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We study the ground-state properties of a double-layer graphene system with the Coulomb interlayer electron-
electron interaction modeled within the random-phase approximation. We first obtain an expression of the
quantum capacitance of a two-layer system. In addition, we calculate the many-body exchange-correlation
energy and quantum capacitance of the hybrid double-layer graphene system at zero temperature. We show an
enhancement of the majority density layer thermodynamic density of states owing to an increasing interlayer
interaction between two layers near the Dirac point. The quantum capacitance near the neutrality point behaves
like a square root of the total density α

√
n where the coefficient α decreases by increasing the charge-density

imbalance between two layers. Furthermore, we show that the quantum capacitance changes linearly by the gate
voltage. Our results can be verified by current experiments.
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I. INTRODUCTION

The conventional double layers based on semiconductors
have amassed great interest for many years. Double-layer
electron (hole) systems comprise two parallel quasi-two-
dimensional (2D) electron (hole) layers in close proximity [1].
Such systems are useful structures to study various novel phys-
ical phenomena arising from the interlayer interaction effects
specially at low particle densities or close proximity distance
where many-body physics are significant. For instance, the
observation of the fractional quantum Hall state at a half-filling
factor which is forbidden in monolayer structures [2,3], the
quantum Hall ferromagnetic phase transition [4], the Coulomb
drag in a double-layer system [5], the quantum capacitance,
and the electronic compressibility and transport properties of
bilayer structures are systems where the interlayer interactions
give rise to new physical properties.

Graphene, a flat sheet of carbon atoms arranged in a
honeycomb lattice [6,7], after realization in 2004, has been
attracting the attention of many scientists in different research
areas from both technological and academic points of view.
The low-energy charge carriers in pristine graphene behave
as massless Dirac fermions. Since the density of states of
monolayer graphene changes linearly as the Fermi energy,
therefore, the quantum capacitance, which is a consequence of
the Pauli principle [8] requires extra energy for filling a quan-
tum system with electrons, can be changed by applying a gate
voltage. The differential capacitance of graphene is linearly
proportional to its electric potential when operated near the
Dirac point. Recently, the local compressibility of graphene
has been measured [9] and is consistent with the many-body
calculations [10] of this quantity. Moreover, experiments
[11] on measuring quantum capacitance in pristine graphene
revealed the signature of many-body effects in agreement
with theoretical calculations [12]. The quantum capacitance
of graphene has been measured using a three-electrode
electrochemical configuration [13], the graphene-insulator-
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semiconductor backgate [14], the metal-oxide-semiconductor
structures [15], in double-layer capacitors [16], and the
epitaxial graphene layers thermally elaborated on a carbon-
terminated face [17]. The quantum capacitance of bilayer
graphene has been measured [18] and studied theoretically [19]
too. Furthermore, the ground-state properties and dynamical
behavior of gapless and gapped graphene monolayers have
been the subject of many theoretical studies [7,20,21].

Multilayer systems enhance the effects of interparticle in-
teractions through the combination of reduced dimensionality
and low particle density and by the layer index. In this article,
we study the quantum capacitance of a double-layer graphene
with imbalanced charge densities by using the screened
Coulomb potentials within the random-phase approximation
(RPA) to explore the effect of the interlayer interaction on the
quantum capacitance. The exchange-correlation energy was
investigated previously for a double quantum well [22] and
double-layer graphene [23].

