
PHYSICAL REVIEW B 96, 075448 (2017)

Density functional perturbation theory for gated two-dimensional heterostructures:
Theoretical developments and application to flexural phonons in graphene

Thibault Sohier,1,* Matteo Calandra,2 and Francesco Mauri3,4

1Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery
of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

2IMPMC, CNRS, Université P. et M. Curie, 4 Place Jussieu, 75005 Paris, France
3Departimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Roma, Italy

4Graphene Labs, Fondazione Istituto Italiano di Tecnologia, Italy
(Received 14 May 2017; published 31 August 2017)

The ability to perform first-principles calculations of electronic and vibrational properties of two-dimensional
heterostructures in a field-effect setup is crucial for the understanding and design of next-generation devices. We
present here an implementation of density functional perturbation theories tailored for the case of two-dimensional
heterostructures in field-effect configuration. Key ingredients are the inclusion of a truncated Coulomb interaction
in the direction perpendicular to the slab and the possibility of simulating charging of the slab via field effects.
With this implementation we can access total energies, force and stress tensors, the vibrational properties and the
electron-phonon interaction. We demonstrate the relevance of the method by studying flexural acoustic phonons
and their coupling to electrons in graphene doped by field effect. In particular, we show that while the electron-
phonon coupling to those phonons can be significant in neutral graphene, it is strongly screened and negligible
in doped graphene, in disagreement with other recent first-principles reports. Consequently, the gate-induced
coupling with flexural acoustic modes would not be detectable in transport measurements on doped graphene.
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I. INTRODUCTION

Density functional theory [1–6] (DFT) based on plane-wave
basis sets, Kohn-Sham (KS) equations and pseudopotentials,
has proven to be a valuable tool to understand and predict
electronic and structural properties of materials. DFT provides
support in the process of understanding and controlling experi-
mentally observed phenomena [7]. Inversely, it can be used [8]
to identify interesting new two-dimensional (2D) compounds,
thus encouraging their experimental study. The wide range of
potential applications and fascinating phenomena offered by
2D materials would benefit from accurate DFT simulations in
the 2D framework.

In general, the response of a material to a long wavelength
periodic perturbation is highly dependent on dimensionality.
We have recently shown the importance of working in
the appropriate 2D framework for the computation of
dielectric responses [9], optical phonons dispersions [10],
and electron-phonon coupling in polar materials [11].
Furthermore, a particularly relevant aspect of 2D materials
is their sensitivity to external perturbations like external
electric fields, as illustrated by the large gate-induced doping
achievable for a 2D material in a field-effect transistor (FET)
setup [12–14]. While the field effect is not part of the 2D
material per se, its omnipresence in experimental setups and
devices motivates the need to simulate it.

However, current implementations of DFT with three-
dimensional periodic boundary conditions (3D PBC) are not
adequate to the simulation of 2D materials doped in the
FET setup. This is mainly due to two reasons. The first
one pertains to 2D systems in general. In the response to
long wavelength perturbations there is a spurious interaction
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between the system and the out-of-plane periodic images
due to the 1/q2 behavior of the Fourier transform of the
3D Coulomb interaction. This effect becomes relevant for
perturbations of in-plane momenta comparable or smaller than
≈2π/c, where c is the distance separating the periodic images.
This range of momenta is relevant for electric transport.
Additional long-range interactions can arise if the slab presents
a finite dipole along the z axis.

The second reason relates to the treatment of charged
systems. Charging of 2D materials is usually simulated via
the use of a compensating jellium background. This approach
is inappropriate as it represents a uniform doping of a 2D
flake and it reproduces neither the strong voltage drop in
proximity of its surface [15,16] nor the asymmetric nature
of the FET configuration. This asymmetry is precisely the
feature that is challenging to simulate because it breaks 3D
PBC. Currently, these aspects have not yet been taken into
account in the calculation of vibrational properties via density
functional perturbation theory.

Some methods have been proposed to deal with the FET
setup at the DFT level for the calculation of total energies and
forces. A dipole correction [15,17–19] can be used to recover
3D PBC in systems with an out-of-plane dipole moment. This
method has been used to simulate chloronitrides [15] and
transition-metal dichalcogenides [16] in a FET setup. Another
approach to solve these issues is the effective screening
medium (ESM) technique [20]. The Poisson equation is solved
without 3D PBC, resulting in the correct potentials. The
potentials are then modified where the electron density is
negligibly small to allow their use in the KS equations with
3D PBC. This method has recently been used to simulate a
graphene-based vertical field-effect tunneling transistor [21]
at the DFT level. However, linear response theory has not
been developed for any of these methods. Here, we solve this
problem and develop a density functional perturbation theory
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approach tailored for 2D materials and heterostructures that
includes the possibility of simulating vibrational properties in
FET configuration.

We use our developments to study flexural phonons in field-
effect doped graphene. In isolated graphene, those phonons
do not couple to electrons due the mirror symmetry with
respect to the graphene plane [22]. In a FET setup, however,
this symmetry is broken and flexural phonons have recently
been suggested [23] as a significant scattering mechanism in
transport measurements. We recover the expected result that a
symmetry-breaking electric field can activate a significant bare
electron-phonon interaction with flexural phonons. However,
we show that this interaction is strongly screened by the
electrons and becomes negligible with respect to the coupling
with in-plane phonons in doped graphene.

This paper is structured as follows. We first describe a model
for 2D materials doped in the FET setup in Sec. II. We restrict
ourselves to a description in terms of potentials. In Sec. III, we
highlight the issues raised by the presence of periodic images to
simulate 2D materials in the FET setup, and show how the 2D
Coulomb cutoff technique can solve those issues. In Sec. IV,
we detail the implementation of the 2D Coulomb cutoff for the
potentials, total energy, forces, phonons, and electron-phonon
interactions in the QUANTUM ESPRESSO (QE) distribution [24].
Finally, we exploit our implementation of the 2D Coulomb
cutoff to study some properties of 2D materials specific to the
FET setup. Namely, we focus on out-of-plane acoustic (ZA)
phonons in a graphene FET. We show the emergence of a finite
phonon frequency at � as well as a finite coupling to electrons
for the ZA phonons, two quantities that are zero by symmetry
for isolated graphene without electric field.

II. DESCRIPTION OF A 2D MATERIAL DOPED IN THE
FET SETUP

In this section, we present our model for a 2D material
doped in the FET setup, focusing on the potential of such
a system. The central object is the 2D material itself. We
consider a system with periodicity in the {x,y} plane, defined
as the infinite periodic repetition in the plane of a unit cell. The
positions of the cells are Rp = m1b1 + m2b2, where m1 and
m2 are two integers. The primitive lattice vectors b1,b2 have
coordinates in the {x,y} plane. The z component of Rp is a
constant. The position of atom a within the unit cell is labeled
da . The atomic internal coordinates da can have different z

components such that all atoms are not necessarily on the
same plane, e.g., in the case of multilayered 2D materials.
In reciprocal space, the crystal is described by reciprocal
vectors Gp, generated by two in-plane primitive reciprocal
lattice vectors b∗

1 and b∗
2.

Within the DFT framework, the ground state properties
of the system are determined by the ground-state electronic
density n(rp,z), where we separate in-plane ( rp) and out-of-
plane (z) space variables, as they clearly have different roles
in a 2D system:

n(rp,z) = 2
∑
k,s

f (εk,s)|ψk,s(rp,z)|2, (1)

ψk,s(rp,z) = wk,s(rp,z)eik·rp . (2)

The in-plane wave vector k and the band index s define
an electronic state. The Bloch wave functions ψk,s are the
solutions of the Kohn-Sham [2] (KS) equations. The KS
potential of the 2D system is the sum of the external potential
V 2D

ext (which, for now, consists of the potential generated by
the ions V 2D

ion ), the Hartree potential V 2D
H , and the exchange-

correlation potential V 2D
XC (rp,z):

V 2D
KS (rp,z) = V 2D

ext (rp,z) + V 2D
H (rp,z) + V 2D

XC (rp,z). (3)

The above quantities possess the 2D periodicity of the crystal.
That is, for any f 2D lattice-periodic function such as
n, V 2D

KS , V 2D
ext , V 2D

H , or V 2D
XC , we can write

f (rp + Rp,z) = f (rp,z). (4)

The 2D Fourier transform of a 2D lattice periodic function
reads

f (Gp,z) = 1

S

∫
S

f (rp,z)e−iGp ·rpdrp, (5)

where the integral is over the area of the unit cell S. In-plane
averages are defined as f (Gp = 0,z) = 〈f 〉p(z). In-plane
averages also extend in the out-of-plane direction. A relevant
length scale for the out-of-plane extension of the 2D material
would be the electronic density’s thickness t , defined such that∫ t/2

−t/2
〈n〉p(z) dz ≈ n0, (6)

where n0 × S is the number of valence electrons per unit cell
in the system, equal to the sum of the ionic charges

∑
a Za

in the neutral case. The total energy, forces, phonons, and
electron-phonon interactions of a neutral 2D material can be
computed using the usual DFT formalism [1–6] based on
space integrals of products between the electronic density and
various potentials. It is then sufficient to carry the out-of-plane
integrals over a slab of thickness greater than t .

We now consider what we must do to simulate this 2D
material doped in conditions emulating the FET setup. We
consider a single-gate configuration, as shown in Fig. 1. A
planar gate is placed parallel to 2D material and a voltage
difference is applied between the two. An insulating material
(gate dielectric) separates the 2D material and the gate, such
that no current can flow between them and opposite surface
charges accumulate on both sides. The key feature of the FET
setup is its asymmetry in terms of electric field. Between the
gate and the 2D material, the electric field is finite. On the other
side of the 2D material, the electric field is zero. In the out-of-
plane direction, it is essential that we simulate the correct 2D
potentials in a region at least as large as the thickness t . We
will not model every ions and electrons outside this region, in
the gate-dielectric, substrate or gate. We rather propose ways
to simulate the effects of those components on the 2D material.

