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Pure dephasing of single Mn spin in semiconductor quantum dots
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We present comprehensive analytical and numerical studies on the pure dephasing of a single Mn spin in a
semiconductor quantum dot due to (i) its sp-d exchange interaction with an electronic environment, and (ii) its
hyperfine interaction with the nuclear spin environment. For (i), by modeling the electronic environment by an
open two-level system, we provide exact analytical expressions and present detailed analysis for the Mn spin pure
dephasing in both the Markovian and non-Markovian regimes. This provides a clear physical picture and a general
theoretical framework based on which we estimate the Mn spin pure dephasing due to various fluctuations (such as
thermal excitation, optical pumping, tunneling, or electron/hole spin relaxation) of the electronic environment and
reveals a series of interesting behaviors, such as thermal, optical, and electrical control of the crossover between
the Markov and non-Markov regimes. In particular, we find rapid Mn spin pure dephasing on a nanosecond time
scale by the thermal fluctuation and optical pumping, but these mechanisms can be strongly suppressed by shifting
the electron envelope function relative to the Mn atom with an external electric field through the quantum-confined
Stark effect. The thermal fluctuation mechanism is also exponentially suppressed at low temperature. For (ii), we
find that the Mn spin dephasing time is limited by the thermal fluctuation of the nuclear spins to a few microseconds
even at low temperature and its value varies from sample to sample, depending on the distribution of spinful
isotopes on the nearest-neighbor sites surrounding the substitutional Mn atom. Our findings may be useful to
understand and suppress the Mn spin pure dephasing for its applications in quantum information processing.
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I. INTRODUCTION

With the constant progress in the precise control of
semiconductor doping, a new field of solotronics is opening
up [1–4], which utilizes individual dopant ions and defects in
semiconductors for applications in various quantum technolo-
gies such as quantum computation, sensing, communication,
and on-demand photon sources. A promising candidate that
allows for electrically controlled operation is a single magnetic
ion embedded in a semiconductor quantum dot (QD). In
particular, the transition-metal Mn ion has a half-filled 3d5

electronic configuration and acts as a completely localized
large spin S = 5/2, which is coupled to the spin of the band
carriers via sp-d exchange interaction [5]. In recent years, there
have been extensive theoretical studies on the electro-optical
[6–13] and magnetic [14–19] properties as well as electron
spin relaxation [20] in Mn-doped QDs. Experimentally, the
sp-d exchange interaction between the Mn spin and the
electron/hole spin leads to the splitting of an exciton line
in the photoluminescence spectrum of the QD [21–28] and
allows observing dark-exciton transitions [29]. Moreover, the
sp-d exchange interaction enables controlling the Mn spin by
injecting spin-polarized carriers via electrical gating or optical
pumping [27,30,31]. Recently, remarkable success has been
achieved in the initialization, manipulation, and readout of the
Mn spin in individual QDs [22,28,31–38].

A main obstacle to the practical applications of a localized
spin in individual QDs is the decoherence caused by envi-
ronmental noises [39–41]. The spin decoherence include two
processes: (1) relaxation of its populations on the Zeeman
energy sublevels, i.e., the spin relaxation or T1 process; (2)
randomization of the relative phase between different Zeeman
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eigenstates of the superposition, i.e., the pure dephasing or
Tϕ process (see Ref. [42] for a pedagogical introduction).
For Markovian environments, the total dephasing is the sum
of pure dephasing and the dephasing due to relaxation, i.e.,
1/T2 = 1/Tϕ + 1/(2T1) (Ref. [42]). For paradigmatic solid-
state spin qubits, such as electron spins in semiconductor
QDs, phosphorus and bismuth donors in silicon, and nitrogen-
vacancy centers in diamond, the pure dephasing time Tϕ � T1,
so that T2 ≈ Tϕ . In other words, it is the pure dephasing,
instead of the spin relaxation, that sets the ultimate limitation to
their applications to quantum technologies. This observation
highlights the importance of understanding and suppressing
the pure dephasing of a single Mn spin in QDs.

