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Magnetic states of linear defects in graphene monolayers: Effects of strain and interaction
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The combined effects of defect-defect interaction and strains of up to 10% on the onset of magnetic states in
the quasi-one-dimensional electronic states generated by the so-called 558 linear defect in graphene monolayers
are investigated by means of ab initio calculations. Results are analyzed on the basis of the heuristics of the Stoner
criterion. We find that conditions for the emergence of magnetic states on the 558 defect can be tuned by uniaxial
tensile parallel strains (along the defect direction) as well as by uniaxial compressive perpendicular strains, at
both limits of isolated and interacting 558 defects. Parallel tensile strains and perpendicular compressive strains
are shown to give rise to two cooperative effects that favor the emergence of itinerant magnetism on the 558
defect in graphene: enhancement of the density of states (DOS) of the resonant defect states in the region of the
Fermi level and tuning of the Fermi level to the maximum of the related DOS peak. On the other hand, parallel
compressive strains and perpendicular tensile strains are shown to be detrimental to the development of magnetic
states in the 558 defect, because in these cases the Fermi level is found to shift away from the maximum of the
DOS of the defect states. Effects of isotropic and unisotropic biaxial strains are also analyzed in terms of the
conditions encoded in the Stoner criterion.
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I. INTRODUCTION

Technological applications of two-dimensional (2D) nano-
materials require the ability to control their mechanical, elec-
tronic, and magnetic properties. In the last decade, graphene
in the 2D monolayer form has become an important subject
of research, motivated by its mechanical strength and the rich
electronic phenomenology connected with the Dirac-fermion
nature of its electronic structure on a scale of ∼1eV around
the Fermi level [1–3]. The origin of magnetism in graphene
is still debated, being usually associated with the presence of
vacancies or adsorbates that tend to bind to vacancies [4–8].
In bypartite lattices, vacancies lead to an imbalance in the
electronic occupation of the two sublattices, which leads to
stabilization of magnetic ground states, as predicted by the
Lieb theorem [9]. In a 2D material such as graphene, vacancies
and topological point defects can be created in nonequilibrium
densities by electron-beam irradiation [10]. However, full
control over such magnetic states is hampered by the random
placement of vacancies.

Judicious introduction of structural defects presents an
alternative for manipulating the electronic and magnetic
properties in 2D materials [1,11–20]. Besides the tilt GBs
that inevitably occur in polycrystalline graphene [21–25], a
so-called 558 extended line defect was shown to occur in
graphene layers grown on Ni substrates [13] as the interface
across which the stacking of the graphene layer with respect to
the Ni substrate shifts from AB to AC (in the usual convention
for layer stacking in close-packed lattices). Furthermore,
recent experimental work has introduced a protocol for the
formation of this 558 extended defect in a controllable fashion
in a graphene monolayer [26], which shows that the possibility
of manipulating the electronic and magnetic properties of
graphene and other two-dimensional materials, by controllable
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introduction of defects, is a realistic prospect for the near
future.

The morphology of the 558 extended defect, shown in
Fig. 1, consists of a periodic unit composed of two side-sharing
pentagonal rings connected to an octagonal ring. Alexandre
et al. [11] employed ab initio calculations to show the
development of itinerant ferromagnetism in the quasi-one-
dimensional (q1D) electronic states that are strongly localized
on the core of the 558 defect. The ferromagnetic state obtained
by Alexandre et al. requires n-type doping in order for the
Stoner criterion for a magnetic instability to be met [27,28].
Electron doping shifts the Fermi level to the maximum of
a pronounced peak in the electronic density of states (DOS)
generated by the extended van Hove singularities that appear
at and near the Fermi level, which are characteristic of the q1D
electronic states of the 558 extended defect [11] in graphene.
Given the similar flat-band mechanism and a spin density that
is strongly concentrated on one sublattice of the graphene
layer, the magnetic state of the 558 defect is of the same
nature as that found on zigzag edges of graphene ribbons, as
pointed out in Ref. [11].

The extended van Hove singularities, i.e., the broad flat
portions of the defect-related electronic states crossing the
Fermi level, signal a strong localization of the q1D defect
states that leads to an enhancement of exchange and correlation
effects. Tuning the Fermi level to the region of the maximum
of the related DOS peak leads to the onset of the magnetic
states. Large periodic supercells were employed in Ref. [11],
with negligible couplings between the 558 defect in the unit
cell and its periodic images, meaning that conditions for the
emergence of the magnetic state apply to the case of an isolated
and unstrained 558 defect in that study. One is naturally led to
consider the formation of magnetic states in the 558 defect in
graphene under less restrictive conditions.

Two-dimensional materials grown on mismatched sub-
strates are commonly subject to strain. Moreover, strain
engineering opens up the possibility of tailoring electronic
and magnetic functionalities in 2D materials by the intentional
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FIG. 1. Geometry of 558 linear defect cells in graphene. (a) Two
periods of the 558 defect and its nearest periodic image, for the
case of a defect-defect distance of R = 18.7 Å. Initial arrangement
of atomic spins for the antiferromagentic state is indicated. (b) Initial
distribution of atomic spins for the ferromagnetic state. The inset
shows a 2 × 2 cell of the case with R = 5.7 Å. (c) Brillouin zone
corresponding to the supercells in our study, showing special k points
along symmetry lines.

application of strain. Graphene is known to withstand strains as
high as 20%–25% without failure [14,29,30], being one of the
2D systems of choice for strain engineering [31]. Generally,
tensile strains lead to reduced bandwidths and extended van
Hove singularities, thus to enhanced exchange and correlation
effects, as exemplified by the case of palladium, which displays
paramagnetic states that are very close to magnetic instabilities
that can be triggered by quantum confinement and strain in
low-dimensional structures [32–36].