The main purpose of the FET setup is to charge the 2D
material. We consider an electron density such that∫

〈n〉p(z) dz = n0 =
∑

a

Za

S
+ ndop, (7)

where Za is the number of pseudo charges of atom a,
S is the surface of the 2D unit cell, and ndop × S is the
number of electrons added per unit cell. The total charge
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FIG. 1. The sketch shows a minimal model of the FET setup
containing the 2D material and a gate separated by an insulating
dielectric. The plot shows the out-of-plane behavior of the corre-
sponding Kohn-Sham (KS) potential for a hole-doped single-layer
2D material (graphene) in the FET setup. A charged plane simulates
the gate. On the left of the material, we represent in black the KS
potential when only vacuum separates the gate and the material. In
blue, we add a potential barrier to simulate the dielectric material.

density of the 2D material is obtained by integrating the
sum of the charge distributions associated with the ions and
electrons:

∫
〈�ion + �elec〉p(z)dz = −endop, (8)

where the charge densities � are related to the corresponding
electrons or ions density as �ion = enion and �elec = −en. In
the FET setup of Fig. 1, the doping comes from the presence
of accumulated counter charges in the gate. We thus add a
charged plane of opposite surface charge density +endop at

zg < −t/2, playing the role of the gate:

�gate(z) = +endopδ(z − zg), (9)

V 2D
gate(z) = +2πe2ndop|z − zg|. (10)

We now have a globally neutral system:∫
〈�ion + �elec〉p(z) + �gate(z) dz = 0. (11)

The potential of the gate is included in the external potential:

V 2D
ext (rp,z) = V 2D

gate(z) + V 2D
ion (rp,z). (12)

The resulting planar-averaged KS potential V 2D
KS is the black

line in Fig. 1, in the case of a hole-doping monolayer material.
At this point, it has the features expected from a FET setup with
vacuum as the insulating dielectric. The general characteristics
of this potential are easily deduced from a simple parallel plate
capacitor model: (i) outside the system, the electric field is zero
and the potential is constant; (ii) between the 2D material and
the gate, the electric field is constant and the potential is linear
with a slope of 4πe2ndop; (iii) this electrostatic configuration
translates into an out-of-plane dipolar moment, which induces
a shift in the KS potential:〈

V 2D
KS

〉
p

(+∞) − 〈
V 2D

KS

〉
p

(−∞) = 4πe2ndop|zg|, (13)

as represented in Fig. 1.
The other element to consider to have a minimal working

model for the FET setup is the dielectric separating the gate
and the material. Its necessity is obvious in the case of electron-
doping. In that situation, the polarity of the system pictured
in Fig. 1 is reversed. This means that the gate lies at a lower
potential than the 2D material. In our simulations, there would
then be some leaking of electrons towards the gate. This is not
physical.1 In a FET setup, this is prevented by the presence
of an insulator between the gate and the material. From a
more mechanical point of view, the necessity of the dielectric
is in fact more general. Indeed, both for hole and electron
doping, there is an attractive force between the gate and the
material, which is simply the electrostatic attraction between
two oppositely charged plates:

|Fgate−material| = S × 2πe2n2
dop. (14)

In this context, the dielectric provides a counteracting repulsive
force. To emulate both the insulating and repulsive roles of the
dielectric, we add a potential barrier in between the material
and the gate:

V 2D
barrier(z) =

{
Vb if z < zb

0 otherwise
, (15)

where zg < zb < 0. This potential can be included in the
external potential V 2D

ext . Adding such a barrier results in the
potential represented by a blue line in Fig. 1. This barrier

1We could think about cold emission (an electron being emitted
from a metal plate towards an other under a strong electric field), but
in that case, we would have to account for the work function of the
gate.

075448-3



THIBAULT SOHIER, MATTEO CALANDRA, AND FRANCESCO MAURI PHYSICAL REVIEW B 96, 075448 (2017)

potential essentially forbids (or makes highly unlikely) the
presence of electrons for z < zb, thus preventing electrons
from leaking towards the gate. Since the electrons cannot go
past the barrier, and since the ions are strongly attracted by the
electrons, the barrier repulses the 2D material as a whole. As
will be detailed later, the equilibrium position of the material
with respect to the barrier can be determined by relaxation of
the forces in the system.

In the following section, we explain how we deal with the
periodic images to obtain the KS potential we just described
in a plane-wave DFT code wit 3D PBC. Then, we will detail
the modifications implemented to compute the total energy,
forces, phonons, and electron-phonon interactions for a 2D
material doped in the FET setup.

III. TREATMENT OF THE PERIODIC IMAGES

Ab initio calculations based on plane-wave basis sets require
periodic boundary conditions along the three dimensions (3D
PBC). In this framework, periodic images of the 2D system
are present in the out-of-plane direction. Our goal is for each
periodic image to be strictly equivalent to the 2D system
presented in the previous section, at least within a certain
“physical region” around the 2D material (for example, within
the boundaries of Fig. 1). In this section, we detail the issues
that arise from the use of 3D PBC for the simulation of
doped systems, systems with out-of-plane dipolar moment,
and systems perturbed at long wavelengths. We then show
how the Coulomb cutoff technique can solve those issues.

A. Inadequacy of 3D PBC

The 3D periodic system obtained by adding translated
copies of the 2D system generates potentials that are different
from the ones described in the previous section. This comes
from interactions between periodic images, due to the combi-
nation of their potentials while satisfying PBC. The sum of the
KS potential from each periodic image can be written as

VKS(rp,z) =
∑

i

V 2D
KS (rp,z − ic), (16)

where i is an integer and c is the distance between the periodic
images. V 2D

KS is the potential of the 2D system, while VKS is
the one simulated in DFT with 3D PBC. In addition to the 2D
PBC of Eq. (4) that V 2D

KS already fulfills, VKS has to fulfill the
PBC in the third direction:

VKS(rp,z + ic) = VKS(rp,z), ∀ i. (17)

We first consider a doped 2D material. Away from the direct
vicinity of the material, this system behaves like a monopole,
with lim|z|→∞〈V 2D

KS 〉p(z) = ∞, and VKS is obviously ill-
defined. As mentioned before, the standard method in current
plane-wave DFT packages amounts to the use of a jellium
background. Each slab is then globally neutral, containing the
doped material and a uniform distribution of compensating
charges. In between the periodic images, the resulting potential
is quadratic in z, with extrema at mid-distance between layers,
as shown in Fig. 2. This potential does fulfill the PBC and does
not diverge. However, it is quite different from the potential
one would expect for a charged, isolated 2D material. Indeed,

-15 -10 -5 0 5 10 15
z (a.u.)
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jellium doping

zero electric field

linear electric fieldconstant electric field

FIG. 2. Planar-averaged KS potential in the out-of-plane direc-
tion as simulated in DFT with 3D PBC for neutral (dashed line)
and doped (plain line) graphene. In the case of doped graphene,
the quadratic behavior of the KS potential indicates the presence
of a jellium background and a linear electric field. The dot-dashed
line represent the behavior one would expect from an isolated
monopole with the same surface charge density as the 2D material
Vmono(z) = −2πe2ndop|z|.

away from the direct vicinity of the materials, one would expect
to recover a linear potential, similar to that generated by an
isolated monopole.

Now we consider a 2D system with a global dipolar moment
in the out-of-plane direction and a V 2D

KS potential like in Fig. 1.
Here, each periodic image is globally neutral. However, the
potential 〈VKS〉p(z) would experience a shift with each periodic
images, eventually diverging. Imposing PBC forbids this kind
of situation. Instead, it leads to a combination of additional
electric field and reorganization of the charge so that the total
average electric field in one slab is zero [17–19]. Here again,
we loose the equivalence with V 2D

KS .
Finally, 3D PBC are very problematic when the system

is perturbed at small wave vector. If a 2D charge density is
modulated according to an in-plane wave vector q, it generates
a potential decreasing as e−|q||z| in the out-of-plane direction.
At small wave vector, the extent of the potential induced
by the electron density is thus very large. When it is of the
order of the distance between periodic images, there is some
spurious interactions. This issue is critical when simulating
the screening properties [9] of the material as well as its
response to phonon perturbations [10,11].

B. Isolate the layers with 2D Coulomb cutoff

To reduce interactions between periodic images, a naive
solution is to increase the distance between them. However,
in a plane-waves framework, the cost of the calculations
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increasing linearly with the distance, this method can be very
expensive, especially in the particular cases presented before.
Furthermore, this method inevitably fails for DFPT in the long-
wavelength limit, as spurious interactions are bound to affect
the response of the material at small enough wave vectors.

One solution for the FET setup and for systems with an
out-of-plane dipolar moment in general is to add a dipole
correction to catch up the potential shift [15,17–19]. However,
the dipole correction has to be recalculated self-consistently
at each iteration, and this method has not been extended to the
DFPT framework.

Here, we tackle 3D PBC issues by using the Coulomb
cutoff technique [25–27], successfully used by other codes
[28,29] in different contexts. The general idea is to cut all
the potentials off between the periodic images. In effect, all
physical links between periodic images are severed because the
potential generated by one periodic image does not reach the
others. Each slab is effectively isolated. There is no physical
3D periodic system anymore. There is a 2D periodic system,
copied and repeated in the third dimension in order to build
potentials that mathematically fulfill 3D PBC.

Each long-range potential (V ≡ Vion,VH,Vgate) in the origi-
nal 3D code is generated by a certain distribution of charges via
the Coulomb interaction vc(r) = e2

|r| . To build the correspond-

ing cutoff potentials in the code (V̄ ≡ V̄ion,V̄H,V̄gate), we use
the following cutoff Coulomb interaction:

v̄c(r) = e2θ (lz − |z|)
|r| , (18)

where r ≡ (rp,z) is a generic three-dimensional space vari-
able. An arbitrary charge density � then generates the
following potential:

V̄ (r) =
∫

e�(r′)
|r − r′|θ (lz − |z|)dr′. (19)

Roughly speaking, considering a single charged plane, we
generate its potential only within a certain slab of thickness
2lz centered on the charge distribution. Within this slab, we
have that V̄ (r) = V 2D(r). Outside of this slab, the potential
is zero. Each periodic image of each charge distribution
(�ion,�elec,�gate) generates its own potential within its own
slab. To fulfill 3D PBC, the simpler way is to cut off midway
between the periodic images:

lz = c

2
. (20)

Since the potentials V 2D
ion , V 2D

H , and V 2D
gate are symmetric

with respect to the plane of the associated subsystem (ions,
electrons, gate), they have the same value on both sides of the
corresponding slab. V̄ion, V̄H, and V̄gate are each continuous
and periodic, and so is their sum V̄KS. However, since the slabs
of each subsystem do not coincide, the KS potential is only
physical within the overlap of the subsystems’ slabs.