One of the main consequences of the electron-electron
interaction in graphene is the enhancement of the renor-
malized Fermi velocity, especially at lower densities [24].
In contrast to massless Dirac fermions, the electron-electron
interaction will result in the decreasing of the Fermi velocity
in conventional 2D electron systems. We perform a theoretical
study of the quantum capacitance and related quantities of a
double-layer system. First of all, we generalize the expression
of the quantum capacitance for a double-layer structure,
and afterwards, by using the ground-state properties of the
system, we numerically calculate the quantum capacitance.
The determination of graphene quantum capacitance is of
crucial interest because not only does it get access to the
density of states directly, but also is an efficient way to explore
various anomalies occurring near the Dirac point which
might be difficult to probe only by transport measurement
[1,11,25–27]. We show an enhancement of the majority density
layer thermodynamic density of states owing to a reduction of
the total electron density and thus an increasing interlayer
interaction between two layers near the Dirac point. Our
numerical results show that the quantum capacitance near
the neutrality point behaves like a square root of the total
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FIG. 1. Schematic of a double-layer system, including two
graphene layers encapsulated by different materials and separated
by a distance d from each other. The spacer distance is H , and the
gate voltage is applied after the spacer material. The bias voltage
and the charge-carrier densities together with corresponding voltages
of each layer Vb, V1, and V2, respectively, are shown. Applying
an electric-field E2 on the top layer results in a penetrating field
E1 between layers. By connecting the bottom layer to a large
resistance, the electric-field E0 is fixed, and then the physical quantity
RE = dE1/dE2 can be obtained.

density α
√

n where the coefficient α decreases by increasing
the charge-density imbalance between two layers. We also
find that the quantum capacitance is sensitive to the bias
voltage and depends on the gate voltage linearly, in contrast
to a conventional 2D electron gas (2DEG) system where its
quantum capacitance is independent of gate voltage.

This paper is organized as follows. In Sec. II we present
our model, discuss the realization of our setup, and study
the effect of the Coulomb interactions on the ground-state
energy of the double-layer systems. We then discuss the
quantum capacitance for the double-layer graphene systems.
The numerical results and discussion are presented in Sec. III,
and finally we conclude our results in Sec. IV with a summary
and some remarks.

II. THEORY AND MODEL HAMILTONIAN

We consider a free-disordered double-layer structure incor-
porating a doped graphene layer (layer I) placed on another
graphene layer (layer II) with a separation distance d at zero
temperature. A schematic of the structure is shown in Fig. 1
where the electron densities in the layers are n1 and n2. We
assume that each layer is about zero thickness in the direction
normal to the plane of the system. The layers are separated by a
dielectric material (shown in Fig. 1) with a dielectric constant
ε2, and we suppose that the tunneling of electrons between
the layers is negligible, however, the Coulomb interlayer
interaction plays an important role in the system. The effective
Hamiltonian of the system under consideration reads

Ĥ =
∑

k,l,α,β

ψ̂
†
k,l,αh̄vlσ α,β · kψ̂k,l,β

+ 1

2A
∑

q �=0,l,l′
Vll′(q)ρ̂q,l ρ̂

†
q,l′ . (1)

Here vl is the Fermi velocity of layer l = 1 and 2, ψ̂k’s
are the corresponding two-component pseudospinors of the
noninteracting Hamiltonian, A is the area of the system, Vll′

is the matrix of the bare Coulomb interactions, ρ̂q,l is the

density operator for the lth layer, α and β are the pseudospin
indices, and σ is the Pauli matrix. In this Hamiltonian,
the two layers are perfectly decoupled, and the long-range
Coulomb interaction affects only the electrons in the layers. We
define the retarded density-density linear-response functions
χll′(q,ω) = 1

ih̄
limη→0

∫ ∞
0 ei(ω+iη)t 〈[ρ̂l(q,t),ρ̂†

l′ (q)]〉, where η

is an infinitesimal parameter and 〈· · · 〉 denotes the average in
the thermal equilibrium ensemble. Note that, in our model,
χll′ = χlδl,l′ . This quantity is related to several important
many-body properties, such as the total ground-state energy,
the electron compressibility, and the renormalized Fermi
velocity [28]. Using the RPA, one can find χ−1(q,ω) =
χ (0)−1

(q,ω) − V(q), where χ (0)(q,ω) is the noninteracting
Lindhard matrix-response function of the Dirac fermions in
the two-component systems. V (q) is a 2 × 2 matrix including
inter- and intralayer Coulomb interactions.