In the present study, we employ ab initio calculations to
address the combined effects of defect-defect interaction and
uniaxial or biaxial strains of up to 10% on the development of
magnetic instabilities on the q1D electronic states generated
by the 558 extended defect on graphene monolayers.

Our calculations indicate that conditions for the devel-
opment of magnetic instabilities on the core-localized q1D
558-defect states can be tuned by uniaxial tensile strains along

the defect line, and uniaxial compressive strains perpendicular
to the defect line, at both limits of isolated and interacting 558
defects. A tensile strain applied along the defect line (which
we refer to as a parallel tensile strain) leads to two cooperative
effects that favor the emergence of itinerant magnetism in the
558-defect states, for both isolated and interacting defects:
(i) enhancement of the DOS of the q1D states in the region
of the Fermi level and (ii) tuning of the Fermi level to the
maximum of the related DOS peak. On its turn, a compressive
strain applied in the direction perpendicular to the defect line
favors magnetic states by also tuning the Fermi level, but in
this case enhancement of the DOS at the Fermi level only
starts at defect-defect distances of the order of 20 Å, with the
effect becoming more pronounced as we approach the limit of
isolated (noninteracting) defects.

On the other hand, uniaxial compressive strains applied
along the defect line, as well as perpendicular tensile strains,
are shown to be detrimental to the development of magnetic
states on the 558 defect, because in these cases the Fermi level
is found to shift away from the maximum of the defect DOS.
This untuning of the Fermi level inhibits the emergence of the
magnetic states.

In the case of isotropic biaxial tensile strains, we find that
the stabilization of a magnetic state occurs only in the limit of
interacting defects, for strains of up to 5%.

The above suggests an optimum scenario for the stabiliza-
tion of magnetic states in the 558 linear defect in graphene: a
combination of a tensile parallel strain with a compressive per-
pendicular one. Indeed, for isolated (noninteracting) 558 de-
fects submitted to biaxial strains with (parallel,perpendicular)
components of (5%,−5%) and (10%,−10%) we find an
increase in the values of the magnetic moments of the
ferromagnetic states, compared to the respective uniaxial
values. However, for 558 defects interacting at a distance R =
10.0 Å, a (5%,−5%) strain combination produces an increase
in the magnitude of the magnetic moment, but a (10%,−10%)
combination fully quenches the magnetic moment.

These results are also analyzed by considering the evolution
of the DOS in each case. For the noninteracting case, the
DOS at the Fermi level increases for both the (5%,−5%)
and (10%,−10%) strains, and the Fermi level is tuned to the
maximum of the defect peak. For the interacting case, we
observe the same tendency for the (5%,−5%) biaxial strain.
However, in the case of the (10%,−10%) strain we observe a
splitting of the peak of defect states, with a reduction of the
magnitude of the DOS with respect to the unstrained state.
Furthermore, the Fermi level is tuned to the lower-energy split
peak, resulting in the quenching of the magnetic state.

Our analysis in the present work does not consider buckling
effects, which are important in the case of compressive strains
[37,38]. Critical compressive strains for buckling in monolayer
graphene have been found in the literature to depend strongly
on interaction of the monolayer with the substrate, and also on
the density of defects in the layer. Vacancies, for example, are
found to reduce the value of critical strains, while interaction
with a substrate has been shown to lead to critical buckling
strains that are higher, by six orders of magnitude, than in
freestanding layers [37,38]. Values of critical strains of the
order of 1%–2% have been reported, which fall on the interval
of compressive strains we consider. Buckling effects on the
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magnetic states of the 558 defect will be addressed in a
forthcoming work.

Regarding the meaning of our DFT-theory mean-field
results, it must be stressed that, because of their 1D nature,
these correlated magnetic states do not show long range order
[39]. Instead, they present algebraic correlation functions, and
the magnetic states we find in our calculations should manifest
themselves in experimental samples as magnetic domains with
a null average macroscopic magnetization.

The paper is organized as follows: in Sec. II we describe
the first-principles methodology employed in our calculations.
In Sec. III we present our results, with a discussion on the
energetics of the strained states of the 558 defect in Sec. III A,
followed by a discussion of the effects of uniaxial and biaxial
strains on the stabilization of magnetic states, with effects of
parallel strains discussed in Sec. III B, of perpendicular strains
in Sec. III C, and of biaxial strains in Sec. III D. In Sec. IV we
summarize the conclusions of our work.

II. METHODOLOGY

In our calculations we employ the SIESTA code [40] im-
plementation of Kohn-Sham density functional theory (DFT),
within the generalized-gradient approximation (GGA) [41,42]
for the exchange and correlation functional. Interactions
between valence electrons and ionic cores are treated using
norm-conserving pseudopotentials in the Kleinman-Bylander
factorized form [43,44]. A double-zeta LCAO basis set,
augmented with polarization orbitals, is used to expand the
electronic wave functions. In all calculations, an equivalent
real-space mesh cutoff of 250 Ry is used, and meshes of up
to 64 k points along the defect direction in the Brillouin zone
are used to converge the electronic density and the density of
states.