In the past few years, many experimental and theoretical
works provided valuable information on the spin relaxation of a
single Mn spin in QDs; e.g., an isolated Mn spin has T1 ranging
from a few microseconds up to 0.1 ms (Refs. [36,43–45]),
but it decreases to the nanosecond time scale in the presence
of band carriers [4,33–36,44,46,47]. For a diluted ensemble
of Mn spins in the MgO crystal, the Rabi oscillation decay
time ∼0.5 μs is limited by the hyperfine interaction with
the 25Mg nuclear spin bath [48]. For an ensemble of Mn
spins in polar piezoelectric ZnO QDs, their dephasing time
is limited to T2 ≈ Tϕ ≈ 0.8 ms by the interactions between
neighboring Mn spins at low temperature [49]. However,
very little is known about the Tϕ of a single Mn spin in
individual QDs. The recent experiment by Goryca et al. [38]
only gives a lower bound T2 ≈ Tϕ � 1.8 ns that is several
orders of magnitudes shorter than the Mn spin relaxation time
T1 ∼ 0.1 ms. In this context, it is highly desirable to develop
a clear physical picture and a realistic estimate for the Mn
spin pure dephasing, especially in the presence of carriers
(electrons and/or holes). Up to date, however, we are not aware
of any further experimental or theoretical study along this
direction.
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In this paper, we perform both analytical and numerical
studies on the pure dephasing of a single Mn spin S = 5/2 in a
QD due to magnetic noises from two important environments:
(i) the electronic environment, which is coupled to the Mn spin
through the sp-d exchange interaction; (ii) the surrounding
nuclear spins, which are coupled to the Mn spin through
the hyperfine interaction. For case (i), the magnetic noise
may come from the random hopping of the electrons and/or
holes between different orbitals or the random flip of their
spins. By modeling the electronic environment by an open
two-level system, we provide exact analytical solutions and
detailed physical analysis for the Mn spin pure dephasing
in both the Markovian and non-Markovian regimes, which
agree with our numerical simulations and exhibit a series of
interesting behaviors, such as the thermal and optical control
of the Mn spin pure dephasing rate and the crossover from the
Markovian regime into the non-Markovian regime, accom-
panied by the appearance of pronounced modulations in the
dephasing profile. This establishes a clear physical picture and
a general theoretical framework based on which we estimate
the Mn spin pure dephasing due to various fluctuations of
the electronic environment, such as thermal excitation, optical
pumping, electron/hole tunneling into and out of the QD,
and electron/hole spin relaxation, relevant to a wide range of
experiments [22,28,31–38]. In particular, we find the thermal
fluctuation of the electron and/or hole and optical pumping lead
to Mn spin pure dephasing on the nanosecond time scale, but
they can be strongly suppressed by several orders of magnitude
by shifting the electron/hole envelope function relative to the
Mn atom with an external electric field through the quantum-
confined Stark effect. The thermal fluctuation mechanism is
also strongly suppressed at low temperature. For case (ii), the
Mn spin pure dephasing time is typically limited by the nuclear
spin thermal fluctuation to a few microseconds, consistent with
the previous experimental measurement [48]. Our findings
may be useful to understanding and prolonging the Mn spin
dephasing time for its applications in quantum technologies.

This paper is organized as follows. In Sec. II, we first
introduce the commonly used Markov approximation and
then model the electronic environment by an open two-level
system and provide exact analytical solutions and detailed
physical analysis for the Mn spin dephasing rate and dephasing
profile in the Markovian and non-Markovian regimes. In
Sec. III, we apply these analytical formulas together with
numerical simulation to study electron-induced Mn spin
dephasing due to thermal excitation and optical pumping and
further demonstrate the suppression of these mechanisms by
applying an electric field. We also briefly discuss Mn spin pure
dephasing by other fluctuation mechanisms, including thermal
excitation of the heavy hole, tunneling of carriers into and out
of the QD, and spin relaxation of the electron or the hole. In
Sec. IV, we study the Mn spin pure dephasing by the nuclear
spin environment. Finally, a brief conclusion is given in Sec. V.
For brevity, we set h̄ = 1 throughout this work.