This overlap region defines a “physical region,” as illus-
trated in Fig. 3, where all the potentials make sense. Outside
of this region, there are some spurious unphysical variations
of the KS potential. Those spurious variations are a necessary
consequence of fulfilling 3D PBC. Let us consider the example
Fig. 3 in more details. The simplest subsystem is the gate
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FIG. 3. Determination of the physical region. In the upper panel,
we show the gate potential and the material’s potential 〈V̄ion +
V̄H〉p(z), and indicate where they make sense physically. The physical
region is the overlap between those regions. In the lower panel, we
show that the KS potential 〈V̄KS〉p(z) (the sum of the potentials above)
makes sense within the physical region. In both plots, c ≈ 37 a.u. and
zg ≈ −8.5 a.u.

because �gate is infinitely thin in the out-of-plane direction.
Within the slab z ∈ [zg − c

2 ; zg + c
2 ], we see the potential

generated by the gate at zg:

V̄gate(rp,z) =
∑

i

V 2D
gate(rp,z − ic)θ

( c

2
− |z − ic|

)
(21)

= V 2D
gate(rp,z) if z ∈

[
zg − c

2
; zg + c

2

]
. (22)
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For z outside of this interval, we see the potential generated
by the neighboring periodic images of the gate, which has
no physical sense with respect to the 2D system represented
in Fig. 3. For the electrons, the charge distribution �elec is
spread in the out-of-plane direction. Each infinitesimal slice
of electronic density with surface charge density �elec(z)dz

generates its contribution to the Hartree potential only within
a certain slab. The Hartree potential is physical only within the
overlap of all those slabs. If the electrons are centered around
a position ze, that would be z ∈ [ze − c

2 + t
2 ; ze + c

2 − t
2 ]. The

ions are in a similar situation, but the charge distribution is
much less spread. The difference in the spreading of �elec

and �ion leads to the bumps we can observe for V̄ion + V̄H, at
z ≈ ±18.5 a.u. in Fig. 3. Thus the unphysical variations of the
KS potential outside the physical region are due to the addition
of potentials generated by incomplete subsystems or different
periodic images.

Nevertheless, everything happens as in the previous section
within the physical region associated to the KS potential.
To simulate the system, we just need to make sure that the
2D material lies in this physical region. We will need 3D
Fourier transforms V̄ (Gp,Gz), easily related to the 2D Fourier
transform of V 2D(Gp,z), Eq. (5), as follows:

V̄ (Gp,Gz) = 1

c

∫ c/2

−c/2
dz V 2D(Gp,z)e−iGzz. (23)

IV. IMPLEMENTATION

In this section, we detail the implementation of the Coulomb
cutoff for the potentials, and show how it affects the energies,
forces, phonons and EPC in the code. Most of the potentials,
or at least their long-range parts, are calculated in reciprocal
space. We thus need the Fourier transform of Eq. (18), as
defined in Ref. [26]:

v̄c(Gp,Gz �= 0) = 4πe2

|Gp|2 + G2
z

× [1 − e−|Gp |lz cos(Gzlz)],

v̄c(G = 0) = 0. (24)

The choice of the G = 0 value is just a convention since every
potential is defined up to a constant. Here, we choose the same
convention as in the original 3D code, such that the average of a
potential over the unit cell is zero. A more detailed justification
about this choice, especially its implications in terms of energy,
can be found in Appendix D. For clarity, we will often need
to describe the implementation of the original 3D code first in
order to identify what needs to be modified. We use different
notations to distinguish the potentials that stay as implemented
in the original 3D code (noted V ) and those that are modified
with the implementation of the 2D Coulomb cutoff (noted
V̄ ). For other quantities (energy, forces, phonons and EPC),
such distinction in the notation is not necessary. Indeed, their
definition essentially does not change, it is the potential that is
used to compute them that changes.

A. KS potential

The KS potential is the sum of the external potential, the
Hartree potential, and the exchange-correlation potential:

V̄KS(rp,z) = V̄ext(rp,z) + V̄H(rp,z) + VXC(rp,z). (25)

The exchange-correlation potential is short-range and does not
need to be cut off. Thus it will be ignored in the following.
We note, however, that a great majority of commonly used
functionals are derived in the framework of the 3D electron
gas. While their relevance in the context of 2D materials is
obviously questionable, the development of new functionals
for 2D materials is out of scope for the present work. The
implementation presented here is valid for all the usual types
of pseudopotentials (norm-conserving, ultrasoft, projector-
augmented wave functions). Indeed, we only modify the
long-range parts of the potentials, which are independent of
the pseudopotential type. The external potential is the sum of
the ionic, gate, and barrier potentials:

V̄ext(r) = V̄ion(r) + V̄gate(z) + V̄barrier(z). (26)

1. Ionic potential

The ionic potential is separated in local and nonlocal parts
V̄ion = V̄ loc

ion + V nonloc
ion . The nonlocal part is short-range. It does

not need to be cut off and is ignored here. We need to compute
the Fourier transform of the cutoff local potential V̄ loc

ion (G). It is
computed from the the pseudopotentials, which are separated
in short-range and long-range parts. We first describe this
separation as it is done in the original code, identify what must
be modified, then present the implementation of the cutoff.

In the original 3D code, the local part of the pseudopotential
is a radial function in real space va(|r|) associated to each type
of atom. It is separated in short-range (SR) and long-range
(LR) parts:

va(|r|) = vSR
a (|r|) + vLR

a (|r|), (27)

vSR
a (|r|) = va(|r|) + Zae

2erf(
√

η|r|)
|r| , (28)

vLR
a (|r|) = −Zae

2erf(
√

η|r|)
|r| , (29)

where erf(
√

η|r|) is the error function with η as a tuning
parameter (see Appendix C for more details on that parameter).
The pseudopotential vSR

a (r) is indeed short-range because

it always behaves as −Zae
2erf(

√
η|r|)

|r| for |r| large enough. In

particular, we have that vSR
a (r) = 0 for |r| � rSR. The Fourier

transform of the SR part is calculated via numerical integration,
while the LR part is analytic. The SR part, specific to each
atom, is Fourier transformed on a finite sphere:

vSR
a (G) = 1




∫ |r|=rSR

0
vSR

a (r)e−iG·r dr, (30)

where 
 = S × c is the volume of the unit cell. The potential
vSR

a does not need to be cut off as long as rSR < lz, which is
easily satisfied. The Fourier transform of the LR part vLR

a (G)
is easily found analytically, since vLR

a (|r|) is the potential
generated by a Gaussian distribution of charges:

vLR
a (G) = −Za



vc(G)e−|G|2/4η. (31)

This SR/LR separation is implemented in the original 3D code
to enable the restriction of numerical Fourier transforms to a
finite region of space. The original code also relies heavily

075448-6



DENSITY FUNCTIONAL PERTURBATION THEORY FOR . . . PHYSICAL REVIEW B 96, 075448 (2017)

on the rotational invariance of the radial pseudopotentials to
define the arrays containing their Fourier transforms.

In our 2D implementation, we replace the analytic LR part
of the pseudopotential by its cutoff version:

v̄LR
a (G) = −Za



v̄c(G)e−|G|2/4η. (32)

The SR/LR separation turns out to be very convenient to imple-
ment the Coulomb cutoff. However, since the Coulomb cutoff
breaks the rotational invariance, it cannot be implemented as
a simple modification of the existing array. A separate array
for the cutoff LR part is calculated in a separate routine. It is
then added to the SR part when constructing the local part of
the ionic potential:

V̄ loc
ion (G) =

∑
a

e−iG·da
(
vSR

a (G) + v̄LR
a (G)

)
. (33)

2. Hartree potential

The Hartree potential is relatively easy to cut off. It is
computed in reciprocal space from the electronic density:

V̄H(G) = v̄c(G)n(G). (34)

3. Gate potential

The gate potential must be added for a doped system. In
practice, the potential of the gate is added in real space to
the external potential. We define directly in real space the
saw-tooth potential generated by �gate, Eq. (9) via the cutoff
Coulomb interaction Eq. (24). Within the interval z ∈ [zg −
c
2 ,zg + c

2 ], it is defined as

V̄gate(z) = 2πe2ndop

(
|z − zg| − lz

2

)
, (35)

where the constant term is due to the definition of v̄c(G = 0). It
sets the out-of-plane average of the potential to zero. A second
gate can be added to provide more flexibility and to simulate
the combination of bottom and top gate. We simply define two
separate gate potentials (index “bot” for bottom gate and “top”
for top gate):

V̄ bot
gate(z) = 2πe2nbot

(∣∣z − zbot
g

∣∣ − lz

2

)
, (36)

V̄
top

gate(z) = 2πe2ntop

(∣∣z − ztop
g

∣∣ − lz

2

)
, (37)

and add them together to form the total gate potential:
V̄gate(z) = V̄ bot

gate(z) + V̄
top

gate(z) where the charges should be such
that the whole system is neutral: ntop + nbot = ndop.

4. Barrier potential

The barrier potential is necessary to relax the forces in the
system and to prevent electrons from leaking towards the gate.
It is also used to prevent electrons from going outside the
physical region. Indeed, the variations of the potential outside
the physical region can lead to the presence of potential wells.
Placing a barrier potential outside the physical region ensures
that no unphysical leaking occurs. The barrier is added in real
space along with the gate. In practice, this barrier consists in the
addition of a constant to the external potential within a certain

region in the out-of-plane direction. For z ∈ [− c
2 , + c

2 ], it is
defined as

V̄barrier(z) =
{
Vb if z < zb1 or zb2 < z

0 otherwise
. (38)

The borders of the barrier at zb1 and zb2 are smoothed via
a linear transition from Vb to 0 on a small distance. The
implementation of the gate and the barrier was adapted from
a previous modification of the code, discussed in Ref. [15].

5. Verifications

To check the consistency of our modifications on the
potentials, we can first simulate the potentials of a neutral
and nonpolar 2D system, without gate or barrier. The corre-
sponding ionic, Hartree and KS potentials are plotted with
and without the 2D Coulomb cutoff in Fig. 4. With 3D PBC,
setting the G = 0 value of the ionic or Hartree potential to
zero is equivalent to the inclusion of a compensating jellium
background. The potentials we observe then correspond to
either ions or electrons bathed in the associated jellium. This
leads to a quadratic behavior in z between the periodic images.

When the 2D Coulomb cutoff is applied, we recover the
linear behavior in z. Setting the G = 0 value of the ionic or
Hartree potential to zero leads to a simple shift. For such
a neutral and nonpolar system, the KS potentials with and
without cutoff coincide up to a constant within the physical
region. This constant comes from the fact that both KS
potential average to zero but the cutoff KS potential has bumps
outside the physical region while the other does not.

Let us now simulate the KS potential of a hole-doped 2D
material as shown in Fig. 5. Using the original code with 3D
PBC, we obtain the potential of the material bathed in a jellium
compensating for the added charge (or missing electrons). In
that case, the KS potential is quadratic, with a varying slope
and thus a varying electric field. The electric field is symmetric
with respect to the plane of the 2D material. It vanishes midway
between the periodic images, on the left and right borders of
Fig. 5. If we use the 2D Coulomb cutoff without adding a
gate, we obtain the potential that would be generated by the
doped 2D material in vacuum, as in Eq. (8), within the physical
region. If we add a compensating charged plane to simulate
the gate, we obtain the configuration of the FET setup, with
a finite electric field on the left of the 2D material, and zero
electric field on the right.

