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Heat transport study of the spin liquid candidate 1T -TaS2
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We present ultralow-temperature thermal conductivity measurements on single crystals of the prototypical
charge-density-wave material 1T -TaS2, which was recently argued to be a candidate for a quantum spin liquid.
Our experiments show that the residual linear term of thermal conductivity at zero field is essentially zero, within
experimental accuracy. Furthermore, the thermal conductivity is found to be insensitive to the magnetic field up
to 9 T. These results clearly demonstrate the absence of itinerant magnetic excitations with fermionic statistics
in bulk 1T -TaS2, and thus put a strong constraint on the theories of the ground state of this material.
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The quantum spin liquid (QSL), where strong quantum
fluctuations obstruct long-range magnetic order even down to
absolute zero temperature, is one of the most elusive and exotic
quantum states of matter [1–3]. In the QSLs, Mott physics
plays a significant role in localizing electrons and forming
S = 1

2 spins, as has been manifested in the study of high-
temperature superconductors [4]. Experimentally, triangular-
lattice organic compounds κ-(BEDT-TTF)2Cu2(CN)3 [5–7]
and EtMe3Sb[Pd(dmit)2]2 [8–10], together with kagome-
lattice ZnCu3(OH)6Cl2 [11–15] and Cu3Zn(OH)6FBr [16], are
typical examples of Mott-assisted QSL candidates. However,
the features of the spin frustrations in the above systems are
affected by other factors, such as structural deformations or
intersite mixtures [3]. From this point of view, it is very
meaningful to seek structurally perfect and clean enough
systems for the realization of a QSL ground state.

1T -TaS2 has been recently argued to be such an example
[17,18]. It is a layered material, and the only correlation-
driven insulator among transition-metal dichalcogenides [19].
As for the charge degree of freedom, 1T -TaS2 features
a number of peculiar charge-density-wave (CDW) phases.
Upon cooling, it turns into a metallic incommensurate CDW
(ICCDW) phase below 550 K, a textured nearly commensurate
CDW (NCCDW) phase below 350 K, and finally enters
a commensurate CDW (CCDW) phase below 180 K [20].
The low-temperature CCDW phase is characterized by a√

13 × √
13 structure described as star-of-David clusters [20].

There is one unpaired electron per star of David due to
energy gaps induced by periodic lattice distortion [20]. At
the same time, electron correlation effects set in and localize
this electron, leading to a Mott insulating state with S = 1

2
spins arranged on an ideal triangular lattice [21–23]. This is
one of the few model spin configurations that may harbor the
exotic QSL state, and exactly the one proposed by Anderson
in his resonating-valence-bond model [24–26].
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The possibility of the realization of a QSL in 1T -TaS2

has been proposed in Ref. [17]. By analyzing the existing
data of this material, it was argued that 1T -TaS2 should be
considered as a QSL, either a fully gapped Z2 spin liquid
or a Dirac spin liquid [17]. Muon spin relaxation (μSR) and
nuclear quadrupole resonance (NQR) experiments have been
performed on 1T -TaS2 single crystals [18]. No long-range
magnetic order was detected from 210 K down to 70 mK
by μSR. On the other hand, NQR experiments reveal a
gapless QSL-like behavior in part of the CCDW phase, from
200 K to Tf = 55 K. Below Tf , a novel quantum phase with
amorphous tiling of frozen singlets emerges out of the QSL
[18]. Meanwhile, another group performed polarized neutron
diffraction and μSR measurements on 1T -TaS2 [27]. Their
results indicate the presence of short-ranged magnetic order
below 50 K, and support the scenario that an orphan S = 1

2
spin moment is localized at the center of the star of David [27].

To find out what is the true ground state of bulk 1T -TaS2,
it is essential to know the details of the low-lying elementary
excitations. Ultralow-temperature thermal conductivity mea-
surement has proven to be a powerful technique in the study
of low-lying excitations in QSL candidates [7,9,28]. Taking
the spin- 1

2 triangular-lattice Heisenberg antiferromagnets as an
example, the thermal conductivity result implied the possibility
of a tiny gap opening in κ-(BEDT-TTF)2Cu2(CN)3 [7], while
highly mobile gapless excitations with fermionic statistics
exist in EtMe3Sb[Pd(dmit)2]2 [9]. For the QSL candidate
YbMgGaO4, which has been studied extensively recently, no
significant contribution of thermal conductivity from magnetic
excitations was observed [28].

