Erratum: Band offsets between ZnGeN₂, GaN, ZnO, and ZnSnN₂ and their potential impact for solar cells [Phys. Rev. B 88, 075302 (2013)]

Atchara P. Jaroenjittichai, Sai Lyu, and Walter R. L. Lambrecht (Received 2 August 2017; published 17 August 2017)

DOI: 10.1103/PhysRevB.96.079907

The band offsets in this paper included a *GW* correction, Δ_{GW} , describing the shift of the valence band maximum relative to the average electrostatic potential arising from the quasiparticle self-consistent (QS) *GW* self-energy shift. Since that work was published, we have found that this quantity requires a higher level of convergence in terms of basis set than the band gaps. In particular, in our previous work [1], we found an anomalous behavior for ZnSnN₂, in which the shift was positive, 0.20 eV, while for the other materials it was negative as one expects. Performing better converged calculations (in particular, using at least an *spdf-spd* basis set, and further checking with an *spdfg-spd*+floating orbitals on empty sites) we find that the values of Δ_{GW} in Table II should be replaced by -0.4 ± 0.1 eV for GaN, -0.5 ± 0.1 for ZnGeN₂, -0.3 ± 0.1 eV for ZnSnN₂, and -1.5 ± 0.1 eV for ZnO. These are 0.8Σ values, meaning that the self-energy as calculated is reduced by a factor 0.8 to take into account the underscreening by the random phase approximation in calculating the screened Coulomb interaction *W*. This implies that there is almost no change in this shift between ZnSnN₂ and GaN or ZnGeN₂ to within an accuracy of 0.1 eV. Thus, this correction only is important for the cases involving ZnO.

We have recalculated the resulting changes in Tables III and IV and Fig. 4 in the paper, which should be replaced by the following.

TABLE III. Dipole potentials and valence band offsets in each direction from eight-layer supercell (units in eV). (Values in parentheses are obtained from 12-layer supercell.)

	GaN/ZnGeN ₂	ZnO/ZnGeN ₂	GaN/ZnSnN2
$\overline{\Delta E_v^0(GW)}$	0.00	3.95	1.22
$\Delta_{s}^{[100]}$	0.15	0.25	0.24
$\Delta_s^{[010]}$	0.19	0.29	0.33
$\Delta_s^{[001]}$	0.14	0.21	0.34
$V_D^{[100]}$	1.15(1.29)	-2.21	0.18
$V_D^{[010]}$	1.04(1.17)	-2.10	0.18
$V_D^{[001]}$	1.10(1.24)	-2.43	0.23
$\overline{V_D}$	1.10(1.23)	-2.25	0.20
$\Delta E_v^{[100]}$	1.30(1.44)	1.99	1.64
$\Delta E_v^{[010]}$	1.23(1.36)	2.14	1.73
$\Delta E_v^{[001]}$	1.24(1.38)	1.73	1.79

TABLE IV. Natural valence and conduction band offsets, gap differences, and effective interface gaps of type-II heterostructures (in units of eV).

	$\Delta E_v^{\rm nat}$	$\Delta E_c^{\rm nat}$	ΔE_g	$\Delta E_g^{i,av}$
GaN/ZnGeN ₂	1.1	1.0	-0.1	2.4
GaN/ZnSnN ₂	1.4	-0.3	-1.7	
ZnO/GaN	0.6	0.7	0.1	2.8
ZnO/ZnGeN ₂	1.7	1.7	0.0	1.8
$ZnO/ZnSnN_2$	2.0	0.4	-1.6	1.4
ZnGeN ₂ /ZnSnN ₂	0.3	-1.3	-1.6	

FIG. 4. Natural band-offset alignment of ZnO, GaN, ZnGeN₂, and ZnSnN₂ and their effective interface gaps (in eV).

[1] A. Punya, W. R. L. Lambrecht, and M. van Schilfgaarde, Phys. Rev. B 84, 165204 (2011).