The intra- and interlayer Coulomb potentials are given by

V11(q) = 4πe2

qF (q)
[(ε2 + ε3)eqd + (ε2 − ε3)e−qd ],

V12(q) = V21(q) = 8πe2

qF (q)
ε2, (2)

where F (q) = (ε1 + ε2)(ε2 + ε3)eqd + (ε1 − ε2)(ε2 − ε3)e−qd

and the interaction in the top layer can be obtained by replacing
ε1 ↔ ε3 in V11(q). Here εi is the dielectric constant of the
region ith.

The exchange and the correlation energies of a double-layer
system in the RPA have been calculated in Ref. [23]. We
follow that approach to calculate the ground-state energy of the
system under consideration. We define the total Fermi wave
vector of the system as kF = √

4πn/g (n = n1 + n2) where
g(= gsgv) is the total spin (gs) and valley (gv) degeneracies.

Having calculated the ground-state energy, the electron
compressibility and the quantum capacitance [8] can be
obtained which are two important physical quantities to
investigate many-body effects in 2D systems. These quantities
are in fact related to the density of states.

The electron compressibility of a system [29] is related to
the total energy as

κ−1 = n2 ∂μ

∂n
= n2 ∂2(nε)

∂n2
, (3)

where μ is the chemical potential and the total energy
per particle is ε = εkin + εx + εc, where εkin is the total
kinetic energy of the system: εkin = (gεF/6)[k̄3

F2 + k̄3
F1] where

kFi = k̄FikF denotes the Fermi wavelength of layer i and the
energy quantities are scaled in units of εF = h̄vFkF. We assume
that the density of states is symmetric with respect to the Fermi
energy.

Eisenstein et al. [26] have introduced a powerful method
to measure the compressibility of a 2DEG layer by locating
another 2D layer in the proximity of the first layer. The
spacer distance is H , and the gate voltage is applied after
the spacer material (see Fig. 1). The bias voltage and the
charge-carrier densities together with corresponding voltages
of each layer Vb, V1, and V2 are considered, respectively.
Applying an electric-field E2 on the top layer results in a
penetrating field E1 between layers. By connecting the bottom
layer to a large resistance, the electric-field E0 is fixed, and
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then the physical quantity RE = dE1/dE2 can be measured.
Before their experimental proposal, the measurement of the
compressibility was based on measuring the capacitance
between a 2DES layer and a metal gate. In this method, the
capacitance was obtained by the sum of a large geometric
contribution and a much smaller term ∂μ/∂n. It turns out that
the first term made significant errors in the measurement. In
the method of Eisenstein et al. [26], a double-quantum-well
system was used as shown in Fig. 1. Using a large resistance
connected to the bottom layer, one can fix the value of E0.
In addition, tuning the external field E2 results in the field
changes between layers E1, and therefore, dE1/dE2 is the
quantity which can be measured. Eisenstein et al. [26] used this
method in a situation where the distance between layers was
far enough so the interlayer correlations can be neglected and
then measured the compressibility of the top layer. Jungwirth
and MacDonald [27], on the other hand, extended their analysis
for a narrow double-layer system where interlayer correlations
play an important role.

The energy of the double-layer system in this configuration
can be written up to an irrelevant constant by

E(n1,n2)

A = e2d

2ε2
(n2 − n0)2 + nε(n − n2,n2), (4)

where the first term is the energy stored in a capacitor with
two parallel metallic planes, n2 and n1 are the densities of the
bottom and top layers, respectively, n0 is a constant density,
which is determined by E0, and ε(n1,n2) is the energy per
particle of the double-layer system. From Poisson’s equations
and the electrostatic laws, we have

ε2E1 = ε3E0 − en2, ε1E2 = ε3E0 − e(n1 + n2). (5)