Finally, we simulate the KS potential of an electron-doped
system to show the necessity of the barrier potential in Fig. 6.
Without the barriers, some potential wells appear on both sides
of the 2D material. On the left, this is due to the presence of
the positively charged gate. On the right, this is due to the
unphysical variations of the KS potential outside the physical
region. Electrons leak towards those potential wells, which
can be inferred here from the slopes of the KS potential in
the vicinity of the 2D material. Compared to what we should
obtain in the FET setup, the slope of the KS potential on the
left of the 2D material is too small while the slope on the right
is not zero. This is due to the Hartree potential contribution
from the electrons that leaked in the potential wells. This is
not what we want to simulate. The addition of a potential
barrier prevents the electrons from leaking towards the barrier
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FIG. 4. In the upper panel, we show the planar-averaged ionic,
Hartree and KS potential obtained with and without the 2D Coulomb
cutoff. In the lower panel, we zoom in on the KS potential. Within the
physical region, the KS potentials with and without cutoff coincide up
to a constant, as is demonstrated by the difference 〈V̄KS − VKS〉p(z)
(dash-dot indigo line).

or outside the physical region, and we find the right slopes (or
electric field) in the vicinity of the material.

B. Total energy

The total energy per unit cell associated with the system is

Etot = Ekin + Eext + EH + EXC + Ei−i + Eg−i + Eg−g.

(39)
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asymmetric field (FET)

(zoom in blue box)

FIG. 5. The planar-averaged KS potential of hole-doped
graphene is simulated in various situations to show the different
configurations in terms of electric field. The label “without cutoff”
means that the standard 3D code was used. The label “with cutoff”
means that the 2D Coulomb cutoff was implemented. In that case, we
plotted the result with and without a gate. The lower panel is a zoom
in the region delimited by the blue box in the upper panel.

It is the sum of the kinetic energy of the electrons, the energy of
the electrons in the external potential, the Hartree energy, the
exchange-correlation energy, the ion-ion interaction energy,
the energy of the ions in the potential of the gate(s), and
finally, the self-interaction energy of the gate(s). The terms
Ekin and EXC are short-range. They are computed as in the
standard 3D code. The computation of the remaining terms
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FIG. 6. Planar-averaged KS potential in the case of electron
doping. The gate is always included. We plot the potential without
barrier to show how there is some unphysical leakage. With the
barrier, we effectively prevent electrons from reaching any of the
unphysical potential wells.

is detailed in the following. A general definition of Eext, EH,
and Ei−i can be found in Appendix A. Those definitions stay
valid provided one uses the cutoff potentials V̄ext, V̄H, and �̄.
Unlike the potentials, the total energy is not defined up to a
constant. The choice of the v̄c(G = 0) can affect the value
of the energy contributions, but it should not affect the total
energy. In the following, choosing v̄c(G = 0) = 0 means that
the G = 0 terms of the long-range contributions to the energy
will be put to zero in the 2D framework. This is justified in
Appendix D.

1. External energy

The external energy Eext is calculated via the sum of the
eigenvalues of the KS system. Once the external potential
is defined as in Eq. (26), it is used to solve the KS system
and the sum of its eigenvalues includes the correct cutoff
energy contribution. The external energy decomposes into
the energies of the electrons in the potentials of (i) the ions
Eion

ext , (ii) the gate E
gate
ext , and (iii) the barrier Ebarrier

ext . We use
sufficiently sharp and high barrier potentials to write that
Ebarrier

ext ≈ 0 because there are (almost) no electrons where there
is a potential barrier. The other contributions Eion

ext and E
gate
ext

are nonzero, but we have no further modifications to make.

2. Hartree energy

The Hartree energy is easily written in reciprocal space as

EH = 


2

∑
G

n∗(G)V̄H(G), (40)

and is computed in practice by replacing V̄H(G) by its
expression [Eq. (34)]:

EH = 


2

∑
G

|n(G)|2v̄c(G). (41)

3. Ion-ion interaction energy

The ion-ion interaction energy Ei−i is computed using the
ion-ion interaction potential �̄. The computation is based
on the Ewald summation technique [30], which involves a
separation into SR and LR parts Ei−i = ESR

i−i + ELR
i−i. Much

like for the ionic potential, we do not need to modify the SR
part. Here again, we start by presenting what is done in the
original code, identify what we must modify, then present the
implementation of the cutoff.

In the original 3D code, following the Ewald summation
technique,the ion-ion interaction potential � is separated in
SR and LR part as follows:

�(r) = �SR(r) + �LR(r) − �self (42)

=
∑

R′

∑
a′

′ e2Za′

|r − R′ − da′ |erfc(
√

ηew|r − R′ − da′ |)

+
∑

R′

∑
a′

e2Za′

|r − R′ − da′ |erf(
√

ηew|r − R′ − da′ |)

−�self, (43)

where the prime in the first sum excludes the case
{R′ = R,a′ = a} if r = R + da and �self subtracts that term
from the second sum. The constant ηew tunes the SR/LR
separation (see Appendix C for more details). The SR part
of the ion-ion interaction potential �SR is dealt with in
real space and does not need to be modified as long as
erf(

√
ηewlz) ≈ 1 (easily satisfied). �self is simply the value of

�LR(r) for r − R′ − da′ = 0. As such �self is also short-range.
We include the corresponding energy contributions in ESR

i−i.
Those contributions do not need to be cut off. The contribution
of the LR potential �LR to the energy is computed in reciprocal
space and needs to be be modified.

In our implementation, we replace the Fourier transform of
the LR part of the ion-ion interaction potential by its cutoff
version:

�̄LR(G) = 1




∑
a

Zae
iG·da v̄c(G)e−|G|2/4ηew . (44)

The LR contribution to the ion-ion interaction energy is then
computed in reciprocal space as follows:

ELR
i−i = 


2

∑
G

n∗
ion(G)�̄LR(G) (45)

= 1

2


∑
G

∣∣∣∣∣
∑

a

Zae
iG·da

∣∣∣∣∣
2

v̄c(G)e−|G|2/4ηew , (46)

where nion(G) = 1



∑
a Zae

iG·da is the Fourier transform of
the distribution of ions (�ion = enion).
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4. Other energies

The other energies to account for are the energy of the ions
in the potential of the gates Eg−i, and the self-interaction of
the gates Eg−g:

Eg−i =
∫




dr nion(r)(−V̄gate(z)) (47)

=
∑

a

Za2πe2nbot

(
−∣∣da,z − zbot

g

∣∣ + lz

2

)

+
∑

a

Za2πe2ntop

(
−∣∣da,z − ztop

g

∣∣ + lz

2

)
(48)

Eg−g = 1

2

∫



dr
(
nbotδ

(
z − zbot

g

) + ntopδ
(
z − ztop

g

))
× ( − V̄gate(z)) (49)

= S(nbot + ntop)2πe2 lz

2

+ Snbotntop2πe2

(
−∣∣ztop

g − zbot
g

∣∣ + lz

2

)
, (50)

where da,z is the z component of da . We consider the
most general case of a double-gate setup. Note that those
contributions to the energy have a manifest dependency on
the cutoff distance lz. The total energy, of course, should not
depend on lz. As detailed in Appendix D, the lz-dependent
terms in the expression above will cancel with corresponding
terms in Eext and EH.

5. Verifications

In the absence of doping, gate and barrier, the total energy is

Eneutral
tot = Ekin + Eion

ext + EH + EXC + Ei−i. (51)

We can thus check the consistency of the implementation of
Eion

ext , EH, and Ei−i in a neutral system. We first compute the
total energy of the neutral, nonpolar system of Fig. 4 with and
without cutoff. We should obtain the same result as there is no
issue with the periodic images in that case. We checked that
the difference is below numerical precision. We can then use a
neutral system with an out-of-plane dipolar moment such that
interactions between periodic images do play a role without the
2D Coulomb cutoff. We use graphene with hydrogen atoms
on top of half of the carbon atoms, see Fig. 7. The effect
of the Coulomb cutoff is clear on both the KS potential and
total energy. The KS potential of the system without cutoff
illustrates the comments of Sec. III. Namely, imposing 3D
PBC leads to the compensation of the out-of-plane dipolar
moment by an external electric field, visible here via the finite
slope of the KS potential away from the material. When we use
the 2D Coulomb cutoff, we observe the right behavior, with a
potential shift and no external electric field. The energy of the
system simulated without cutoff tends to the one with cutoff at
large distances between periodic images. With the cutoff, the
energy is independent of the distance. There is a lower limit
to the distance between periodic images, which is when the
boundaries of the physical region are too close to the material.
Still, the minimal distance we can use in our implementation of
the code is negligible with respect to what we would have to use

-10 0 10
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-1

0

1

V
K

S(G
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0,
 z

) 
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ΔE

 (
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FIG. 7. DFT simulation of graphene with hydrogen atoms on top
(z > 0) of half the carbon atoms. The upper panel shows the planar-
averaged KS potential, with and without using the 2D Coulomb cutoff.
The lower panel shows the total energy per unit cell as a function of
the distance between periodic images, with and without using the 2D
Coulomb cutoff. The zero for the energies corresponds to the total
energy per unit cell obtained with cutoff.

without cutoff. In the case of Fig. 7, we see that the distance
between the periodic images would have to be roughly five
times larger without the cutoff to obtain the same total energy
as with the cutoff within 10−4 Ry. The computational cost
would also be five times larger. A way to get the right total
energy in this kind of polar material is to simulate the mirror
image of the system within the unit cell. We checked that this
leads to the same energy as what we find with the 2D Coulomb
cutoff. Still, adding a mirror image of the system rather than
the cutoff leads to a drastic increase of the computational cost.
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C. Forces

The forces on the ions are found by computing the derivative
of the total energy with respect to a displacement ua,i of atom
a in direction i. Only the terms related to an interaction in
which the ions are involved remain. The force acting on ion a

in direction i is written as

Fa,i = −∂Etot

∂ua,i

= −
∫




n(r)
∂V̄ion

∂ua,i

dr − ∂Ei−i

∂ua,i

+ Fg−i
a,i + Fb−i

a,i ,

(52)

where the first term is the force on the ion from the electrons,
the second is from the other ions, the third is from the gate and
the last from the barrier. The notation ∂

∂ua,i
implies taking the

derivative at zero displacement ua,i = 0. All the quantities
involved are known once the self-consistent calculation is
completed. We will only detail the terms for which we need
to apply the 2D Coulomb cutoff. The first term is calculated
by computing the derivative of the ionic potential, separated
in local and nonlocal parts. The derivative of the local part is
found by using the Fourier transform of the pseudopotentials:

∂V̄ loc
ion (r)

∂ua,i

= −i
∑

G

(
vSR

a (G) + v̄LR
a (G)

)
Gie

−iG·da eiG·r.

