particle propagators (Green’s functions) G(0)

σ . Red, spin-up
propagators; black, spin-down propagators.

correlations in the model (1) [10,12,13], with the lowest
temperatures attained on the scale of T ∼ 0.25 [14].

Method. The imaginary-time spin correlation function
χ (i,τ ) = 〈Sz(τ,i)Sz(0,0)〉 and its Fourier transform χ (ωm,�q)
at bosonic Matsubara frequencies ωm = 2πT m, where m is
an integer, was computed within the skeleton diagrammatic
framework based on four fully dressed channels. We start by
noting that in any diagram based on bare on-site coupling U ev-
ery interaction vertex can be “promoted” by adding an infinite
sequence based on a particular geometric series (see Fig. 3).
This leads to the diagrammatic elements from which an
arbitrary Feynman diagram may be constructed by taking
any number of diagrammatic elements and connecting their
incoming and outgoing ends with propagator lines (see left and
right panels in Fig. 4). Note that the particle-particle ladders,
G(0)

pp, particle-hole ladders, G
(0)
ph, and screened interaction,

W
(0)
σσ ′ , all have the same structure as the single-particle

propagators (Green’s functions) G(0)
σ ; i.e., thanks to the local

nature of the on-site Hubbard interaction U they depend on
only the lattice coordinate and time. In what follows we
refer to all G and W functions (bare or fully renormalized)
as “lines” and call the U element a “point.” The scheme
can be abbreviated GGGW, to highlight four renormalization
channels.

The necessity of treating the bare interaction point sep-
arately originates from precise rules for avoiding double-
counting when all diagram lines are assumed to be dressed
with the corresponding self-energy insertions. In the skeleton
technique, one computes self-energies for all lines in the
graph—	σ for Gσ , 	pp for Gpp, 	ph for Gph, and 
σσ ′ for

U

FIG. 4. Diagrammatic elements based on ladders and screened
interactions (left) and an example of a particular diagram for the
single-particle self-energy 	 based on them (right).
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FIG. 5. Three ways of “interpreting” the bare interaction vertex in
the context of different channels. In each interpretation the interaction
line carries a different momentum.

Wσσ ′—and uses them to “dress”/renormalize the correspond-
ing lines using Dyson equations:

Gσ = G(0)
σ

1 − G
(0)
σ 	σ

, W = U

1 − U

− U, (2)

Gpp = U

1 − U	pp

− U, Gph = U

1 − U	ph

− U. (3)

These are simple algebraic relations in the momen-
tum/frequency representation. The spin-spin correlation func-
tion is directly related to the polarization 
 by

χ (ωn,�q) = Tr Sz


(ωn,�q)

1 − 
(ωn,�q)U
Sz, (4)

with the trace taken over the spin index.
The self-energy diagrams are computed self-consistently by

using the solutions of (2) and (3) for all diagram lines. To avoid
double-counting, these diagrams must be from the so-called
skeleton set: they remain connected after the cutting of any
two lines of the same kind. This is identical to enforcing the
rule that no two lines in the free-energy graph have the same
momentum; skeleton self-energy diagrams are then obtained
by removing one of the lines from the closed free-energy graph.
In addition, one has to enforce two rules concerning dots:

(i) No two dots can be connected by two Green’s functions.
(ii) Dots cannot be connected to the same end of either

Gpp, or Gph, or W by two Green’s functions in a manner that
reproduces their geometrical-series structure.

This is necessary because, by construction, such diagrams
are already accounted for in the line definitions when
considering their first-order self-energies. By admitting that
the bare interaction vertex can be interpreted in three ways
(with the corresponding momentum going along the line) as
depicted in Fig. 5, we observe that these additional rules are
accounted for automatically by the “no two lines carry the
same momentum” rule. Finally, there is one exception to the
rule: To avoid triple-counting of the same diagram contributing
to the lowest-order 	, one has to perform subtraction of the
diagram based on two points (see Fig. 6).

All results in this work are based on the lowest-order dia-
grams shown in Fig. 6 and the solution of Dyson equations (2)
and (3) iteratively. The diagrammatic Monte Carlo scheme for
simulating higher-order skeleton graphs (based on standard
principles described in previous work [26,41,42], with obvious
modifications required to reflect a larger set of diagrammatic
elements and self-energies) was only used to establish that the

FIG. 6. First-order skeleton graphs for all self-energies.

lowest-order scheme was producing accurate thermodynamic
results at the level of a few percent. We have also verified this
level of accuracy for spin correlations by benchmarking results
at n = 1 against the sign-free determinant diagrammatic
Monte Carlo method [43].