Full structural relaxation of internal degrees of freedom is
performed, with forces on atoms reaching values of 0.01 eV/Å
or lower in all cases. For the equilibrium (unstrained) geome-
tries, the residual pressure on the supercell is lower than 1 kbar
in all cases. In a few selected cases, convergence of energies
and magnetic moments is verified with calculations employing
larger k-point sets and a mesh cutoff of 300 Ry, to ensure
that our results are converged with respect to calculational
parameters.

For the ferromagnetic and spin-unpolarized calculations,
the supercells we employ contain a single 558 extended defect,
and the supercell vector in the direction perpendicular to the
defect line (the x axis of the cell) determines the nearest defect-
defect distance R in the periodic array of defects generated by
the use of periodic boundary conditions, as shown in Fig. 1.
In the case of the antiferromagnetic (AFM) calculations, the
supercell is doubled along the x axis and contains two 558
defects. The initial AFM spin distribution in this case is shown
in Fig. 1 and described in the next section.

Supercells containing 558 defects may be classified by the
number N of “buffer” zigzag chains of carbon atoms in the bulk
part of the cell, as suggested in Ref. [12]. In our analysis we
find it more expedient to classify the supercells by the distance
R between the 558 defect in the unit cell and its closest periodic
images. We consider a total of six different supercells: R =
5.7 Å (N = 0), R = 10.0 Å (N = 2), R = 14.3 Å (N = 4),

R = 18.7 Å (N = 6), R = 23.0 Å (N = 8), and R = 27.3 Å
(N = 10). These supercells cover the range of defect-defect
distances between R = 5.7 Å, the smallest possible distance
between adjacent 558 defects, and R = 27.3 Å, a value at
which defect-defect interaction is negligible and the electronic
properties of the defect are characteristic of isolated defects.

The geometry of the supercell with R = 18.7 Å, with six
buffer chains between defects, is shown in Fig. 1. The inset in
Fig. 1(b) shows a 2 × 2 frame of the supercell with R = 5.7 Å,
with no buffer chains between the 558 defect in the unit cell
and its closest periodic images.

III. RESULTS AND DISCUSSION

In the following discussion, the density of states (DOS) of
the electronic states of graphene sheets containing 558 defects,
as a function of energy, is denoted as N (ε). The maximum of
the peak introduced in the DOS by the 558-defect states, in the
region of the Fermi level, is denoted as Nmax(ε), and for the
value of the DOS at the Fermi level we write N (εF ).

Our results are analyzed in terms of the Stoner criterion
(SC) for itinerant magnetic instabilities:

IN (εF ) � 1, (1)

where I is the exchange integral and N (εF ) is the DOS at the
Fermi level.

Our focus is to address the effects of defect-defect interac-
tion and strain on the development of magnetic states on the
q1D electronic states of the 558 defect in graphene, based
on the heuristics of the SC. While the strong localization
of the q1D defect states favors both factors in the left-hand
side of the SC inequality, in Ref. [11] it was shown that, in
the isolated-defect limit, tuning the Fermi level with n-type
doping is required for the ferromagnetic instability to set in,
which means that the SC is not met for an isolated 558 defect
in a neutral and unstrained graphene layer.

We consider ferromagnetic (FM) and antiferromagnetic
(AFM) couplings between defects [12], as well as the
spin-unpolarized nonmagnetic case (NM). Figure 1 shows
schematically the starting spin distribution for the initial
states of the FM and AFM states in our DFT calculations.
After electronic self-consistency is achieved, we obtain the
corresponding FM and AFM states for the 558 defect. We have
also attempted several other initial spin configurations, such as
an antiferromagnetic coupling between the two zigzag chains
on the core of the 558 defect (as considered in Ref. [12]), as
well as other initial antiferromagnetic arrangements of initial
spin states for the atoms along the core of the 558 defect. At
the GGA level, these converge either to the FM or the AFM
states shown in Fig. 1.

A. Energetics

We start by addressing the combined effects of defect-
defect interaction and a homogeneous parallel tensile strain
on the energetics and magnetic states of the 558 linear
defect. Figure 2 shows the difference in total energy per
defect periodic unit, with respect to the energy of the NM
state, for the FM (�EFM

tot = EFM
tot − ENM

tot ) and AFM states
(�EAFM

tot = EAFM
tot − ENM

tot ) of the 558 defect as functions of
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FIG. 2. Relative energies (per defect unit) of magnetic and
nonmagnetic states of the 558 linear defect (see text) in graphene as
functions of defect-defect distance R. Blue circles show the energy
of the ferromagnetic (FM) state of the unstrained defect, relative to
the nonmagnetic case, as a function of defect-defect distance. Red
squares show the same for the antiferromagnetic (AFM) unstrained
state. Green up triangles show energy of the FM state at a 10% uniaxial
tensile strain (along the defect direction). Black down triangles show
the same for the AFM state. Lines are guide to the eye.

the defect-defect distance R. The figure shows �Etot for the
equilibrium (nonstrained) as well as for the uniaxially strained
cases, at a parallel strain of 10%.