(53)

The effect of the derivative in reciprocal space is to bring down
a factor −iGi from the exponential. The corresponding force
is then calculated in reciprocal space:

−
∫




n(r)
∂V̄ loc

ion (r)

∂ua,i

dr

= i

∑

G

n∗(G)
(
vSR

a (G) + v̄LR
a (G)

)
Gie

−iG·da . (54)

The gate and the barrier have indirect contributions to this
term. Indeed, they have an effect on n(r), via their presence in
the self-consistent KS potential.

The second term in Eq. (52) is the force from the other ions.
It is found by derivation of the ion-ion interaction energy. We
only treat the LR contribution, because it is the only one that
needs to be cut off:

− ∂ELR
i−i

∂ua,i

= − ∂

∂ua,i

(



2

∑
G

n∗
ion(G)�̄LR(G)

)
(55)

= − 1




∑
G

v̄c(G)e−|G|2/4ηewZaGi

×
∑
a′

Za′ sin(da′ − da). (56)

The third term is the direct contribution of the electrostatic
force applied by the gates to the ions. Depending on doping,
it can be repulsive or attractive:

Fg−i
a,z = −∂Eg−i

∂ua,z

= +Za2πe2nbot sign
(
da,z − zbot

g

)
+Za2πe2ntop sign

(
da,z − ztop

g

)
, (57)

where we consider the most general case of the double-gate
setup.
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FIG. 8. Total energy (variation from relaxed position) and forces
as a function of the distance between the barrier and the 2D material.
The gate is moved with the barrier zg = zb1 − 0.02c where c is the
distance between periodic images c ≈ 37 a.u. The position of the
second barrier is such that it covers the unphysical region zb2 =
zg + 0.5c. The 2D material is graphene doped at a Fermi level of
+0.5 eV. The relaxed material-barrier distance is found to be around
6.26 a.u.

The barrier applies no direct force on the ions Fb−i
a,i = 0.

The ions effectively never see the barrier potential (they could
if the barrier was smoother). However, barriers can act on
the ground-state electronic density n(r) which in turn acts
on the ions. For example, if the system is too close from a
barrier, the repulsive effect of the barrier will show in the
self-consistent cycles, shifting the electrons away from the
barrier. The first term in Eq. (52) will thus include a force
that tends to push the ions away from the barrier, with the
electrons. The barrier is then essential to relax the forces,
arriving at an equilibrium between the attraction from the gate
and repulsion from the barrier. This is illustrated by the energy
and forces of the gate-barrier-material system represented in
Fig. 8. For large material-barrier distances, the force tends to
the attraction from the gate, and the total energy is linear. In
that case, we have checked that the total force on the ions is
the force between two charged plates, Eq. (14),∑

a

Fa,z = S × 2πe2n2
dop sign(zg). (58)

For small material-barrier distances, as the system gets too
close to the barrier, there is a sharper increase of the force and
the total energy.

D. Stresses for neutral 2D materials

Stresses were not implemented in the FET setup. We focus
here on planar stress for neutral materials without external
electric field, as it is used in the relaxation of cell parameters for
isolated 2D materials. The following thus applies for Cartesian
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coordinates i,j ∈ [x,y]. The stress is the first derivative of the
energy with respect to strain [31,32]

σi,j = − 1




∂Etot

∂εi,j

. (59)

For the full expressions of stresses, we refer the reader to
Refs. [31,32], noting that the authors’ definition of stress
differs from QE’s and ours by a minus sign. We only need to cut
off the terms involving long-range potentials. The expressions
of those terms in the 3D framework are given in Appendix
A, along with a minimal outline of their derivation. They are
modified as follows.

The key difference with the standard 3D code comes from
the cutoff Coulomb interaction Eq. (24), and its differentiation
with respect to strain:

∂v̄c(G)

∂εij

= v̄c(G)
2GiGj

G2
(1 − β(Gp,Gz)), (60)

β(Gp �= 0,Gz) = |G|2lz
2|Gp|

e−|Gp |lz cos(Gzlz)

1 − e−|Gp |lz cos(Gzlz)
,

β(Gp = 0,Gz) = 0. (61)

The Hartree contribution to the stress tensor reads

σ H
i,j = −1

2

∑
G

|n(G)|2v̄c(G)

×
{

2GiGj

G2
[1 − β(Gp,Gz)] − δij

}
. (62)

The contribution from the long-range part of the local part of
the ion-electron interaction is

σ
loc,LR
i,j = −

∑
G

n(G)
∑

a

e−iG·da v̄LR
a (G)

×
{

2GiGj

G2

[
1 + |G|2

4η
− β(Gp,Gz)

]
− δij

}
.

(63)

Finally, the long-range contribution from the ion-ion interac-
tion gives:

σ
i−i,LR
i,j = − 1

2


∑
G

∣∣∣∣∣
∑

a

Zae
iG·da

∣∣∣∣∣
2

v̄c(G)e|G|2/4ηew

×
{

2GiGj

G2

[
1 + |G|2

4ηew
− β(Gp,Gz)

]
− δij

}
.

(64)

E. Phonons and EPC

To calculate the phonon dispersion and electron-phonon in-
teractions, as reminded in Appendix B, we need to compute the
response of the electronic density to a phonon perturbation. In
essence, the linear response of the system involves derivatives
of the previous potentials and energies. Once the previous
framework is set up, we just have to apply the Coulomb
cutoff to the derivatives consistently. The following applies
to insulators, semiconductors and metals. In the latter case,
Fermi-surface effects, and notably the shift of the Fermi level

that may arise with phonons at zero momentum, are treated as
in the standard code, see Ref. [33].

1. Dynamical matrix

In practice, the dynamical matrix is given by the following
integrals on the unit cell:

Da,i,a′,j ×
√

MaMa′ =
∫




dr
∂2V̄ion(r)

∂ua,i(q)∂ua′,j (q)
n(r)

+
∫




dr
(

∂V̄ion(r)

∂ua,i(q)

)∗

×
(

∂n(r)

∂ua′,j (q)
e−iq·r

)
+ Di−i

a,i,a′,j , (65)

where the “V” notation indicates that we are using the lattice
periodic part of the potential, see Appendix B. The first term
can readily be computed from the quantities obtained in the
ground-state calculation. It is computed in reciprocal space as∫




dr
∂2V̄ loc

ion (r)

∂ua,i(q)∂ua′,j (q)
n(r)

= −δa,a′

∑

G

(
vSR

a (q + G) + v̄LR
a (q + G)

)
×GiGj�(n∗(G)e−iG·da ), (66)

where �(x) gives the real part of x. The last term comes
from the second derivative of the ion-ion interaction Ei−i

with respect to a phonon displacement. The contribution from
ESR

i−i does not change. The LR part ELR
i−i yields the following

contribution to the dynamical matrix:

Di−i,LR
a,i,a′,j = 1




∑
G,q+G �=0

v̄c(q + G)e−|q+G|2/4ηewZaZa′ (q + G)i

× (q + G)j e
i(q+G)·(da−da′ )

− 1




∑
G �=0

v̄c(G)e−|G|2/4ηewZaGiGj

×
(∑

a′′
Za′′ cos(G · (da − da′′ ))

)
δa,a′ . (67)

The second term in Eq. (65) is computed via numerical
integration over the unit cell in real space. The quantities
inside the integral are computed during the calculation of
the electronic density response to the perturbed KS potential,
presented in the following.

2. Perturbed KS potential

The linear electronic density response is found by solving
a self-consistent system involving the effective perturbation,
that is the derivative of the KS potential with respect to a

phonon displacement ∂V̄KS(rp,z)
∂ua,i (q) , Eq. (B8) (the notation “V̄”

indicates lattice periodic functions, see Appendix B). The first
term is the perturbation of the external potential. The phonons
only bring a direct perturbation to the potentials in which the
ions are involved. This means the perturbed external potential
contains only the contribution from the ionic potential. The
Fourier transform of the derivative of the local part of the ionic
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potential has nonzero components at wave vectors q + G:

∂V̄ loc
ion(q + G)

∂ua,i(q)
= −i

(
vSR

a (q + G) + v̄LR
a (q + G)

)
× (q + G)ie

−i(q+G)·da , (68)

where the Fourier components of the long-range part of the
local pseudopotential are similar to Eq. (32):

v̄LR
a (q + G) = −Zs



v̄c(q + G)e−|q+G|2/4η. (69)

The perturbed ionic potential of Eq. (68) (along with the
nonlocal part that is computed as in the original 3D code),
is Fourier transformed and inserted in the second term of the
dynamical matrix Eq. (65).

The remaining long-range potential to cut off is the Hartree
potential generated by the density response, computed in
reciprocal space:

∂V̄H(q + G)

∂ua,i(q)
= v̄c(q + G)

∂n(q + G)

∂ua,i(q)
. (70)

The density response, solution of the self-consistent system
corresponding to the effective perturbation ∂VKS(rp,z)

∂ua,i (q) is inserted
in the second term of the dynamical matrix Eq. (65).

3. Born Effective charges and LO-TO splitting

In polar materials, the long-wavelength behavior of longitu-
dinal optical (LO) modes depends strongly on dimensionality.
Indeed, the displacement patterns of LO phonons are associ-
ated with dipoles that interact with each others via long-range
Coulomb interactions. These dipole-dipole interactions lead to
an extra term in the energy of the LO mode with respect to
the transverse optical (TO) mode, thus leading to the so-called
LO-TO splitting. In 2D, as shown in Ref. [10], the splitting
vanishes in the zero momentum limit, but the dispersion of
the LO mode displays a finite slope at the � point. The
implementation of the 2D cutoff in DFPT as detailed above
guarantees the correct treatment of the LO-TO splitting. A key
quantity for this phenomenon is the tensor of Born effective
charges. Notably, it gives the values of the finite slope of the
LO dispersion at zero momentum. It can by computed either
via the forces induced by an electric field perturbation, or
via the polarization induced by atomic displacements. In both
cases, the quantities involved (forces, perturbed KS potential)
are already corrected as detailed above.

4. Fourier interpolation of phonon dispersions

Dynamical matrices can be Fourier interpolated [33,34]
to obtain phonons on dense grids at minimal computational
cost. The Fourier interpolation in itself is carried out as in
the standard 3D code. In polar materials, however, the LO-TO
splitting corresponds to a discontinuity either in the zeroth (in
3D) or first (in 2D) order derivative of the phonon dispersion.
Some nonanalytic terms arise at long wavelengths due to
the long-range nature of the dipole-dipole interactions. Those
nonanalytic terms must be modeled and excluded from the
interpolation process. Since they depend on dimensionality,
the interpolation requires a different treatment in 3D and 2D.
The 2D treatment is implemented as detailed in Ref. [10].

5. EPC

We have all the quantities necessary to compute the EPC:

gk+q,s,k,s ′,ν =
∑
a,i

ea,i
q,ν

√
h̄

2Maωq,ν

〈k + q,s|∂V̄KS(r)

∂ua,i(q)
|k,s ′〉.