Changing E2 varies the total density, whereas E1 controls the
electron-density n2. Keeping in mind that E0 is a constant
value according to the large resistance and independent of
the voltage, we thus define the Eisenstein ratio as RE =
dE1/dE2 = (ε2/ε1)dn2/dn. Having given n, we can deter-
mine n2 by minimizing the total energy using Eq. (4) with
respect to n2. We thus get the following equation μ1 =
μ2 + (e2d/ε2)(n2 − n0) where μi = ∂[nε(n1,n2)]/∂ni . Note
that μi includes all contributions to the chemical potential
for electrons in the ith layer except for contributions from the
electrostatic potentials and would be the full chemical potential
if neutralizing positive charges in each layer were assumed.

It follows from μi by taking the partial derivatives with
respect to the density of the layers that

∂μ1

∂n1
dn1 + ∂μ1

∂n2
dn2 = ∂μ2

∂n1
dn1 + ∂μ2

∂n2
dn2 + e2d

ε2
dn2, (6)

and it turns out that

(d11 − d21)(dn − dn2) = (d + d22 − d12)dn2, (7)

where we introduce a set of lengths as follows:

dij = ε2

e2

∂μi

∂nj

, (8)

where i,j = 1, 2 are layer labels. Accordingly, we find

dn2

dn
= d11 − d21

d + d11 + d22 − d21 − d12
. (9)

Note that, for the local minimum of the total energy per
unit area, we require that the second derivative of the total
energy Eq. (4) with respect to n2 be positive. This gives a nec-
essary condition for stability in which d + d11 + d22 − d21 −
d12 > 0.

Moreover, the Eisenstein ratio [30] is defined by RE =
ε2C/ε1C1 where C1 = Ae2∂n1/∂μ1 and thus,

1

C
= d11

ε2A
d + d11 + d22 − d21 − d12

d11 − d21
. (10)

It is easy to decompose the above expression into two parts
as

1

C
= 1

ε2A
d

1 − d21
d11

+ 1

ε1A
d11 + d22 − d21 − d12

1 − d21
d11

. (11)

Since d21 
 d11, we can approximate the denominator by
unity, and thus the capacitance C, which contains two
contributions in the series, is

1

C
= 1

Cg

+ 1

CQ

, (12)

where Cg = Aε2/d is the geometrical capacitance and the
quantum capacitance can be defined as

CQ = A e2

∂μ1/∂n1 + ∂μ2/∂n2 − ∂μ1/∂n2 − ∂μ2/∂n1
.

(13)

This expression of the quantum capacitance is a main equation
in this paper. In the classical limit where h̄ → 0 and m → ∞
one finds CQ → ∞ and finally C = Cg . However, in the
quantum regime, one can expect interesting effects when
CQ becomes compatible to the geometrical capacitance.
Furthermore, by considering d → ∞, this expression reduces
to the well-known expression of the monolayer quantum
capacitance where CQ = Ae2 ∂n2

∂μ2
.

III. NUMERICAL RESULTS

In this section, we present our numerical results of the
quantum capacitance using the ground-state energy at zero
temperature through Eqs. (8)–(13). Here we introduce a
density asymmetry parameter between two layers −1 < ξ =
(n2 − n1)/n < 1.

Exchange and correlation energies in the system depend
both on interactions on the Fermi wavelength scale which
influence correlations between carriers and on interactions at
shorter length scales which influence correlation with the Dirac
sea background [23]. Because decoupled graphene layers are
separated by atomic length scales and carrier densities are
always small, thus the atomic scale kF,ld is typically small.
Here, the exchange energies are positive [23] because they
are calculated relative to zero carrier density using the Dirac
point self-energy of this limit as the zero of energy and owing
to its chirality. The increase in the exchange energy with the
carrier density in graphene has the physical consequence of
an enhancement of the screening and therefore, increasing
the renormalized Fermi velocity instead of weakening it as in
an ordinary 2D electron gas. The correlation energy, which
is negative, is dramatically higher in the decoupled graphene
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FIG. 2. (a) The quantum capacitance (in units of μF cm−2) from
Eq. (13) as a function of the electron-density n = n1 + n2 (in
units of 1012 cm−2) for different values of the density imbalance
ξ = (n2 − n1)/n. Here we consider d = 1 nm, ε1 = 1 with H tends
to infinity, ε2 = 4.5, and ε3 = 4.5. The solid curve shows the quantum
capacitance of single-layer graphene. (b) The quantum capacitance
(in units of μF cm−2) as a function of the electron-density n2 (in
units of 1012 cm−2) for different n1 values (in units of 1012 cm−2) in
comparison with that in a system incorporates encapsulated graphene
with hexagonal boron nitride and placed by a metal at a distance of
d = 1 nm studied in Ref. [12].