In this Rapid Communication, we report an ultralow-
temperature thermal conductivity measurement on a high-
quality 1T -TaS2 single crystal down to 0.1 K. No significant
contribution from magnetic excitations is detected at zero
magnetic field. Furthermore, the thermal conductivity is found
to be insensitive to magnetic fields up to 9 T. The absence
of κ0/T at all fields unambiguously demonstrates that no
fermionic magnetic excitations with an itinerant character exist
in 1T -TaS2. We shall discuss the implications of our findings
on the ground state of bulk 1T -TaS2.
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FIG. 1. (a) Room-temperature x-ray diffraction pattern from the
large natural surface of the 1T -TaS2 single crystal. Only (00l) Bragg
peaks show up. Inset: Trigonal P 3̄m1 crystal structure of 1T -TaS2.
Ta (S) atoms are displayed by red (blue) balls. (b) Temperature
dependence of the resistivity for the 1T -TaS2 single crystal measured
on cooling and warming in zero magnetic field. The hysteresis can
be clearly resolved around 200 K, suggesting the occurrence of
a first-order phase transition between the NCCDW phase and the
CCDW phase. Top right inset: The resistivity in the low-T region.
Bottom left inset: A schematic of the monolayer 1T -TaS2 viewed
along the c axis in the CCDW phase. The black line indicates
the representative star-of-David clusters, where in-plane Ta atom
displacements are marked by green arrows. These star-of-David
clusters further form the triangular superlattice (magenta line).

A high-quality 1T -TaS2 single crystal was grown by the
chemical vapor transport method [27]. The x-ray diffraction
(XRD) measurement was performed on the 1T -TaS2 sample
by using an x-ray diffractometer (D8 Advance, Bruker).
The single crystal with a large natural surface was cut into
a rectangular shape of 3.25 × 0.72 × 0.1 mm3. The large
natural surface (3.25 × 0.72 mm2) was determined to be the
(001) plane by XRD, as shown in Fig. 1(a). A standard
four-probe method was used for both resistivity and thermal
conductivity measurements. Contacts were made directly on
this natural surface with silver paint. The resistivity was
measured in a 4He cryostat from 300 to 1.5 K. The thermal
conductivity was measured in a dilution refrigerator, using a
standard four-wire steady-state method with two RuO2 chip
thermometers, calibrated in situ against a reference RuO2

thermometer. Magnetic fields were applied perpendicular to
the large natural surface.

As shown in the inset of Fig. 1(a), 1T -TaS2 crystallizes
in the CdI2-type trigonal structure belonging to the P 3̄m1
space group [29]. It has a layered structure, in which each
atomic layer is composed of one Ta layer sandwiched between
two S layers in an octahedral arrangement [30]. Within the
CCDW phase, 13 Ta atoms form a fully interlocked star-of-
David cluster, where 12 peripheral Ta atoms shrink towards
the central Ta atom. Such a deformation leads to the formation
of a

√
13 × √

13 triangular superlattice [20], as illustrated in
the bottom left inset of Fig. 1(b). The temperature dependence
of the resistivity ρ(T ) for the 1T -TaS2 single crystal measured
on cooling and warming in zero magnetic field is plotted in
Fig. 1(b). The hysteresis around 200 K indicates the occurrence
of a first-order phase transition between the NCCDW phase
and the CCDW phase. Below the transition temperature, the
resistivity exhibits an insulating behavior. At low temperature,
the increase of ρ(T ) with decreasing temperature is slower than
an exponential rise, as seen in the top right inset of Fig. 1(b).
All of these features are consistent with previous resistivity
measurements on 1T -TaS2 [31,32]. The inverse resistivity ratio
ρ(1.5 K)/ρ(295 K) is about 130, which is comparable with
those measured previously [31,32].