Figure 2 shows that the equilibrium FM and AFM states
are nearly energy degenerate for all values of R. A discernible
trend is that, for both the FM and AFM states, �Etot increases
in magnitude as the defect-defect interaction is reduced with
increasing R. A small energy difference of ∼2.5 meV (per
defect periodic unit), favoring the AFM state, is observed for
R = 18.7 Å, while for R = 23.0 Å the FM state is favored
by ∼3.4 meV. At the largest distance of R = 27.3 Å, defect-
defect interaction effects are negligible and the two phases are
degenerate, with Etot values that are smaller than the NM case
by 24 meV per defect periodic unit.

The energetics of the magnetic states of the strained 558
defect shows a richer structure. The AFM state is favored for
all values of R, except for the case of R = 23.0 Å, and the
FM-AFM split in energy is much larger at small defect-defect
separations than in the unstrained case, with the AFM state
being favored by 20 meV at the smaller distance of R = 5.7 Å.
At larger defect-defect distances, the FM and AFM states
become nearly degenerated, with energies that are lower than
the NM case by ∼55-62 meV, compared with the unstrained
results of 24 meV.

Note that the difference in energy between the AFM and
FM cases does not show a monotonic behavior with respect
to the defect-defect distance. For R = 14.3 Å the two states
are degenerate, and at a distance R = 23.0 Å there is a
slight stability inversion, with the AFM state becoming more
stable. In graphene, it is know that the interaction between
localized moments shows antiferromagnetic coupling when
the moments are localized in sites of different sublattices, and
ferromagnetic coupling when localized on sites of the same

sublattice. The presence of the 558 defect breaks the sublattice
assignment, because this defect is the domain boundary across
which the sublattice assignment is switched. We believe that
there is no physical reason to expect, a priori, that either
coupling is favored at a given distance. Generally, we obtain
that a parallel uniaxial strain enhances the stability of the
magnetic states with respect to the NM state.

While the energies of the FM and AFM states in Fig. 2
are given with respect to the spin-unpolarized state, for each
value of R, it is worth examining the effect of strain on the
energetics of the 558 defect with respect to pristine graphene.
This reflects the extent to which the introduction of the 558
defect changes the elastic constants of the graphene layer. For
this, we analyze the R = 10.0 Å case that shows the largest
split between the strained FM and AFM states in Fig. 2.

The proper quantity for this comparison is the formation
energy per defect unit, defined as

E558
f = E558

tot (N ) − Nμbulk, (2)

where E558
tot (N ) is the total energy of a supercell with N atoms

containing one 558 defect unit, and μbulk is the energy per
atom of a pristine graphene calculation.

For the unstrained nonmagnetic state we have E558
f =

2.34 eV. At a 10% parallel tensile strain, we obtain E558
f =

2.45 eV for the nonmagnetic state, which shows that introduc-
tion of the 558 linear defect, even in such large concentrations
as in the R = 10.0 Å supercells, makes the graphene slightly
stiffer than a pristine layer, but the change is not significant.
Note that energy differencies between the magnetic and
nonmagnetic states are two orders of magnitude smaller than
their formation energies with respect to pristine graphene, for
both unstrained and strained layers.

B. Magnetic states: Effects of uniaxial parallel strain

1. Parallel tensile strain

Shifting gears now to the onset of magnetic states, we show
in Fig. 3 the magnetic moment per defect unit μ (in units
of the Bohr magneton, μB) as a function of parallel tensile
strain for different values of R. For the unstrained cases (0%
strain), we observe that μ decreases with increasing R, with
the exception of the anomalous case of R = 5.7 Å, that shows
a very small value of μ. Magnetic moment values at the largest
defect-defect separations in our study, μ = 0.007 μB for R =
23.0 Å and μ = 0.003 μB for R = 27.3 Å, are very small for
the unstrained defects. Figure 3 also shows that the rate of
increase of μ with strain increases with R.

Indeed, at a 4% parallel strain the values of μ are nearly the
same for all values of R (with the exception of the anomalous
case of R = 5.7 Å that we discuss in more detail below), and
for a strain of 10% the behavior of μ as a function of R

is reversed, with μ becoming an increasing function of the
defect-defect separation, for the range of R values we consider.
Note that at the larger defect-defect distances (R = 23.0 Å and
R = 27.3 Å), for strains between 1% and 2% the μ values
increase by two orders of magnitude and become comparable
to those for smaller values of R.

The case of R = 5.7 Å is anomalous, with very small values
of μ for parallel tensile strains up to 5%. In this case, strains
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FIG. 3. Magnetic moment μ (per defect periodic unit), in units of
the Bohr magneton, as a function of uniaxial parallel tensile strain (see
text), for the six values of defect-defect distance R. The inset shows μ

as a function of parallel strain in the range from −10% (compressive)
to 10% (tensile), for R = 10.0 Å and R = 27.3 Å. Lines are guide to
the eye.

larger than a threshold value between 5% and 6% are needed
for μ to reach values of 0.1–0.2 μB .

In order to facilitate the visualization of these trends, in
Fig. 4 we plot the data from Fig. 3 as a function of R for
three different values of parallel tensile strain: unstrained,
4%, and 10%.