layer in comparison to that in monolayer graphene, strongly
influenced by interlayer interactions, and resulting in the
increased quantum capacitance.

Having calculated the ground-state energies based on the
method reported in Ref. [23], we can calculate some interesting
transport properties. The quantum capacitance as a function of
the total electron density on the two layers is presented in
Fig. 2(a). The quantum capacitance starts from zero in clean
systems at the Dirac point and increases by increasing the
electron density owing to the fact that the renormalized Fermi
velocity decreases. The behavior of CQ near the neutrality
point is no longer linear and can be fitted quite well with
the total density as α

√
n where the coefficient α decreases

by increasing the density imbalance ξ . These are happening
owing to the change in the Fermi velocity stemming from
the increasing of the Coulomb interlayer interaction [23].
Our numerical results show that the quantum capacitance
is suppressed by increasing the charge imbalance between
two layers. We also calculate a quantum capacitance of a
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FIG. 3. The thermodynamic density-of-states ∂ni/∂μi [in units
of 1010/(meV cm2)] where i = 1 or 2 as a function of the electron-
density n = n1 + n2 (in units of 1012 cm−2) for different values of
the density imbalance. We consider d = 1 nm, ε1 = 1 with H tends
to infinity, ε2 = 4.5, and ε3 = 4.5.

monolayer layer system (the same as in Fig. 1 when d → ∞),
and the result is shown in Fig. 2(a) as a solid line. In order
to perceive the role of the Coulomb interactions, we compare
the results with that in a system when a metal gate exists on
the top of the encapsulated monolayer graphene [12]. The
quantum capacitance as a function of the electron-density
n2 for different n1’s is illustrated in Fig. 2(b). First of all,
there is an enhancement of the quantum capacitance when a
metal is located close to the system. Furthermore, by reducing
n1, ∂μ1/∂n1 increases, and thus CQ decreases. Therefore, by
increasing n1, the quantum capacitance of the double-layer
graphene approaches the quantum capacitance of a graphene
system in the presence of the metal gate.

The thermodynamic density-of-states ∂ni/∂μi for layer
i = 1, 2 as a function of the total electron-density n are shown
in Fig. 3. The thermodynamic density of states decreases with
increasing ξ for layer I with the minority electron-density
n1 = n(1 − ξ )/2, ∂n2/∂μ2 increases, therefore, the interlayer
interaction contribution of the minority density is dominated
and results in increasing the thermodynamic density of states
in the second layer. In the absence of interlayer interactions,
d12 = d21 = 0, and thus dii is related directly to the electronic
compressibility in layer i.

In Fig. 4, we demonstrate the Eisenstein ratio dn2/dn as
a function of the total density n. The advantage of measuring
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FIG. 4. The Eisenstein ratio dn2/dn from Eq. (9) as a function of
the electron-density n = n1 + n2 (in units of 1012 cm−2) for different
values of the density imbalance and d = 1 nm, ε1 = 1 with H tends
to infinity, ε2 = 4.5, and ε3 = 4.5.

dn2/dn is that this quantity depends only on the electronic
lengths dij and the interlayer distance d. By increasing the
electron-density imbalance, d11 increases as well as RE .