Figure 2(a) presents the in-plane thermal conductivity of
the 1T -TaS2 single crystal at H = 0 T. In a solid, the contri-
butions to thermal conductivity usually come from various
quasiparticles, such as phonons, electrons, magnons, and
spinons. For 1T -TaS2, the thermal conductivity from electrons
(κe/T ) at 1.5 K is estimated to be 6.13 × 10−5 mW K−2 cm−1

according to the Wiedemann-Franz law κe/T = L0/ρ(1.5 K),
with the Lorenz number L0 = 2.45 × 10−8 W � K−2 and
ρ(1.5 K) = 399.8 m� cm. The electron contribution becomes
smaller upon further cooling and is negligible at ultralow
temperature, due to the insulating behavior of the resistivity.
Therefore, the thermal conductivity at very low temperature
can be fitted by κ/T = a + bT α−1, in which the two terms aT

and bT α represent the contributions from fermionic magnetic
excitations (if they exist) and phonons, respectively [33,34].
Because of the specular reflections of phonons at the sample
surfaces, the power α in the second term is typically between
2 and 3 [33,34]. The fitting of 0 T data below 0.35 K gives
the residual linear term κ0/T ≡ a = 0.005 ± 0.002 mW
K−2 cm−1 and α = 2.69. Considering our experimental error
bar ±5 μW K−2 cm−1, the κ0/T of 1T -TaS2 at zero field is
essentially negligible. Note that EtMe3Sb[Pd(dmit)2]2 has a
value of κ0/T as big as 2 mW K−2 cm−1 [9]. The in-plane
thermal conductivity of the 1T -TaS2 single crystal in magnetic
fields (H = 0, 4, and 9 T) applied along the c axis is plotted
in Fig. 2(b), with the three curves almost overlapping on
top of one another. The same fitting process is performed,
giving κ0/T = −0.002 ± 0.009 mW K−2 cm−1 and κ0/T =
0.008 ± 0.005 mW K−2 cm−1 for H = 4 and 9 T, respectively.
The three κ0/T values are plotted in Fig. 2(c). One can see
that the magnetic field barely has any effect on the thermal
conductivity of 1T -TaS2 up to 9 T.

Now we would like to discuss the implications of our
thermal conductivity results on the proposal of 1T -TaS2 being
a QSL. Theoretically, all known QSLs can be classified in
terms of a spectrum of gapless spinons (or their absence) and
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FIG. 2. (a) The in-plane thermal conductivity of the 1T -TaS2

single crystal at H = 0 T. The solid line represents the fit of the data
to κ/T = a + bT α−1. This gives the residual linear term κ0/T =
0.005 ± 0.002 mW K−2 cm−1 and α = 2.69. (b) The in-plane thermal
conductivity of 1T -TaS2 at various magnetic fields (H = 0, 4, and
9 T) applied along the c axis. (c) Field dependence of the residual
linear term κ0/T . The three κ0/T values are negligible in our field
range.

the nature of the emergent gauge fields to which they couple
[35]. Various kinds of exotic models have been proposed in
the study of various QSL candidates [3]. A systematic analysis
of whether these models can be applied to 1T -TaS2 is beyond
the scope of this work, and we only discuss the feasibility of
these models in light of our experimental data on low-energy
spin excitations. Generally, a finite residual linear term κ0/T

represents the contribution to κ from fermionic magnetic

excitations in the zero-temperature limit, i.e., the spectrum of
the fermionic magnetic excitations is gapless. This might come
from a spinon-Fermi surface or nodes in momentum space. For
1T -TaS2, the former one has been ruled out [17], because of the
tiny linear term γ (∼2 mJ mol−1 K−2) observed in specific heat
[27,36]. For the latter one, the most common case is a U (1)
Dirac spin liquid [4,37,38]. In such a state, nodal fermionic
spinons at the Dirac points would still result in a finite κ0/T ,
and the thermal conductivity would be enhanced by a magnetic
field [38]. This is incompatible with our results that the κ0/T

is negligible at all fields and the thermal conductivity is
insensitive to magnetic field. It seems that any gapless QSL
scenarios, whether gapless everywhere or only at the nodes
in momentum space, are not consistent with our data. Note
that there are also some exotic scenarios with nodal bosonic
excitations [3,39]. The contribution to the thermal conductivity
from these nodal excitations exhibits a power-law temperature
dependence (∼T δ). However, unlike nodal fermionic excita-
tions, for which the power-law exponent δ is 1, the δ value for
nodal bosonic excitations is unknown in advance, so that it is
hard to be separated from the phonon contribution.