Generally, from Figs. 3 and 4 we conclude that defect-defect
interaction favors the emergence of itinerant magnetism in
unstrained 558 defects, with the exception of the case of defects
at their closest possible separation (R = 5.7 Å). In its turn, a

5 10 15 20 25
R(Å)
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0.2

0.4

0.6

μ 
(μ

Β
)

unstrained
|| tensile = 4%
|| tensile = 10%
   compressive = 4%
   compressive = 10%

FIG. 4. Magnetic moments as a function of defect-defect distance
R, for the unstrained defect (red circles), for parallel tensile strain
values of 4% (blue filled squares) and 10% (black filled triangles),
and for perpendicular compressive strain values of −4% (blue hollow
squares) and −10% (black hollow triangles). Lines are guide to the
eye.

FIG. 5. Density of states N (ε) of graphene monolayers with 558
defects under uniaxial parallel tensile strain, for the six values of R,
showing results for three strain values: unstrained (red solid lines),
5% (blue dashed lines), and 10% (black dashed-dotted lines). The
Fermi level is indicated by the vertical lines in each case.

parallel tensile strain also favors the onset of magnetism, and
supersedes the effect of interaction, starting at about a 4%
parallel strain, as shown in Fig. 4. For a 4% parallel strain,
the magnetic moment per defect unit is nearly independent of
R (for R � 10.0 Å), and for larger strains μ increases with
distance, in stark contrast with the behavior of the unstrained
defects.

The mechanisms behind these trends, and also behind the
behavior of the anomalous case of defects at a distance of R =
5.7 Å, can be understood from the perspective of the Stoner
criterion. Figure 5 shows the DOS, N (ε), in the Fermi level
region, for a graphene layer containing an array of 558 defects,
with the defect-defect distance indicated in each subpanel. For
each case, we show N (ε) for the unstrained state, and for
the cases of 5% and 10% parallel tensile strains. We recall
that for a pristine graphene layer, N (ε) vanishes at the Dirac
point (the Fermi level in a neutral layer). Hence the peaks we
observe inN (ε) in Fig. 5 correspond to the resonant q1D states
introduced by the 558 defect in the region of the Fermi level.

Starting from the anomalous R = 5.7 Å case in Fig. 5(a),
we observe that under a parallel tensile strain the maximum
of the defect-induced resonant peak in the DOS, Nmax(ε),
remains essentially unaltered. This indicates that strain does
not enhance the localization of the defect states at the Fermi
level, and its only effect in this case is a better tuning of the
Fermi level, that shifts closer to Nmax(ε) in Fig. 5(a). This
explains why, at this defect-defect distance, the 558 defect
only develops a magnetic moment for strains above 5%. Thus,
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the only factor in Eq. (1) that is affected by application of
a parallel tensile strain in this case is the value of the DOS
at the Fermi level N (εF ) and the exchange integral remains
essentially unchanged.

At larger distances this picture changes, as shown in
Figs. 5(b)–5(f) where we observe that a parallel tensile strain
induces two effects in the electronic structure of the 558
defect. The first one is a better tuning of the Fermi level that
shifts closer to Nmax(ε), as in the R = 5.7 Å case, but we also
observe an enhancement of Nmax(ε) itself, due to a stronger
localization of the defect states in the Fermi level region. Note
that at the two largest distances in our study (R = 23.0 Å and
R = 27.3 Å), the evolution of the DOS and also of the Fermi
level position with strain is more complex due to the presence
of two peaks of defect states in N (ε) near the Fermi level, in
the unstrained state, that merge into a single peak when strain
is applied

Regarding the anomalous R = 5.7 Å case, we speculate that
at this distance the lack of a bulk region onto which the defect
states can relax (as shown in the inset in Fig. 1), inhibits the
enhancement of the localization of the defect states induced by
the parallel tensile strain that we observe at larger distances,
where the defects are surrounded by bulk material.

The enhancement of localization, hence of the exchange in-
tegrals in Eq. (1), induced by the application of strain is a result
of the changes in the 558-defect electronic states induced by
strain. In Fig. 6 we show the band structures for the unstrained
and 10% parallel-strained cases, for three different values of
R. Figure 6(a) shows the R = 5.7 Å case, where extended

FIG. 6. Evolution of the band structure of defect states with
respect to parallel tensile strain. (a) and (b) The band structures of the
unstrained and 10%-strained cases, respectively, for a defect-defect
distance of R = 5.7 Å. (c) and (d) The same for R = 10.0 Å. (e) and
(f) The same for R = 27.3 Å.

van Hove singularities do not appear in the band structure of
the unstrained defect. At this defect-defect distance, even for
the 10%-strained case in Fig. 6(b), we observe no extended
van Hove singularities in the band structure, and the only
effect of strain is the tuning of the Fermi level, as discussed
in the previous paragraph. This explains why for R = 5.7 Å
the system develops only a moderate value of μ, even for such
large value of strain, and generally the behavior of μ with strain
does not follows the trends we observe at larger defect-defect
distances.