II. PHYSICAL PICTURE OF Mn SPIN DEPHASING

We consider a single Mn spin-5/2 located at R under an
external magnetic field along the z axis. The Hamiltonian of

the Mn spin is ωMM̂z, where ωM ≡ gMμBB is the Zeeman
splitting and gM is the Landé factor of the Mn spin. The
coupling of the Mn spin and the environment can be written as
M̂ · ĥ, where ĥ is an operator of the environment. For example,
the s-d exchange interaction between the Mn spin M̂ and the
electron spin Ŝe corresponds to

ĥ = −JeŜeδ(r̂e − R), (1)

being proportional to the electron spin density at the location
of the Mn atom, where r̂e is the electron position operator and
Je is the s-d exchange constant. The p-d exchange interaction
[44,50] between the Mn spin M̂ and the heavy-hole spin Ŝh

corresponds to

ĥ = −1

3
JhŜh,zezδ(r̂h − R), (2)

being proportional to the hole spin density at the location of the
Mn atom, where r̂h is the hole position operator, Jh is the p-d
exchange constant, and ez is a unit vector along the z axis. The
dipolar hyperfine interaction with a collection of surrounding
nuclear spins {În} located at {Rn} corresponds to [42]

ĥ =
∑

n

μ0

4πρ3
n

γeγn

(
În − 3

(În · ρn)ρn

ρ2
n

)
, (3)

where ρn ≡ R − Rn, and γe = −1.76 × 1011 rad/(s T) and γn

are, respectively, the gyromagnetic ratio of a free electron
and the nth nuclear spin În. The total Hamiltonian of the Mn
spin and the environment is the sum of the Mn spin Zeeman
Hamiltonian ωMM̂z, its coupling to the environment M̂ · ĥ,
and the environment Hamiltonian ĤE .

The environment operator ĥ serves as an effective magnetic
field on the Mn spin, in analogy to the Zeeman coupling of
the Mn spin to an external magnetic field. However, ĥ differs
from a deterministic magnetic field in that it undergoes random
fluctuation. This point becomes clear in the interaction picture
of the electronic environment, where the total Hamiltonian
becomes ωMM̂z + M̂ · ĥ(t) and ĥ(t) ≡ eiĤEt ĥe−iĤE t can be
regarded as the quantum analogy of the classical noise.
Therefore, the interaction of the Mn spin with the environment
generates a randomly fluctuating quantum noise ĥ(t) acting
on the Mn spin. The mean-field part 〈ĥ(t)〉 renormalizes the
Mn spin Larmor frequency, while the fluctuation part δĥ(t) ≡
ĥ(t) − 〈ĥ(t)〉 leads to Mn spin decoherence: the transverse
fluctuation δĥx(t) and δĥy(t) leads to Mn spin relaxation,
while the longitudinal fluctuation δĥz(t) leads to Mn spin pure
dephasing [42].

A. Born-Markov approximation

When δĥ(t) fluctuates much faster than the Mn spin de-
coherence, the Born-Markov approximation can be employed
to derive the master equation for the reduced density matrix
ρ̂ of the Mn spin [51,52]. When the Mn spin decoherence
is much slower than its Larmor precession (with frequency
|ωM |) and different Cartesian components of δĥ(t) have no
cross-correlation, i.e., 〈δĥα(t)δĥβ〉 ∝ δα,β , the master equation
reads

ρ̇(t) = −i[(ωM + 〈ĥz〉)M̂z,ρ̂(t)] +
∑

α=z,±

αD[M̂α]ρ̂, (4)
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whereD[L̂]ρ̂ ≡ L̂ρ̂L̂† − {L̂†L̂,ρ̂}/2 describes the dissipation
in the Lindblad form and


z = 2 Re
∫ ∞

0
〈δĥz(t)δĥz〉dt, (5)


± = 2 Re
∫ ∞

0
[〈δĥx(t)δĥx〉 + 〈δĥy(t)δĥy〉]e∓iωM tdt. (6)

In Eq. (4), the α = z term describes the Mn spin pure dephasing
and the α = ± terms describe the Mn spin relaxation. For
a simple example, we assume δĥα(t) has a characteristic
fluctuation rate γ (or memory time 1/γ ) and autocorrelation
〈δĥα(t)δĥα〉 = 〈(δĥα)2〉e−γ |t |. This gives


z = 2π〈(δĥz)
2〉δ(γ )(0),


± = 2π〈(δĥx)2 + (δĥy)2〉δ(γ )(ωM ),

where δ(γ )(�) ≡ (γ /π )/(�2 + γ 2) is the Lorentzian shape
function.