Finally, in order to connect this study to an experimental
setup, we change the charge-carrier densities or the top and
bottom chemical potentials μ1 and μ2, respectively, to the
gate voltage VG and the interlayer bias Vb assuming that all
quantities are uniform in the horizontal directions [23,31].
The bias voltage can be defined by the difference between the
electrochemical potentials of the top and bottom layers and
reads as

Vb = V1 − V2 − (μ1 − μ2)/e. (14)

Another electrostatic relation follows from the charge neu-
trality condition where n1 + n2 + nG = 0 where nG is the
electron-density associated with the gate voltage. These carrier
densities are related to the electric fields (in what follows, we
set n0 = 0, and it means that all electric fields are measured
with E0),

E2 = −enG/ε1, ε2E1 = ε1E2 − en1. (15)

Furthermore, the electric fields are connected to the voltages
on the graphene layers and on the gate by

E2 = −(V1 − VG)/H, E1 = −(V2 − V1)/d, (16)

and the chemical potential for each layer can be calculated
through μi = ∂[nε(n1,n2)]/∂ni where ε(n1,n2) is the ground-
state energy per particle of the system calculated through the
RPA. These aforementioned sets of equations can be solved
for unknown μ1, μ2, E1, E2, V1, V2, and VG for given n1 and
n2 values.

In Fig. 5(a) we plot the quantum capacitance in units of
μF cm−2 as functions of the charge-carrier densities n1 and
n2 in units of 1012 cm−2 for d = 3.5 and H = 30 nm when
graphene layers are encapsulated by hexagonal boron nitride.
CQ increases noticeably with increasing layer densities.
Furthermore, CQ is demonstrated as functions of the top gate
V1 and bias potential Vb which is given by Eq. (14) in Fig. 5(b).
The domain of the potentials is considered in small regions. We
find that the quantum capacitance is sensitive to both potentials
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FIG. 5. The quantum capacitance (in units of μF cm−2) as
functions of (a) the electron-densities n1 and n2 (in units of 1012 cm−2)
and (b) the top gate and bias potential in units of eV for d = 3.5 and
H = 30 nm when graphene layers are encapsulated by hexagonal
boron nitride where εi = 4.5 for i = 1–3. Notice that since H/d is
very large, the formalisms given by Eqs. (1) and (2) are valid.

and it depends on the gate voltage linearly, in contrast to a
conventional 2D electron gas system where its quantum ca-
pacitance is independent of gate voltage. We stress that the im-
plications of the findings reported in this paper are applicable
to any graphene device that involves a metal-graphene contact.
For example, for a graphene-based field-effect transistor, it has
widely been reported that the contact resistance between the
metal and the graphene exhibits an asymmetry with respect to
the polarity of the gate potential [9,32].

IV. SUMMARY AND CONCLUSION

In conclusion, we have presented a theoretical scheme,
based on the random-phase approximation, to investigate the
effects of Coulomb interactions on observable quantities of
decoupled graphene Fermi-liquid systems encapsulated by di-
electric materials, such as the quantum capacitance and charge
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compressibility. We have carried out microscopic calculations
to explore the ground-state properties of the system with
the Coulomb interlayer electron-electron interaction mod-
eled within the random-phase approximation. Importantly,
an expression for describing the quantum capacitance for a
two-layer system is derived. We have shown that the quantum
capacitance near the neutrality point can be well behaved by
α
√

n (linear behavior to the gate voltage) where the prefactor α

decreases by increasing the charge-density imbalance between
two layers. An enhancement of the majority density layer
thermodynamic density of states due to a reduction of the total
electron density is calculated. We have also shown that the

quantum capacitance increases by locating a metal on top of the
considered system. Furthermore, we have found that the quan-
tum capacitance is sensitive to the top and bottom potentials
and the gate voltage dependence on the quantum capacitance
is linear, in contrast to a conventional 2D electron gas system
where its quantum capacitance is independent of gate voltage.
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