(71)

The EPC matrix elements are screened via the induced
part of the effective KS perturbation (Hartree and exchange
correlation). The Hartree part of the screening is then that of a
2D material. The gate and the barrier have no direct effect in the
KS perturbation. Note that they are absent from this section.
However, they broke the symmetry of the ground state. In
particular, the electronic distribution is not centered on the
ions’ plane anymore. We will study the consequences of their
presence in the following section.

V. APPLICATION TO GRAPHENE FET SETUP

In this section we exploit our implementation of DFPT for
gated 2D systems to simulate some predicted peculiarities of
the FET setup. For isolated graphene without any external
electric field, it can be shown that the flexural ZA phonons
disperse quadratically and their energy is zero in the long-
wavelength limit [35]. Based on the mirror symmetry with
respect to the graphene plane, one can further show that
ZA phonons do not couple linearly to electrons [22]. Those
characteristics do not hold for graphene in the FET setup.
First, the phonon dispersion changes due to the presence of
a substrate and a gate dielectric. Second, the presence of an
electric field breaks the mirror symmetry with respect to the
graphene plane, making linear coupling to electrons possible.
Those FET-specific effects have not been studied in the context
of DFPT. The electron-phonon coupling with flexural phonons
in gated graphene was recently studied by first principles
and suggested to be a significant scattering mechanism [23].
However, in this work, the calculations performed do not
completely include the effect of metallic screening on the
electron-phonon coupling. Indeed, at the two lowest doping
considered, the phonon momentum allowed for by 11 × 11
supercell is too large with respect to the size of the Fermi
surface. Furthermore, the method used in Ref. [23] assumes
the Fourier transform of the derivative of the self-consistent
potential to be phonon-momentum independent. We will show
that this is not the case in doped graphene.

We perform DFPT calculations on graphene doped in the
FET setup. We simulate the main consequences of the presence
of the substrate and gate dielectric by placing two barriers at
zb1 and zb2 = −zb1, such that zb2 − zb1 ≈ 5.3 Å. Compared
to graphite, it corresponds to a graphene-barrier distance that
is smaller than the distance between two adjacent graphene
atomic planes, but larger than the distance separating the tails
of the electronic densities associated with those planes. In
practice, the distances between graphene and the substrate or
the dielectric depend on the details of the interactions between
those materials. Here, we simply make a choice. As we will
see, the results of the phonon calculations point to a rather
conservative choice for the graphene-barrier distance. We plot
the KS potential of the system in the upper panel of Fig. 9.
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FIG. 9. On the top is the KS potential of the simulated system.
The inset zooms on the dashed rectangle to highlight the difference
between the setups setups. In the “constant field” setup, the slope of
the KS potential, and thus the electric field, is the same on both sides
of the graphene layer. Graphene is neutral. In the “one gate” setup, the
electric field vanishes on one side and graphene is electron-doped.
Below is the dispersion of the acoustic phonons for the different
setups. We are mainly interested in the dispersion of ZA phonons,
but the in-plane acoustic modes are shown in thin dash-dot lines for
comparison.

We will consider three setups: (1) “constant field”: we use
two oppositely charged gates. There is a finite and constant
electric field between the gates, but graphene stays neutral,
i.e., εF = 0 eV with respect to the Dirac point. In this setup,
the mirror symmetry associated to the graphene plane is broken
and electronic screening from graphene is minimized. Barriers
are present.

(2) “One gate”: we use a single bottom gate (zbot < 0),
with a charge equal and opposite to that of the graphene sheet.
The electric field is finite on the side of the bottom gate, but
zero on the side of the top gate. In this setup, the mirror
symmetry associated to the graphene plane is also broken
but the graphene is electron-doped such that εF ≈ 0.7 eV.
This implies a stronger metallic screening from π∗ electrons.
Barriers are present.

(3) “Isolated”: this setup is simply for comparison. We
simulate isolated, neutral graphene, without gates and without
barriers.

Linear response calculations are performed within the
QUANTUM ESSPRESSO distribution [24], using the 2D cutoff

and FET setup implementation described in this work. We use
a norm conserving pseudopotential within the local density ap-
proximation [36] (LDA). A dense k-point grid (96 × 96 × 1)
is chosen to sample the Fermi surface of graphene and account
for screening effects. We use a 0.01-Ry Methfessel-Paxton
smearing function for the electronic integration and a 65-Ry
kinetic energy cutoff. We use the relaxed equilibrium structure
of isolated graphene in all setups. We neglect the change in
lattice parameter due to doping, which was calculated to be
under 0.1%. In the out-of-plane direction, the graphene sheet is
fixed midway between the barriers, where the repulsive forces
from the barriers cancel out. We neglect the comparatively
small attractive forces from the charged gates.

A. Acoustic out-of-plane (ZA) phonons

We first show the emergence of a finite ZA phonon
frequency at � when graphene is enclosed between two
barriers. We calculate the acoustic phonons in this system and
get the dispersion in the lower panel of Fig. 9. The dispersions
obtained for isolated graphene (no gate, no barrier) are also
shown. The dispersion of the in-plane modes is essentially
unaffected by the presence of gates and barriers. In contrast,
a shift in the dispersion of the ZA phonons is observed for
the “one gate” and “constant field” setups. The shift being
similar for both setups, it can be attributed to the presence of
barriers rather than the electric field configuration. We observe
in this case a rather flat dispersion, with ωZA(�) ≈ 35 cm−1.
When a 2D material is enclosed between two potential barriers,
the ZA phonon dispersion loses its quadratic behavior in the
long wavelength limit. Instead, it goes to a finite value at �.
The closer the barriers, the more confined is the 2D material
and the larger is ωZA(�). For graphene, a relevant reference
for that value might be the ZO’ mode of graphite, in which
neighboring layers are in out-of-phase ZA modes. It is often
found [37–39] to have a � frequency close to 100 cm−1. The
relatively small value of ωZA(�) found here would thus indicate
that the chosen graphene-barrier distance is rather conservative
in the sense that the effect is most likely underestimated. Such
a situation is preferred here, in order to find an upper bound
for the strength of scattering by ZA phonons.

B. Gate-induced coupling to ZA phonons

We now demonstrate the emergence of a finite coupling to
linear order between the electrons and out-of-plane acoustic
ZA phonons, due to the electric field breaking the mirror sym-
metry with respect to the graphene plane. More importantly,
we unravel the critical impact of screening on this coupling.
We consider scattering of electrons on an iso-energetic line
at ε = 0.7 eV in the π∗ band. In the “one gate” setup, this
corresponds to the Fermi surface of graphene. Thus the results
will be representative of the scattering involved in electronic
transport. We use the same isoenergetic line in the “constant
field” setup, although the line does not represent the Fermi
surface since the graphene layer is neutral. In this situation,
the results are not relevant for electronic transport. They
correspond to the relaxation of a single electron excited at
an energy of ε = 0.7 eV. The motivation behind comparing
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FIG. 10. Emergence of a finite coupling to ZA phonons for
graphene under an electric field. The upper panel shows EPC matrix
elements while the lower panel shows the transport-relevant quantity
defined in Eq. (72). The set of pairs of electronic states involved in
the scattering processes are chosen such that the scattered states span
half the Fermi surface, as represented in green. In-plane phonons
are represented in thin dash-dot lines for comparison. The “constant
field” setup, in which graphene is neutral, leads to ZA couplings that
are comparable to the in-plane phonons. The “one gate” setup, in
which graphene is doped, leads to negligible ZA couplings.

scattering on the same isoenergetic lines is to observe the
effect of electronic screening.

We fix the initial state |k〉 and define a set of scattered
states |k + q〉 on the isoenergetic line that we assume circular,
as represented in Fig. 10. This implies that we neglect
trigonal warping and assume elastic scattering, that is εk+q =
εk ± h̄ωq,ν ≈ εk. We cover only half the line, the other half
being equivalent by symmetry. We plot the corresponding EPC
as a function of the norm of momenta. Keep in mind that
increasing norm then corresponds to increasing values of the
angle between initial and scattered states θk+q,k.

We plot the corresponding values of gν(q) = gk,π∗,k+q,π∗,ν
for ν = ZA, TA, LA in the upper panel of Fig. 10. The in-plane
acoustic modes are plotted for comparison. We clearly observe
the emergence of a nonzero value for gZA, as expected. In both
neutral and doped cases, the value of the coupling vanishes for
the large phonon momenta corresponding to backscattering.
In the neutral case, gZA is comparable to the coupling with
in-plane acoustic phonons. However, while the coupling to in-

plane phonons is essentially doping-independent, gZA is much
smaller in doped graphene. Indeed, the coupling to in-plane
phonon is dominated by gauge fields [40], which do not affect
the local charge density and thus are not screened. In contrast,
the gate-induced coupling to ZA phonon acts as a deformation
potential, that is a periodic modulation of charge density in
the underlying lattice potential in which the free electrons
move. In terms of Hamiltonian, the perturbation is diagonal
and proportional to identity in the Dirac spinor basis. As such,
this perturbation is screened by graphene’s electrons. In the
doped case, the gate-induced coupling gZA is strongly screened
by metallic graphene and it becomes negligible. In Eq. (2)
of Ref. [23], the authors considered a deformation potential
(called “field-induced coupling constant”) that depends on gate
voltage but is independent of momentum q. The screening
from the conduction electrons of graphene does in fact bring
a strong momentum dependency [9] to this quantity.

In Ref. [23], it is argued that despite relatively weak
coupling, the high occupation of ZA phonons lead to a
considerable scattering probability. In the lower panel of
Fig. 10, we study the transport-relevant quantity

�2
k,k+q,ν = g2

ν (q)(1 + 2Nq,ν)(1 − cos(θk+q,k)), (72)

where Nq,ν is the phonon occupation at room temperature (the
Böse-Einstein distribution with T = 300 K) and the angular
term conveys the fact that backscattering is more detrimental
to electronic transport. In the framework of the relaxation time
approximation and elastic processes, the integral of this term
over the Fermi surface corresponds to the scattering rate. In the
neutral case, we see in the lower panel of Fig. 10 that despite
vanishing backscattering and the relatively small coupling
overall, �k,k+q,ZA is comparable to the other acoustic mode,
thanks to a relatively large occupation of ZA phonons (note
that as mentioned before, the phonon frequency is probably
a lower bound so the occupation and the scattering rate are
upper bounds). This makes field-induced scattering by ZA
phonons potentially important for carrier relaxation in neutral
graphene under a constant electric field. In the more relevant
case of single-gated and doped graphene, the scattering from
the ZA phonon is screened and negligible. The doping level
considered here is rather large. However, for lower, more
experimentally realistic doping levels, the coupling would
be similar or smaller. Indeed, the electric field and thus
the field-induced bare coupling would be smaller. Since the
screening scales with the dimension of the Fermi surface [9],
similar screening would be obtained for scattering around the
Fermi surface at any doping. This general trend is verified
in Fig. 11, where we use two different doping and compare
the electron-phonon coupling as a function of the momentum
rescaled by the size of the Fermi surface |q|/2kF .