The expressions above show that the widely studied Mn
spin relaxation differs significantly from the Mn spin pure
dephasing—the focus of our present work—in that they
originate from different frequency components of the noise.
The former originates from noises that fluctuate at frequency
ωM , so it increases with increasing γ (until γ > |ωM |), while
the latter originates from the zero-frequency component of the
noise, so rapidly fluctuating noises lead to slow pure dephas-
ing. This underlies the motional narrowing phenomenon in
magnetic resonance spectroscopy [42,51], where the random
motion of atoms makes the magnetic noise fluctuate faster and
hence slows down the central spin decoherence (manifested
as the narrowing of the linewidth of the magnetic resonance
line of the central spin). Since the Mn spin relaxation has been
studied extensively in previous works, here we neglect hx,hy

and focus on pure dephasing. Taking the off-diagonal matrix
elements of Eq. (4) in the Zeeman basis {|m〉} (i.e., M̂z|m〉 =
m|m〉) of the Mn spin gives the off-diagonal coherence:

ρmm′ (t)

ρmm′ (0)
= e−i(m−m′)(ωM+〈ĥz〉)t e−
z(m−m′)2t/2, (7)

which decays exponentially at a rate proportional to the square
of the coherence order |m − m′|. The first-order coherence
ρm,m±1(t) exhibits the minimum decay rate 
z/2. Before going
into specific physical mechanisms, we first establish a simple
but general physical picture that allows us to understand and
estimate the Mn spin pure dephasing in different experimental
setups.

B. Two-level model: Exact solutions

For a single Mn spin in a semiconductor QD, the most rel-
evant electronic environment could be a single extra electron,
a single extra hole, a neutral exciton, a negatively charged
exciton (two electrons and one hole), or a positively charged
exciton (two holes and one electron). These environments
have discretized energy levels and their fluctuation could
be caused by thermal excitation (i.e., phonon scattering),
electron/hole tunneling between the QD and an electron/hole
reservoir near the QD, optical pumping, or relaxation of the
electron/hole spin. To establish a simple physical picture, we
regard the electronic environment as an open two-level system

coupled to another Markovian bath. We assume the ground
state |g〉 is lower than the excited state |e〉 by an energy
ω0 and characterize the bath-induced random hopping of the
electronic environment by the transition rate γg from |g〉 to |e〉
and the transition rate γe from |e〉 to |g〉. This establishes the
ground state population Pg = γe/(γg + γe) and excited state
population Pe = 1 − Pg in the steady state, which could differ
from a thermal equilibrium state when the electronic system is
under external driving, such as optical pumping. The quantum
noise operator can be written as

ĥz = hg|g〉〈g| + he|e〉〈e|,
where hg = 〈g|ĥz|g〉 and he = 〈e|ĥz|e〉. The density matrix �̂

of the Mn-electron coupled system obeys the master equation

�̇ = −i[(ωM + ĥz)M̂z + ω0|e〉〈e|,�̂] + γgD[|e〉〈g|]�̂
+ γeD[|g〉〈e|]�̂. (8)

Due to the coupling M̂zĥz, the total magnetic field on the
Mn spin is ωM + hg (ωM + he) if the electronic system is
in the ground (excited) state. Due to the random hopping of
the electronic system between |g〉 and |e〉, the total magnetic
field on the Mn spin undergoes random jumps between ωM +
hg and ωM + he. This randomly fluctuating magnetic field is
responsible for the Mn spin pure dephasing.

In the Born-Markov approximation, we obtain the master
equation for the Mn spin density matrix:

ρ̇(t) = −i[(ωM + hgPg + hePe)M̂z,ρ̂(t)] + 
zD[M̂z]ρ̂,

(9)
where 
z follows from Eq. (5) as


z = 2
(hg − he)2

(γg + γe)2

γgγe

γg + γe

, (10)

where γgγe/(γg + γe) ∼ min{γg,γe}. Equations (9) and (10)
are valid when the Mn spin decoherence is much slower
than the slowest fluctuation of the electronic system (i.e.,

z � min{γg,γe}) or equivalently weak coupling |hg − he| �
γg + γe. Otherwise, the Born-Markov approximation and
hence Eqs. (9) and (10) are no longer valid.