When 558 defects are separated by R = 10.0 Å, extended
van Hove singularities, in the form of large flat portions of the
defects bands at the Fermi level, appear in the band structure for
the unstrained defect, as shown in Fig. 6(c). This observation,
along with the fact that the Fermi level in this case is very
near Nmax(ε), are the reasons behind the development of a
large value of μ already for the unstrained defects in this case.
For the strained states, a better tuning of the Fermi level to
Nmax(ε) [shown in Fig. 5(b)], coupled with an enhancement
of the extended van Hove singularities and hence of Nmax(ε)
itself, explain the increase of μ with increasing strain displayed
in Fig. 3. The increase in Nmax(ε) is due to two factors: (i) an
enlargement of the flat portions of the bands at the Fermi Level
and (ii) a reduction of the bandwidths of the defect bands,
shown in Fig. 6(d).

Strain plays an even more decisive role in the limit of
isolated (noninteracting) defects (R = 27.3 Å). The unstrained
defect shows a borderline behavior, with a very small value of
μ. Given the presence of quite broad van Hove singularities
in the band structure of the unstrained defect, as displayed in
Fig. 6(e), it is to be expected that tensile strains in this case
should drive the system towards a more robust magnetic state.
Indeed, for a threshold parallel tensile strain between 1% and
2% the system develops a sizable value of μ = 0.24 μB .

Further increase in the value of μ for larger strains is
explained along the same reasoning as the R = 10.0 Å case,
i.e., better tuning of the Fermi level to Nmax(ε) and an
enhancement of the flat portions of the defect bands that leads
to more localized states and enhanced exchange effects. For
this noninteracting case, Fig. 6(f) shows a marked increase in
the width of the extended van Hove singularities lying at the
Fermi level, for a 10% parallel tensile strain, along the �-Y
and L-X lines in the Brillouin zone [both are parallel to the
defect direction, as shown in Fig. 1(c)].

2. Parallel compressive strain

While parallel tensile strains are expected to drive the
system towards the atomic limit, and hence favor a magnetic
state, we expect the opposite effect from a parallel compressive
strain. Indeed, as shown in the inset in Fig. 3, for the
R = 10.0 Å and R = 27.3 Å cases, a parallel compressive
strain inhibits the formation of a magnetic state in the 558
defect. In the R = 10.0 Å case, the magnetic moment drops to
zero when a 5% parallel compressive strain is applied on the
graphene layer.

The reason for this quenching of the magnetic is that
a parallel compressive strain causes an untuning of the
Fermi level that is shifted away from Nmax(ε), as shown in
Figs. 7(a) and 7(b) for the R = 10.0 Å and R = 27.3 Å cases,
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FIG. 7. (a) and (b) Density of statesN (ε) of graphene monolayers
with 558 defects under uniaxial parallel compressive strain, for
R = 10.0 Å and R = 27.3 Å, respectively. (c) and (d) N (ε) of
graphene monolayers with 558 defects under uniaxial perpendicular
tensile strain, for R = 10.0 Å and R = 27.3 Å, respectively. (e) and
(f) N (ε) of graphene monolayers with 558 defects under uniaxial
perpendicular compressive strain, for R = 10.0 Å and R = 27.3 Å,
respectively. In each case results for three strain values are displayed:
unstrained (red solid lines), 5% (blue dashed lines), and 10% (black
dashed-dotted lines), and the Fermi level is indicated by the vertical
lines.

respectively. As a result N (εF ) becomes very small, and the
magnetic state is inhibited, as indicated by the Stoner criterion.

One marked difference between the effects of tensile and
compressive parallel strains is that in the interacting limit
(R = 10.0 Å) a compressive strain does not cause an increase
in Nmax(ε), while in the noninteracting limit (R = 27.3 Å)
Nmax(ε) increases by 21%. We have also computed the DOS
under a parallel compressive strain for the other values of
the defect-defect distance in our study (not shown in Fig. 7),
and we observe an enhancement of Nmax(ε) only at the
noninteracting limit.

Another telling distinction is observed in the noninteracting
case, regarding the two sets of defect states that compose the
double-peak structure in the DOS of the unstrained state. While
the two peaks merge into a single broadened peak under a
tensile strain [Fig. 5(f)], they get further separated into two
distinct peaks under a compressive strain [Fig. 7(b)].

To summarize, the foregoing discussion shows that: (i) a
parallel tensile strain favors the emergence of magnetic states
in the 558 defect in graphene, by enhancing both factors
encoded in the Stoner criterion in Eq. (1), for all defect-defect
distances in our study; and (ii) a parallel compressive strain
causes an untuning of the Fermi level that shifts away from

 

FIG. 8. Magnetic moment μ (per defect periodic unit), in units
of the Bohr magneton, as a function of uniaxial perpendicular
compressive strain (see text), for the six values of defect-defect
distances R. The inset shows μ as a function of perpendicular strain in
the range from −10% (compressive) to 10% (tensile), for R = 10.0 Å
and R = 27.3 Å. Note that in both figures the strain axis is inverted,
with negative (positive) values on the right (left). Lines are guide to
the eye.

Nmax(ε), at both limits of interacting and noninteracting
defects, and leads to an increase in Nmax(ε) only at the
noninteracting limit.

C. Magnetic states: Effects of perpendicular uniaxial strain

In the present section we consider the effects of perpen-
dicular strains, analyzing in detail the strongly interacting
R = 10.0 Å case, that displays the largest value of μ for the
unstrained defects, and the noninteracting R = 27.3 Å case.
These two examples suffice to highlight the general trends and
the generality of the results will be pointed out as we proceed
with the discussion.