However, there is another possibility that might reconcile
our data with the gapless QSL scenarios. For the low-
temperature phase (T � Tf = 55 K) of 1T -TaS2, NQR shows
a broad distribution of 1/T1 values with a stretched exponent
p < 1 (p ≈ 0.5), implying a highly inhomogeneous magnetic
phase at all Ta sites [18]. We note that similar spectral
broadening and stretched exponent behaviors have been ob-
served in another triangular-lattice QSL candidate, κ-(BEDT-
TTF)2Cu2(CN)3 [40]. The thermal conductivity measurement
on κ-(BEDT-TTF)2Cu2(CN)3 also gives a negligible κ0/T ,
which was argued to come possibly from the localization
of the gapless spin excitations due to inhomogeneity [41].
This might also be the case for 1T -TaS2. The low-temperature
phase (T � Tf ) still exhibits a gapless behavior for low-energy
fractional excitations, according to Ref. [18], but these gapless
excitations can be localized so that they cannot conduct heat.

Next, we turn to the gapped QSL scenarios. A fully gapped
Z2 spin liquid was suggested in Ref. [17], which is a state with
gapped spinons together with gapped visons. For κ-(BEDT-
TTF)2Cu2(CN)3, an alternative explanation for the negligible
κ0/T is that the spin excitations are gapped [7]. The total
thermal conductivity of κ-(BEDT-TTF)2Cu2(CN)3 is the sum
of a phonon contribution term and a magnetic part with an
exponential temperature dependence, indicating the existence
of a gap (� ∼ 0.46 K) in the spin excitation spectrum [7].
A field-induced gap closing was also observed in κ-(BEDT-
TTF)2Cu2(CN)3 for magnetic fields higher than ∼4 T [41]. For
1T -TaS2, however, we found that a similar fitting procedure
does not work. Having said that, we caution that our data
do not contradict the gapped QSL scenario. Indeed, if the
magnitude of the gap is sufficiently large, the magnitude of
the exponential term in the total thermal conductivity would
be too small to be discerned at such a low temperature, so
that the total thermal conductivity is dominated by the phonon
term, and the gap, if it exists, cannot be closed by a magnetic
field up to 9 T. For example, an unusually large exchange
interaction J ≈ 0.13 eV (∼1500 K) has been derived from
the susceptibility data [18]. The spin gap is estimated to be
above 200 K in Ref. [17]. In fact, in most cases a large gap is
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more common than a small gap (compared to its J ) as possibly
in κ-(BEDT-TTF)2Cu2(CN)3 [7].

Of course, our results do not entirely rule out the possibility
that the ground state of bulk 1T -TaS2 may not be a QSL.
The low-temperature phase (T � Tf ) proposed by the NQR
experiment is a highly unusual one, featuring frozen singlets,
pseudogaps in the spinon density of states, and a high degree
of local disorder [18]. In Ref. [27], the neutron diffraction
and μSR results provide evidence for the existence of a
short-range-ordered state. To what extent do the behaviors
of these states resemble those of a QSL is an open question
and requires future scrutiny. As stated in Ref. [17], it might be
more interesting to look for a QSL ground state in ultrathin
crystals of 1T -TaS2.

In summary, we have measured the thermal conductivity
of a 1T -TaS2 single crystal down to 0.1 K. No residual linear
term of thermal conductivity was observed at zero field. The

thermal conductivity is found to be insensitive to a magnetic
field up to 9 T. These results provide evidence for the absence
of itinerant magnetic excitations obeying fermionic statistics
in 1T -TaS2. Our results set strong constraints on the nature of
its ground state, and thus of its theoretical description.
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