For either the Markovian or non-Markovian regime, we
can always map ĥz(t) to a classical telegraph noise h̃(t) that
starts from hg (he) with probability Pg (Pe) at t = 0 and then
undergoes random jumps from hg to he (from he to hg) with a
rate γg (γe). Then we have

ρmm′ (t)

ρmm′ (0)
= e−i(m−m′)ωMt 〈e−i(m−m′)ϕ̃〉,

where ϕ̃ ≡ ∫ t

0 h̃(t ′)dt ′ and 〈· · · 〉 denotes the average over the
noise. Following the method in Ref. [53], we obtain

〈e−iϕ̃〉 = e−i(hg+he)t/2e−(γg+γe)t/2

(
eγ t/2 1+p

2
+ e−γ t/2 1 −p

2

)
(11)

as the sum of two exponential decays, where

γ =
√

(γg + γe)2 + 2i(hg − he)(γg − γe) − (hg − he)2,

p ≡ (γg + γe)2 + i(hg − he)(γg − γe)

(γg + γe)γ
,
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FIG. 1. Mn spin pure dephasing due to the electronic environ-
ment, which is modeled as an open two-level system undergoing
random hopping between its ground state |g〉 and excited state
|e〉. The three insets show the real-time evolution of |〈M̂+(t)〉| at
γg = 10−5,10−3, and 102, respectively (as marked by the blue dots),
and the dashed line marks γe = 10−3. The unit of energy is |hg − he|
and the unit of time is 1/|hg − he|.

and
√

z ≡ √|z|eiArg(z)/2 with Arg(z) ∈ (−π,π ], while
〈e−iλϕ̃〉 = 〈e−iϕ̃〉|hg,e→λhg,e

. We have verified that the above
analytical results agree exactly with the numerical solution
to Eq. (8) up to the machine accuracy. This suggests that
the mapping from ĥz(t) to h̃(t) is exact, consistent with the
absence of backaction from the Mn spin onto the electronic
environment.

C. Dephasing in Markovian and non-Markovian regimes

Here we discuss two limiting cases:

〈e−iϕ̃〉 ≈

⎧⎪⎨
⎪⎩

ei(hgPg+hePe)t e−
zt/2 (|hg − he| � γg + γe),

∑
α=g,e

e−ihαt e−γαtPα (|hg − he| � γg + γe).

(12)
The weak-coupling (or equivalently Markovian) regime |hg −
he| � γg + γe recovers Eqs. (9) and (10), where the Mn
spin precesses with a single frequency ωM + hgPg + hePe

and its first-order phase coherence decays exponentially with
rate 
z/2. In the strong coupling (or equivalently strong
non-Markovian) regime |hg − he| � γg + γe, the Mn spin
has a probability Pg (Pe) to precess with frequency ωM + hg

(ωM + he) and its first-order phase coherence decays exponen-
tially with rate γg (γe). The interference between e−ihgt and
e−ihet gives rise to rapid modulation at frequency |hg − he|:

|〈e−iϕ̃〉| =
√

(e−γgtPg + e−γetPe)2 − 4e−γgtPge−γetPe sin2
(hg − he)t

2
.

The modulation is pronounced when γg and γe are compa-
rable; e.g., γg = γe gives the maximal modulation |〈e−iϕ̃〉| =
e−γgt | cos[(hg − he)t/2]|. In terms of the Fourier transform of
ρm,m+1(t), i.e., the absorption spectrum of the Mn spin, the
strong non-Markovian regime corresponds to two absorption
lines at ωM + hg (weight Pg and linewidth γg) and ωM + he

(weight Pe and linewidth γe), with their separation |hg − he|
much larger than their total broadening γg + γe. When we
increase γg,γe so that their total broadening γg + γe is much
larger than their separation |hg − he|, we enter the Markovian
regime, where the two absorption lines merge into a single
line at ωM + hgPg + hePe and the linewidth 
z/2 decreases
with further increase of γg,γe. This underlies the so-called
“motional narrowing” phenomena in NMR spectroscopy [54].

For simplicity we always fit the decay of the upper envelope
of the first-order coherence |ρm,m+1(t)| by a single exponential
e−t/Tϕ , which defines the Mn spin pure dephasing time Tϕ .
Equation (11) shows that in general |ρm,m+1(t)| and hence 1/Tϕ

depend on three parameters: γg,γe, and |hg − he|. Equation
(12) shows that in the Markovian regime, 1/Tϕ = 
z/2, while
in the strong non-Markovian regime, 1/Tϕ is roughly equal to
the decay rate of the dominantly occupied electronic state, i.e.,
1/Tϕ ≈ γg when γe � γg (and hence Pg � Pe) and 1/Tϕ ≈
γe when γg � γe (and hence Pe � Pg).