1. Perpendicular compressive strain

Figure 8 shows the effect of a compressive perpendicular
strain on the magnetic moment of the 558 defect, for the six
defect-defect distances in our study. The trends are essentially
the same as in the case of a parallel tensile strain, i.e., a
compressive perpendicular strain favors the emergence of
magnetic states in the 558 defect. Figure 4 confirms that
the same analysis we employed for the parallel tensile strain
applies here, with the effects of strain superseding the effects
of interaction at a 4% perpendicular compressive strain, as
indicated by the hollow symbols in Fig. 4.

An inspection of the DOS further confirms the similarity of
the two cases, parallel tensile and perpendicular compressive
strains, as shown by the N (ε) curves in Figs. 7(c) and 7(d),
for the R = 10.0 Å and R = 27.3 Å cases, respectively. Note
that, for R = 10.0 Å, the effect of the perpendicular strain on
N (ε) is mainly to tune the Fermi level to Nmax(ε), without
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an increase in the value of Nmax(ε) itself, in this case.
This explains why at a defect-defect distance of R = 10.0 Å
the value of μ shows a slower increase with perpendicular
compressive strain, as displayed in Fig. 8, than in the case of
a parallel tensile strain in Fig. 3.

On the other hand, for R = 27.3 Å we observe both a tuning
of the Fermi level and an enhancement of Nmax(ε) under a
perpendicular compressive strain, and as a result the rate of
increase of μ with strain is very similar in the two strain
scenarios, in this case.

2. Perpendicular tensile strain

Figures 7(e) and 7(f) show the evolution of N (ε) with per-
pendicular tensile strain, for the R = 10.0 Å and R = 27.3 Å
cases, respectively. The Fermi level shifts away from Nmax(ε)
in both cases, showing that the effect of a perpendicular
tensile strain on the 558 defect is similar to that of a parallel
compressive strain, in the sense that both lead to an untuning
of the Fermi level, as seen in Figs. 7(a), 7(b) 7(e), and 7(f).
As a result, under a perpendicular tensile strain, no magnetic
instability is observed for the isolated defects (R = 27.3 Å)
and a full quenching of the magnetic moment obtains for the
interacting case (R = 10.0 Å) when the value of the applied
strain reaches the value of 5%, as shown in the inset in Fig. 8.

These two strain scenarios are also similar in the sense
that in the case of interacting defects in Fig. 7(e) we observe
no increase in the value of Nmax(ε), while for an isolated
defect in Fig. 7(f) Nmax(ε) increases, being almost twice as
large for a 5% perpendicular strain than in the unstrained
defect.

In summary, compressive and tensile perpendicular strains
have opposite effects on the emergence of magnetic states
in the 558 defect, with the former favoring a magnetic state
by causing a tuning of the Fermi level to Nmax(ε), while
the latter leads to an untuning of the Fermi level and a
quenching of the magnetic moments. Both compressive and
tensile strains lead to an enhancement of Nmax(ε) starting
at a defect-defect distance of R = 18.7 Å, with the effect
becoming more pronounced as we approach the limit of
isolated (noninteracting) defects.

D. Biaxial strain

Now that we have analyzed the effects of parallel and
perpendicular uniaxial strains, we conclude by addressing
the effects of biaxial strains. From the foregoing discussion,
we know that for an isolated 558 defect both parallel and
perpendicular strains tend to enhance the extended van Hove
singularities of the defect states, hence both lead to an
enhancement of exchange effects. On the other hand, the
effect of uniaxial strains on the value of the DOS at the
Fermi level can be separated into two cases: (i) parallel tensile
and perpendicular compressive strains lead to larger values
of N (εF ) (the tuning effect in the above discussion) and (ii)
parallel compressive and perpendicular tensile strains lead to a
fast untuning of the Fermi level and hence to rather low values
of N (εF ).

We analyze now the combined effects of parallel and
perpendicular strains. We have performed calculations of
isotropic biaxial tensile strains of up to 10% for all defect-

0% 2% 4% 6% 8% 10%
strain
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FIG. 9. Magnetic moment μ (per defect periodic unit), in units
of the Bohr magneton, as a function of isotropic biaxial tensile strain,
for a defect-defect distance R = 10.0 Å. Line is guide to the eye.

defect distances in our study. We obtain a magnetic state
only for the R = 10.0 Å case. For the other five values of
R, magnetic moments were either null or negligible for all
values of biaxial tensile strains from 1% to 10%.

The behavior of μ with strain for the R = 10.0 Å case is
shown in Fig. 9. For biaxial strains of up to 5% the tuning and
untuning effects of the two components of strain nearly cancel
each other, and μ remains nearly constant, but a downwards
trend can be observed already for strains between 4% and 5%.
For a 10% tensile biaxial strain, μ vanishes, due to the Fermi-
level untuning associated with the perpendicular component
of strain. In Fig. 10(a) we show the evolution of the DOS with
biaxial strain for this case, where the competition between the
effects of the two components of strain can be observed: while
Nmax(ε) increases with biaxial strain, the Fermi level shifts
away from Nmax(ε) at a 10% biaxial strain, resulting in the
quenching of μ observed in Fig. 9.