Finally, in addition to screening effects, the flatness of the
ZA dispersion also plays a role in decreasing the coupling with
respect to the quadratic dispersion of isolated graphene [see
definition (71)]. In experimental setups, the ZA dispersion will
depend on the details of the interactions with the subtrate and
the gate dielectric. In our simulations, the barriers act as an
approximation to these interactions. However, as mentionned
above, we expect experimental values of ωZA(�) to be
comparable or larger than the simulated value. Thus we expect
the values of the coupling found in the highly doped case to
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FIG. 11. The field-induced coupling with flexural phonons de-
creases when doping decreases. The electronic pairs involved in the
scattered processes are chosen as in Fig. 10, with an isoenergetic
line taken at the corresponding Fermi levels εF = 0.7 and 0.3 eV,
respectively.

be an upper bound for scattering around the Fermi surface
of graphene at any finite doping level. This coupling would
thus be undetectable in transport measurements. Those results
are in stark contrast with the recent first-principles study of
this effect [23]. The main reasons for this discrepancy are the
dispersion of flexural phonons and electronic screening. Due
to the flat dispersion of the flexural phonons, we find overall
smaller couplings to flexural phonons than in Ref. [23]. For
the relaxation of photoexcited carriers in neutral graphene
(“constant field” setup), we find that the coupling is still
comparable to the coupling with in-plane phonons. For carrier
transport in doped graphene, however, the coupling to flexural
phonons is screened and becomes negligible. Electronic
screening plays a key role in electron scattering. It is a
highly dimensionality-dependent quantity that requires the
correct 2D framework. It can be quite difficult to model and
predict its effect on complex mechanisms like electron-phonon
coupling, even more so in complex systems like gated 2D
heterostructures. As illustrated here, adequate DFPT methods
are then an invaluable tool.

VI. CONCLUSION

Manipulating the electronic properties of heterostructures
via the field effect is key to many future usage of 2D materials.
We first set the framework for the simulation of charged
heterostructures within the field-effect setup. We then show
that various issues arise within the standard three-dimensional
periodic boundary conditions for those systems, and that the
truncation of the Coulomb interaction in the out-of-plane
direction is a simple and efficient solution. We detail the im-
plementation of the two-dimensional Coulomb cutoff and the
field effect setup within the QUANTUM ESPRESSO distribution,
for ground state and linear response calculations. The most
basic changes concern the construction of potentials equiv-
alent to the those generated by an isolated two-dimensional
system. Changes are then made accordingly throughout the
code to compute physical quantities properly defined in the

two-dimensional framework. This includes total energies,
forces, stresses, phonons and electron-phonon interactions. We
demonstrate the relevance of the implementation by studying
flexural (or out-of-plane acoustic) phonons for graphene in the
field effect setup. Our results show the emergence of a finite
phonon frequency in the long wavelength limit, as well as
a finite coupling to electrons. However, electronic screening
makes the coupling to flexural phonons negligible with respect
to the coupling to in-plane phonons. This implies that the
phenomenon is undetectable in transport measurements for
graphene at finite doping.
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APPENDIX A: DFT

In this section, we introduce the quantities that can be cal-
culated in DFT. We give the most straightforward expressions
for a generic system in 3D space. The formulas might be
applied to 3D periodic or 2D periodic materials. The following
description is obviously very far from exhaustive. The aim is
simply to set the notations and provide definitions for the
quantities mentioned in the main text. For more details, we
refer the reader to the literature, for example Refs. [4–6].
The lattice vectors are noted R, the internal coordinate of
atom a is da . The reciprocal lattice vectors G are such that
eiG·R = 1.

1. Potentials

The central potential in the self-consistent process is the
Kohn-Sham [2] potential. It contains (1) Vext: the principal
contribution to the external potential Vext is the potential
generated by the ions Vion calculated via the pseudopotentials.
For the purpose of this paper, we consider only the local part
of Vion, written as

V loc
ion (r) =

∑
R,a

va(r − R − da), (A1)

where va is the pseudopotential associated to atom a. We
can put other contributions into Vext, but in this appendix,
Vext = Vion. (2) VH: the Hartree potential is given by

VH(r) = e2
∫

dr′ n(r′)
|r − r′| . (A2)

Here, and whenever there is no specified interval, the inte-
grals are carried out over the entire space spanned by the
corresponding variable. (3) VXC: the exchange-correlation
potential is based on the local density approximation
[36] (LDA).

We also have to mention the potential �(r) which is
the potential generated by the ions used to compute ion-ion
interactions. Although it is generated by the same source as
Vion, it is not calculated via the pseudopotentials. To generate
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this potential, the ions are modeled by a collection of point
charges. This potential is defined as

�(r) =
∑
R′,a′

′ e2Za′

|r − R′ − d′
a| , (A3)

where the prime on the sum excludes the {R = R′,a = a′}
case if r = R + da .

2. Total energy

What we call the total energy of the system is the clamped-
ions energy or the Born-Oppenheimer energy surface [41]:

Etot = Ekin + EXC + EH + Eext + Ei−i, (A4)

where

Ekin = − h̄2

2me

∑
k,s

f (εk,s)〈ψk,s |∇2|ψk,s〉, (A5)

EH = 1

2

∫
n(r)VH(r)dr, (A6)

Eext =
∫

n(r)Vext(r)dr, (A7)

Ei−i = 1

2

∑
R,a

Za�(R + da), (A8)

and EXC is the exchange-correlation energy. For any of the
above quantity E , one can define the corresponding energy per
unit cell E = E/N where N is the number of unit cells. This
is often more useful in practice, since the system is infinite, as
are the energies E .

3. Forces

To calculate the force on atom a in direction i, we compute
the derivative of the total energy per unit cell with respect to
a displacement ua,i of this atom in this direction, and take
the value at ua,i = 0. Using the Hellmann-Feynman theorem
[42,43], the force acting on ion a, in direction i is given by

Fa,i = −∂Etot

∂ua,i

(A9)

= −
∫




n(r)
∂Vext(r)

∂ua,i

dr − ∂Ei−i

∂ua,i

, (A10)

where the integral is carried over the volume of the unit cell

. Here and in the following, the notation ∂

∂ua,i
represents the

value of the derivative at zero displacement. The first term is
the contribution from the electrons, the second from the ions.
The forces can be computed as soon as we have solved the
ground state, since there are only known quantities and their
derivatives.

4. Stresses

The stress is the first derivative of the energy with respect
to the strain tensor ←→ε [31,32]:

σi,j = − 1




∂Etot

∂εi,j

. (A11)

In practice, it is derived from the total energy by applying
the scaling procedure r′ = (1 + ←→ε )r. We will focus here on
the contributions from long-range potentials, the only ones
involved in the 2D Coulomb cutoff process. We give an outline
of the general derivation, below is the treatment of the Hartree
contribution:

σ H
i,j = − 1




∂EH

∂εij

(A12)

with EH = 


2

∑
G �=0

n∗(G)VH(G). (A13)

Since 
n(G) is the number of electrons per unit cell, it is
invariant under strain. We are thus left with the derivative of
the Hartree potential:

∂VH(G)

∂εij

= ∂vc(G)

∂εij

n(G) + ∂n(G)

∂εij

vc(G). (A14)

Starting from the fact that 
n(G) is invariant and knowing
that the volume transforms as 
′ ≈ (1 + ∑

i εii)
, one finds
that ∂n(G)

∂εij
= −δijn(G). We are left with the derivative of the

Coulomb interaction. Since the scaling procedure gives G′ =
(1 − ←→ε )G in reciprocal space, we have that ∂Gl

∂εij
= −δliGj .

The derivative of the Coulomb interaction is then computed
using the chain rule:

∂vc(G)

∂εij

=
∑

l

∂vc(G)

∂Gl

∂Gl

∂εij

(A15)

= −∂vc(G)

∂Gi

Gj (A16)

= vc(G)
2GiGj

G2
(A17)

with the 3D Coulomb interaction as vc(G) = 4πe2

G2 . The Hartree
contribution is thus

σ H
i,j = − 1

2

∑
G

|n(G)|2vc(G) ×
(

2GiGj

G2
− δij

)
. (A18)

Similar derivations yield the contribution from the long-range
part of the local ionic potential. By differentiation of [see also
Eq. (27)]

E
loc,LR
ext = 


∑
G

n∗(G)
∑

a

eiG·da vLR
a (G), (A19)

one gets

σ
loc,LR
i,j = −

∑
G

n(G)
∑

a

e−iG·da vLR
a (G)

×
[

2GiGj

G2

(
1 + |G|2

4η

)
− δij

]
. (A20)

Finally, the long-range part of the ion-ion interaction is written

ELR
i−i = 1

2


∑
G

∣∣∣∣∣
∑

a

Zae
iG·da

∣∣∣∣∣
2

vc(G)e−|G|2/4ηew (A21)
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and gives the following stress:

σ
i−i,LR
i,j = − 1

2


∑
G

∣∣∣∣∣
∑

a

Zae
iG·da

∣∣∣∣∣
2

vc(G)e|G|2/4ηew

×
[

2GiGj

G2

(
1 + |G|2

4ηew

)
− δij

]
. (A22)

APPENDIX B: DFPT

DFPT enables the computation of the linear response of the
ground state to given perturbation. We focus here on phonon
perturbations, as implemented in the phonon code of the
QUANTUM ESPRESSO distribution. Again, we only give minimal
description to settle the notation and define the quantities
referred to in the main text. The reader might refer to the
literature for more details, for example, Refs. [33,34].