First we discuss the dependence of 1/Tϕ on |hg − he|.
Suppose we fix γg,γe and increase |hg − he| gradually,
starting from the Markovian regime |hg − he| � γg + γe.
Then the Mn spin undergoes exponential dephasing with

a rate that increases rapidly as 1/Tϕ ∝ |hg − he|2. When
|hg − he| becomes comparable to γg + γe—the onset of the
non-Markovian regime—the pure dephasing rate reaches
1/Tϕ ∼ min{γg,γe} and pronounced modulation appears in
the dephasing profile, which is the sum of two exponential
functions [see Eq. (11)]. Upon further increase of |hg − he|
such that it becomes much larger than γg + γe, we enter
the strong non-Markovian regime, where the Mn spin pure
dephasing rate remains 1/Tϕ ≈ min{γg,γe}. These results are
summarized as

1

Tϕ

≈
⎧⎨
⎩

(hg−he)2

(γg+γe)2
γgγe

γg+γe
(|hg − he| � γg + γe),

min{γg,γe} (|hg − he| � γg + γe).
(13)

An important observation is that the Mn spin pure dephasing
rate 1/Tϕ will never exceed the rate of the slowest fluctuation
of the electronic environment.

Next we turn to the dependence of 1/Tϕ on γg and γe.
Since γg and γe are symmetric, we need only consider the
dependence on γg for fixed γe. In Fig. 1, we set |hg − he| = 1
(i.e., taking |hg − he| as the unit of energy so that the unit of
time is 1/|hg − he|), fix γe = 10−3, and plot 1/Tϕ as a function
of γg . When we start from γg � |hg − he| (i.e., the Markovian
regime) and gradually decrease γg , the Mn spin undergoes
exponential dephasing (see the bottom-right inset of Fig. 1)
with a rate that increases rapidly as 1/Tϕ ≈ 
z/2 ∝ 1/γ 2

g .
When γg becomes comparable with |hg − he|—the onset of the
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non-Markovian regime—pronounced modulations appear in
the dephasing profile and the characteristic pure dephasing rate
reaches 1/Tϕ ∼ γe. Upon further decrease of γg well below
|hg − he|, we enter the strong non-Markovian regime, where
the Mn spin pure dephasing rate is roughly equal to the decay
rate of the dominantly occupied electronic state; i.e., when
γg � γe, the Mn spin undergoes exponential dephasing with a
rate 1/Tϕ ≈ γe; when γg becomes comparable with γe, strong
modulation appears in the dephasing profile (see the upper
inset of Fig. 1); when γg drops well below γe, the dephasing
profile becomes exponential again (see the bottom-left inset
of Fig. 1) and the dephasing rate 1/Tϕ ≈ γg decreases linearly
with γg . These results can be summarized as

1

Tϕ

≈
⎧⎨
⎩

[(hg − he)2/γ 2
g ]γe (|hg − he| � γg),

γe (γe � γg � |hg − he|),
γg (γg � γe � |hg − he|).

The above discussions suggest two methods to suppress
the Mn spin pure dephasing: (i) Reducing the amount of
jump |hg − he| of the effective magnetic field on the Mn spin
when the electronic environment jumps randomly between
difference states. This can be achieved by placing the Mn
spin at certain high-symmetry “sweet spots” or by properly
manipulating the electron wave function. (ii) Increasing the
fluctuation rates γg,γe of the electronic system in the weak-
coupling (or equivalently Markovian) regime, or decreasing
the fluctuation rate of the electronic system in the strong-
coupling (or equivalently strong non-Markovian) regime. In
the next section, we demonstrate these ideas by perform-
ing numerical simulations for the Mn spin pure dephasing
caused by two kinds of fluctuations of the electronic system:
(1) thermal excitation of an extra electron in a negatively
charged QD; (2) optical pumping of a negatively charged QD.

III. Mn SPIN PURE DEPHASING BY ELECTRONIC
ENVIRONMENT

A. An extra electron: Thermal fluctuation

1. Theoretical model

Here the electronic environment is an extra electron in a
negatively charged QD under an external magnetic field B. The
thermal fluctuation of this electron originates from its coupling
to acoustic phonons described by Ĥp = ∑

q,λ ωq,λâ
†
q,λâq,λ

through the interaction Ĥe−p = ∑
q,λ Mq,λ(âq,λ + â

†
−q,λ)eiq·r,

where â
†
q,λ (âq,λ) is creation (annihilation) operator of the

acoustic phonon mode of wave vector q and branch λ. The
most relevant interactions between the electron and acoustic
phonons include the deformation potential and piezoelectric
interactions. In the literature, there is some inconsistency about
their expressions [46,55–58], so we give the derivation of these
interactions in Appendix A for completeness. The essentially
physical picture for the thermal fluctuation is captured by
including the ground electron orbital |1〉 and the first excited
electron orbital |2〉, whose wave functions and energies are
ψ1(r), ψ2(r) and E1, E2, respectively. The orbital excitation
energy is ω0 ≡ E2 − E1 and the electron Hamiltonian is
Ĥe = ω0|2〉〈2| + ωeŜe,z, where ωe = geμBB is the electron
Zeeman splitting. This model is justified when the temperature