Results. The very notion of TM as the crossover temperature
between the high-temperature regime, with ξ � 1, and the
regime of strong magnetic correlations, with ξ 
 1, implies
that its definition is not unique. To define the onset of
strong magnetic fluctuations we examine the momentum
dependence of the static magnetic susceptibility χ (0,�q) and the
development of a narrow peak structure. More precisely, TM

is the highest temperature that results in the peak amplitude’s
being an order of magnitude larger than the minimum value
of χ over the Brillouin zone, χmax/χmin = 10. Our results are
summarized in Fig. 2.

As expected, the largest values of TM (at fixed U ) are
observed at half-filling, where the crossover temperature can
be as high as T ∼ 0.25 (or about 1000 K in units representative
of CuO2 superconductors with hopping amplitude t ∼ 0.3 eV
[44]). As a function of interaction, TM goes to 0 at both large
and small values of U and, within the considered range of
1 � U � 6, features a smooth maximum around U ∼ 4. This
appears to be the optimal spot for experimental studies of
magnetism in (1), where reaching low temperatures remains
challenging. The magnetic crossover scale goes to 0 with
doping but remains relatively high for intermediate values of U

even at doping levels δ ∈ (0.15,0.25). We did not see evidence
of PS at TM , meaning that the PS dome takes place within the
magnetic region (see Fig. 1).

The character of spin correlations undergoes a dramatic
transformation with doping. A mismatch between the largest
momentum transfer at the Fermi surface and the reciprocal
lattice vector results in incommensurate spin-wave fluctuations
that take the form of AFM domains and diagonal domain
walls. In Fig. 7, we show a typical example of the emerging
structure (for T = 0.05, U = 4, and n = 0.8085). In the left
panel, we see that the otherwise dominant peak around the
commensurate vector (π,π ) is split and features a minimum
at (π,π ) surrounded by two maxima at the incommensurate
vectors. The real-space spin texture behind this split-peak
signal is shown in the right panel, with different colors
corresponding to the sign of χ (0,�r). For brevity, we will call
it “diagonal stripes.” It is plausible that in the putative PS
region (see Fig. 1), the AFM order is intermixed with diagonal
stripes, and the mechanism for the dx2−y2 -wave pairing is based
on coupling to these spin fluctuations.

Conclusions. We have discussed the finite-temperature
phase diagram of the repulsive Fermi-Hubbard model on a
square lattice and identified the overarching dome defining
the onset of strong magnetic correlations that change their
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FIG. 7. Left: Static magnetic susceptibility calculated from the
lowest-order GGGW diagrams and plotted over the trace (0,0) →
(π,0) → (π,π ) → (0,0) in the Brillouin zone for T = 0.05, U = 4,
and n = 0.8085. Two peaks are observed at the incommensurate
vectors (π,Q) and (Q,Q), where Q is some value other than π .
Right: The corresponding diagonally striped “carpet” pattern is
plotted in real space, with colors reflecting the sign of the average
spin correlation. Whether this pattern survives or changes as T → 0
remains an open question.

structure from commensurate antiferromagnetism to incom-
mensurate diagonal stripes as the doping level is increased.
Given the relatively high values of TM that extend well
into the doping region, where optimal values for transition
temperatures to dx2−y2 superfluidity are expected to take place,
magnetic correlations appear to be the key ingredient behind
both the PS and the BCS phenomena near half-filling.

Further development of the diagrammatic Monte Carlo
approach is required to obtain controllable results at tem-
peratures below TM , where convergence of the diagrammatic
expansion becomes problematic. A large magnetic correlation
length and phase separation are two factors that have to be
treated with extreme care by any numerical method based on
finite-cluster simulations because they impose restrictions on

the minimal acceptable cluster sizes and call into question the
homogeneity of the solution. In particular, superfluid states
proposed in [44–46] cannot exist in the parameter space of
phase separation. To find high-Tc regions one has to avoid PS
near half-filling or modify the model to include nonzero values
of the next-nearest-neighbor hopping t ′ > 0 [45].

Ultracold-atom experiments are expected to have a major
impact on revealing the finite-temperature phase diagram. Cur-
rent experiments have already reached temperatures T ∼ TM

[14] and are well positioned to explore the structure of strong
magnetic correlations. The detection and characterization of
the PS state require lower temperature scales, but we do not
see any reason for the PS dome to occur at T � TM given that
known correlations are becoming saturated below TM .

Quantifying magnetic correlations is also of significant
interest in relation to copper oxides [47], as neutron scattering
experiments have revealed the coexistence of commensurate
and incommensurate magnetic structures at finite doping.
For La2−pSrpCu4 an incommensurate state with a magnetic
structure wave vector was found at small dopings; for
YBa2Cu3O6+y a wide doping window exists where commen-
surate AFM fluctuations are observed at low temperatures [48].
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