1. Phonons

A phonon perturbation of momentum q is represented by
a collection of displacements ua,i(R) of atom a in Cartesian
direction i:

ua,i(R) = ua,i(q)eiq·R, (B1)

where ua,i(q) is the Fourier transform of ua,i(R). The phonon
frequencies are obtained from the second derivative of the total
energy of the crystal Etot (not the energy of a unit cell) via the
matrix of the interatomic force constants defined as [33,34,44]

Cai,a′j (R − R′) = ∂2Etot

∂ua,i(R)∂ua′,j (R′)

= Cion
ai,a′j (R − R′) + Celec

ai,a′j (R − R′). (B2)

In this particular context, it does not make sense to talk
about energy per unit cell. Indeed, the energy is not lattice
periodic because of the phonon perturbation. There are two
contributions, one from the electrons, one from the ions:

Celec
ai,a′j (R − R′) =

∫
∂2Vext(r)

∂ua,i(R)∂ua′,j (R′)
n(r)dr (B3)

+
∫

∂Vext(r)

∂ua,i(R)

∂n(r)

∂ua′,j (R′)
dr, (B4)

Cions
ai,a′j (R − R′) = ∂2Ei−i

∂ua,i(R)∂ua′,j (R′)
. (B5)

The first term of Eqs. (B3) and (B5) are simply the second
derivatives of quantities already computed in DFT. The second
term of Eq. (B3), however, contains the linear response of the
electronic density to a phonon perturbation. This quantity can
be calculated within DFPT. A phonon perturbation translates
into a periodic perturbation of the potential generated by the
ions, that is a periodic perturbation of Vext:

∂Vext(r)

∂ua,i(q)
= ∂Vion(r)

∂ua,i(q)
, (B6)

where we now work with the (single-component) Fourier
transform of the phonon perturbation ua,i(q). The phonon
perturbation triggers the linear response of the electronic

density:

∂n(r)

∂ua,i(q)
, (B7)

which is found by solving a new set of equations, involving
the linear perturbation to the KS potential:

∂VKS(r)

∂ua,i(q)
= ∂Vext(r)

∂ua,i(q)
+ ∂VH(r)

∂ua,i(q)
+ ∂VXC(r)

∂ua,i(q)
, (B8)

where the V notation indicates that we take the lattice-periodic
part of the perturbations:

∂V (r)

∂ua,i(q)
= ∂V(r)

∂ua,i(q)
eiq·r. (B9)

The last two terms of Eq. (B8) are generated by the density
response (B7). We thus have a new self-consistent system to
solve. Once self-consistency is reached, we can calculate the
dynamical matrix D, which is the Fourier transform of the
matrix of the force constants:

Da,i,a′,j (q) = 1√
MaMa′

∑
R

Cai,a′j (R)eiq·R, (B10)

where Ma is the mass of atom a, and we have used translational
invariance to express the matrix of the force constant as
a function of the generic lattice vector R. The eigenvalue
problem

ω2(q)ua,i(q) =
∑
a′,j

Da,i,a′,j (q)ua,i(q) (B11)

gives the frequencies ωq,ν (ω2
q,ν being the eigenvalues) and

eigenvectors eq,ν of mode ν at momentum q.

2. EPC

The electron-phonon interaction matrix elements are ob-
tained from the derivative of the KS potential as follows:

gk+q,s,k,s ′,ν =
∑
a,i

ea,i
q,ν

√
h̄

2Maωq,ν

〈k + q,s|∂VKS(r)

∂ua,i(q)
|k,s ′〉.

(B12)

APPENDIX C: LONG-RANGE/SHORT-RANGE
SEPARATIONS

There are two short-range/long-range (SR/LR) separations
performed in the code. One for the pseudopotentials [Eq. (27)]
and one for the computation of the ion-ion interaction,
Eq. (42). They are done for different reasons. The first is
done to enable the computation of the Fourier transform
of the pseudopotentials, the second is done to optimize the
convergence of the real/reciprocal space computation of the
Ewald sums. To each is associated a tuning parameter, η or ηew.
Since in both case the long-range/short-range contributions
are always put back together before computing any physical
quantity, the tuning parameters can be chosen separately. As in
the original code, we set η = 1 for the pseudopotentials, while
the Ewald splitting parameter ηew used in the computation
of the ion-ion interaction is chosen depending on the plane-
wave cutoff.
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APPENDIX D: TREATMENT OF THE G = 0
SINGULARITIES IN THE 2D CODE

1. G = 0 value of the Coulomb interaction

The treatment of the G = 0 terms with a 2D Coulomb
cutoff is developed in Ref. [26], where the authors show that
one should use the following value for the G → 0 limit of the
truncated Coulomb interaction:

v̄c(G → 0) = −2πe2l2
z . (D1)

In the following, we quickly justify this recommendation.
Note that we use the notation G → 0 to distinguish this value
from the value v̄c(G = 0) = 0 used in our implementation.
The potential V (rp,z) generated by a generic 2D distribution
m(rp,z) via the cutoff Coulomb interaction is written:

V (rp,z) = e2
∫

plane

∫ +lz

−lz

m(r′
p,z′)√

|r′
p − rp|2 + (z′ − z)2

dr′
pdz′.

(D2)

By changing variables and exploiting the in-plane periodicity
of m(rp,z), it can be shown that the planar average of the
potential V (Gp = 0,z) reads

V (Gp = 0,z) = e2
∫

plane

∫ +lz

−lz

〈m〉p(z′)√|rp|2 + (z′ − z)2
drpdz′.

(D3)

This can be written as

V (Gp = 0,z) =
∫ +lz

−lz

〈m〉p(z′) v̄c(Gp = 0,|z − z′|) dz′

(D4)

with

v̄c(Gp = 0,|z|) = e2
∫

plane

1√|rp|2 + z2
drp (D5)

= e2
∫

plane

(
1

|rp| + 1√|rp|2 + z2
− 1

|rp|

)
drp

(D6)

= e2
∫

plane

drp

|rp| − 2πe2|z|. (D7)

The first term of the above equation is the one that gives
the diverging behavior in the potential of a charged plane.
However, this term vanishes as soon as the 2D system is
globally neutral within the cutoff because it does not depend
on z. If we replace m by a globally neutral distribution ntot that
would be the sum of the distributions of the electrons, ions and
gate, we get∫ +lz

−lz

〈m〉p(z′)
(

e2
∫

plane

drp

|rp|
)

dz′ (D8)

=
(

e2
∫

plane

drp

|rp|
) ∫ +lz

−lz

〈ntot〉p(z′)dz′ = 0. (D9)

We can thus drop this term. The definition of the v̄c(G → 0) is
then found by Fourier transform of the remaining term along

the third direction [as in Eq. (23)]:

v̄c(G → 0) = 1

c

∫ +lz

−lz

(−2πe2|z|)dz = −2πe2l2
z . (D10)

2. Implementation

We now show why we can further simplify the process
and use v̄c(G = 0) = 0 in our implementation. The exchange-
correlation and barrier contributions to the potentials and
energies are ignored here because they bring no divergence.
Since we are considering cutoff quantities, the following
concerns the long-range part of the potentials and the corre-
sponding contributions to energy when the long-range/short-
range separation is done. In order to simplify the argument, we
do not make the distinction in the notation. In the following,
the “tilde” quantities are those defined using the value v̄c(G →
0) = −2e2πl2

z recommended in Ref. [26]. Here is how we
define the potentials in our implementation:

V̄H(r) = ṼH(r) − v̄c(G → 0)n(G = 0),

V̄ion(r) = Ṽion(r) + v̄c(G → 0)nion(G = 0),
(D11)

V̄gate(r) = Ṽgate(r) + v̄c(G → 0)
ndop

c
,

�̄(r) = �̃(r) − v̄c(G → 0)nion(G = 0).

Defined this way, the G = 0 value of our potentials is zero (at
least for the long-range part in the case of V̄ion and �̄). Note
that if we sum V̄H, V̄ion, and V̄gate, we find that V̄KS = ṼKS,
which is essential. The potentials give the following energies:

EH = ẼH − 


2

(
nion(0) + ndop

c

)2

v̄c(G → 0),

Eion
ext = Ẽion

ext + 


(
nion(0) + ndop

c

)
nion(G = 0)v̄c(G → 0),

E
gate
ext = Ẽ

gate
ext + 


(
nion(G = 0) + ndop

c

)
ndop

c
v̄c(G → 0),

Ei−i = Ẽi−i − 


2
n2

ion(G = 0)v̄c(G → 0),

Eg−i = Ẽg−i − 

ndop

c
nion(G = 0)v̄c(G → 0),

Eg−g = Ẽg−g − 


2

(ndop

c

)2
v̄c(G → 0), (D12)

where, once again, we have that all the G = 0 contributions
to the energy are zero, and that Etot = Ẽtot, if we sum all the
contributions. The process described above is equivalent to
setting v̄c(G = 0) = 0, and it gives the same KS potential and
total energy as using v̄c(G → 0) = −2πe2l2

z . It is also very
close to the process used in the original 3D code, which allows
us to minimize the changes.

The G = 0 values of the cutoff potentials can thus be set to
zero. This is pretty straightforward to apply when the whole
potential is cutoff, without prior SR/LR separation, that is
in the case of V̄H and V̄gate. When the SR/LR separation is
done, for V̄ion and �̄, it becomes more subtle, because the
short-range parts are not cutoff and the corresponding G = 0
term are finite. Let us examine what must be done, always
trying to minimize the changes with respect to the 3D code.
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The ionic potential’s G = 0 term in the 3D code is
Vion(G = 0) = Ṽion(G = 0) + vc(G = 0)nion(G = 0).

(D13)

This term is nondivergent, nonzero, and short-ranged. It is
computed by numerical integration in a finite sphere. It can
be referred to as the “α” term, leading to the so-called “αZ”
energy contribution. It is a combination of two divergent terms.
Following the overall strategy of the 2D cutoff implementation,
the first term should be separated in SR/LR part and then the
LR part replaced by its cutoff counterpart. The second term
would be directly replaced by its cutoff counterpart. Let us
follow this process and determine how the “α” term should
be corrected in 2D. We first separate the 3D ionic potential in
SR and LR parts. The SR part depends on the pseudopotential
and it is left unchanged. The LR part of the 3D potential
Ṽ 3D, LR

ion (G = 0) can be separated in two terms: (i) a divergent
part and (ii) a finite, nonsingular part [45]

Ṽ 3D,LR, NS
ion (0) = −e2




∑
a

Za

∫
erf(

√
η|r|) − 1

|r| dr (D14)

= πe2

η


∑
a

Za. (D15)

The divergent part (i) cancels out with vc(G → 0)nion(G = 0)
in 3D. Its cutoff counterpart similarly cancels with v̄c(G →
0)nion(G = 0) in 2D. The changes to be made to the α term
would thus be subtracting and adding zero, i.e., doing nothing.
The term (ii) in its 3D form, Ṽ 3D, LR, NS

ion (0) should be subtracted
and replaced by the G = 0 value of its cutoff counterpart. The
latter being zero, the only correction to make to the 3D α term
is to subtract πe2

η


∑
a Za . In the 3D Ewald summation, the

G = 0 term is

�(G = 0) = �̃(G = 0) − vc(G → 0)nion(G = 0). (D16)

Similarly to the α term, the only thing to do is to subtract
− πe2

ηew


∑
a Za . Note that it looks like we are adding some

η-dependent terms to Eion
ext and Ei−i. This is actually not the

case. The η-dependent terms we add in the G = 0 terms
cancel out with equal and opposite contributions in the G �= 0
terms. We are defining the G = 0 term that corresponds to the
cutoff potential used for the G �= 0 terms. Eion

ext and Ei−i are
independent of η or ηew, and those parameters can be still be
chosen independently for the two SR/LR separation processes
as said in Appendix C.
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