Mn

Electron

Phonon bath

|1

|2

0

FIG. 2. Sketch of a single Mn spin coupled to an extra electron
in the QD through s-d exchange interaction. The electron is further
coupled to the phonon bath through deformation potential and/or
piezoelectric interactions. The effect of the phonon bath is Markovian,
so it can be eliminated via the Born-Markov approximation to arrive
at a closed, Lindblad master equation for the electron-Mn coupled
system.

is small compared with the electron orbital level spacing, so
that only the lowest two orbitals have non-negligible thermal
occupation.

Now we include the Mn spin and its s-d exchange inter-
action M̂ · ĥ with the electron, where ĥ = −JeŜeδ(r̂e − R)
[see Eq. (1)]. As sketched in Fig. 2, the Mn spin, the
electron, and the acoustic phonon bath form a closed quantum
system described by the total Hamiltonian ωMM̂z + Ĥe +
M̂ · ĥ + Ĥp + Ĥe−p. As the spectral width of the acoustic
phonons is much larger than the phonon-induced electron
spin decoherence rate, the phonon bath is Markovian, so we
are justified in applying the Born-Markov approximation to
eliminate the phonon bath and obtain a closed Lindblad master
equation for the electron-Mn coupled system [59,60]. Here we
are interested in the Mn spin pure dephasing, so we further
neglect the electron-mediated energy exchange between the
Mn spin and the phonon bath (which is responsible for the
phonon-induced Mn spin relaxation [46]), so that the master
equation takes a particularly simple form:

�̇ = −i[ωMM̂z + Ĥe + M̂ · ĥ,�̂] + (n̄ + 1)γD[|1〉〈2|]�̂
+ n̄γD[|2〉〈1|]�̂, (14)

where the last two terms account for the phonon-induced
electron orbital transition from |2〉 to |1〉 with rate (n̄ + 1)γ
and from |1〉 to |2〉 with rate n̄γ . Here n̄ = 1/(eω0/(kBT ) − 1)
is the phonon occupation number, T is the temper-
ature of the phonon bath, and γ = 2π

∑
q,λ δ(ωq,λ −

ω0)|Mq,λ

∫
drψ∗

2 (r)eiq·rψ1(r)|2 is the spontaneous phonon
emission rate.

2. Physical picture: Two-level model

Here we present an analytical analysis about the Mn spin
pure dephasing by reducing Eq. (14) to the standard two-
level model. First, the term M̂xĥx + M̂yĥy ∝ M̂+Ŝe,− + H.c.
(responsible for electron-Mn spin cross relaxation) can be
neglected since it involves a large energy mismatch ωe −
ωM = (ge − gMn)μBB. Second, within the subspace spanned
by |1〉 and |2〉, we have

ĥz = −Ŝe,z(J11|1〉〈1| + J22|2〉〈2| + J12|1〉〈2| + J ∗
12|2〉〈1|),

where Jij (R) = Jeψ
∗
i (R)ψj (R). The term J12|1〉〈2| +

J ∗
12|2〉〈1| involves a large energy mismatch ±ω0, so it can

also be neglected. In the subsequent numerical simulations,

075443-5



DINGYANG LIU, WENXI LAI, AND WEN YANG PHYSICAL REVIEW B 96, 075443 (2017)

TABLE I. Parameters used in our numerical calculation, including the effective mass of the electron and the hole (from Ref. [66]), the size
of the QD, the g factors of the electron and the Mn spin (from Refs. [7,16]), and the sp-d exchange constants (from Ref. [44]). Here m0 is the
mass of a free electron, � = a3/4 is the unit cell volume, and a = 0.6482 nm is the lattice constant of CdTe.