From the above discussion on the effects of uniaxial strains,
we expect the most interesting case to be that of a substrate that
imposes a compressive strain in the direction perpendicular to
the 558 line defect, and a tensile strain in the parallel direction.
We have computed the cases of unisotropic biaxial strain with
(‖ , ⊥) = (5%, − 5%) and (10%,−10%) components, for the
R = 10.0 Å and R = 27.3 Å cases.

We observe an overall tendency of enhancement of mag-
netic moments, given that we have combined the strains that
favor the magnetic states in both directions. For the isolated
defect, with strains of (5%,−5%) we obtain μ = 0.68 μB ,
from a value of μ = 0.51 μB under either case of uniaxial
strain of this magnitude, and for strains of (10%,−10%) we
obtain an increase to μ = 0.76 μB from μ = 0.68 μB under
uniaxial strains. However, for the interacting R = 10.0 Å
case, while the (5%,−5%) strain combination produces an
increased μ = 0.56 μB (from uniaxial values of μ = 0.47 μB ),
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FIG. 10. (a) Density of states N (ε) of a graphene monolayer
with 558 defects under isotropic biaxial tensile strain, for R =
10.0 Å. (b) N (ε) of a graphene monolayer with 558 defects under
unisotropic biaxial strain, with a tensile parallel component and a
compressive perpendicular component, for R = 10.0 Å. (c) N (ε) of a
graphene monolayer with 558 defects under unisotropic biaxial strain,
with a tensile parallel component and a compressive perpendicular
component, for R = 27.3 Å. In each case results for three strain values
are displayed: unstrained (red solid lines), 5% or (5%,−5%) (blue
dashed lines), and 10% or (10%,−10%) (black dashed-dotted lines),
and the Fermi level is indicated by the vertical lines.

the (10%,−10%) combination fully quenches the magnetic
moment.

Again, these results can be understood by looking at the
evolution of the DOS in each case, as shown in Figs. 10(b) and
10(c). For the noninteracting case,Nmax(ε) increases markedly
for both the (5%,−5%) and (10%,−10%) strains, and the
Fermi level is tuned to Nmax(ε). For the interacting case, we
observe the same tendency for the (5%,−5%) biaxial strain.
However, in the case of the (10%,−10%) strain we observe
a splitting of the peak of defect states, with a reduction of
Nmax(ε), with respect to the unstrained state. Furthermore, the
Fermi level is tuned to the lower-energy split peak, resulting
in the quenching of the magnetic state.

IV. CONCLUSIONS

In this work we have addressed the combined effects of
defect-defect interaction and uniaxial or biaxial strains of up
to 10% on the development of magnetic instabilities in the
quasi-one-dimensional (q1D) electronic states generated by
the 558 extended defect in graphene monolayers, by means of
ab initio calculations.

We have considered uniaxial strains along the defect
direction (parallel strain) and along the perpendicular direction
(perpendicular strain), and isotropic and unisotropic biaxial
strains. We frame our results on the basis of the Stoner
criterion for itinerant magnetism, and analyze the effects of
the various strain states on the basis of their impact on the two
ingredients encoded in the Stoner criterion: localization of the
defect-generated electronic states in the region of the Fermi
level and the magnitude of the DOS of the defect states at the
Fermi level.

We obtain that conditions for the development of magnetic
instabilities in the 558-defect states can be tuned by either
parallel tensile or perpendicular compressive strains, at both
limits of isolated and interacting 558 defects. Parallel tensile
strains are shown to lead to two cooperative effects that favor
the emergence of itinerant magnetism in the 558-defect states:
enhancement of the extended van Hove singularities of the
defect states in the region of the Fermi level and tuning of
the Fermi level to the maximum of the related DOS peak.
Perpendicular compressive strains are also found to tune the
Fermi level but, in this case, enhancement of the extended
van Hove singularities is only observed at large defect-defect
distances, becoming more pronounced at the limit of isolated
defects.

On the other hand, parallel compressive and perpendicular
tensile strains are also shown to effect an enhancement of
the DOS of the defect states only in the isolated-defect limit.
However, for all defect-defect distances we consider, in these
two strain scenarios the Fermi level is found to shift away from
the maximum of the DOS of defect states, which inhibits the
emergence of the magnetic states.

In the case of isotropic biaxial tensile strains, we find that
the stabilization of a magnetic state occurs only in the limit
of interacting defects, for strains of up to 5%, with magnetic
moments being quenched for larger values of isotropic biaxial
tensile strains.

The preceding analysis indicates that a substrate that
imposes a compressive strain in the direction perpendicular
to the defect line, and a tensile strain in the parallel direction,
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would be ideal for the stabilization of magnetic states in the
558 linear defect in graphene.

Our results are relevant in the context of one-dimensional
charge and spin transport in graphene layers. For example,
recent work by Phillips and Mele [45] has considered the
possibility that grain boundaries (including the 558 domain
boundary we consider in this work) could short circuit the
zero-mode Hall edge states in graphene layers with an applied
transverse magnetic field. Given that a transverse magnetic
field is bound to increase the magnetic moments of the 558

defect, our results reveal the possibility of spin filtering of edge
states in such layers, since only one spin channel will be short
circuited by a 558 defect in a ferromagnetic state.
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