m∗
e m∗

h Lx Ly Lz ge gM Je/� Jh/�

0.1m0 0.493m0 24 nm 20 nm 3 nm −1.67 2.02 0.22 eV −0.88 eV

we take the initial spin state of the electron to be spin down, so
we can further replace the conserved quantity Ŝe,z by its initial
value −1/2. After these approximations, the s-d exchange
interaction simplifies to

M̂ · ĥ → M̂zĥz ≈ 1

2
M̂z(J11|1〉〈1| + J22|2〉〈2|); (15)

thus Eq. (14) reduces to the two-level model [Eq. (8)], with

|g〉 = |1〉, |e〉 = |2〉, (16a)

hg = J11

2
, he = J22

2
, (16b)

γg = n̄γ, γe = (n̄ + 1)γ. (16c)

Then all the analytical results and discussions in Sec. II B as
well as Fig. 1 are applicable. For example:

(1) Markovian regime |J11 − J22|/2 � (2n̄ + 1)γ . The
first-order Mn spin coherence |ρm,m+1| decays exponentially
with a rate

1

Tϕ

= 
z

2
= 1

4

(J11 − J22)2

γ

n̄(n̄ + 1)

(2n̄ + 1)3
(17)

that is proportional to n̄ when n̄ � 1 (i.e., at low temperature)
or proportional to 1/n̄ when n̄ � 1 (i.e., at high temperature).
As a function of n̄, the maximal pure dephasing rate ≈(J11 −
J22)2/(40γ ) occurs at n̄ = (

√
3 − 1)/2 ≈ 0.37. Beyond this

critical value, further increasing the temperature will suppress
the Mn spin pure dephasing, reminiscent of the “motional
narrowing” phenomenon in NMR spectroscopy [54].

(2) Strong non-Markovian regime |J11 − J22|/2 � (2n̄ +
1)γ . For n̄ � 1, the Mn spin coherence |ρm,m+1| decays
exponentially with a rate 1/Tϕ ≈ n̄γ . For n̄ � 1, pronounced
modulations appear, but the characteristic decay rate is still
1/Tϕ ∼ n̄γ .

In general, the Mn spin pure dephasing is determined by
three key parameters: hg − he = (J11 − J22)/2, n̄ (or equiva-
lently the temperature kBT /ω0), and γ . The first parameter is
determined by the size of the QD and the position of the Mn
spin in the QD. The second parameter is determined by the
size of the QD and the temperature. The third parameter γ , i.e.,
the spontaneous phonon emission rate, has been studied both
theoretically and experimentally in previous works [61–65]
and turns out to depend strongly on the semiconductor material
and the details of the QD sample, ranging from ∼1 ns to
∼1 ps [63–65]. Here, in order to focus on the more interesting
dependence of the Mn spin dephasing on the Mn spin position
and other parameters, we regard γ as a fixed parameter.

3. Numerical results and discussion

We consider a flat CdTe QD inside the ZnTe substrate.
The valence band offset ∼100 meV and the conduction band

offset ∼800 meV between CdTe and ZnTe are both much
larger than the typical confinement energy ∼10 meV for the
electron and the heavy hole; thus the electron and hole states
can be described by a “box” model [44], with the height Lz,
length Lx , and width Ly . The electron or heavy-hole ground
orbital ψ1(r) = ϕ1(x)ϕ1(y)ϕ1(z) and the first excited orbital
ψ2(r) = ϕ2(x)ϕ1(y)ϕ1(z), where

ϕn(x) =
√

2

Lx

sin
nπx

Lx

(n = 1,2),

ϕ1(y) =
√

2

Ly

sin
πy

Ly

,

ϕ1(z) ≡
√

2

Lz

sin
πz

Lz

.

The parameters used in our numerical calculation are listed
in Table I, from which we obtain the s-d exchange co-
efficient Je ≈ 15 meV nm3, the p-d exchange coefficient
Jh ≈ −60 meV nm3, and the electron orbital excitation energy
ω0 = 3π2/(2m∗

eL
2
x) ≈ 19.6 meV ≈ 30 ps−1, corresponding to

a temperature ∼220 K.
Our numerical results are obtained by solving numerically

the master equation [Eq. (14)] for the Mn-electron coupled
system (see Appendix B for the details). Once the density
matrix �̂(t) of the electron-Mn coupled system and hence the
Mn spin density matrix ρ̂(t) = Tre �̂(t) have been obtained,
the Mn spin pure dephasing time Tϕ can be obtained by
fitting the decay of the real-time evolution of the Mn spin
coherence |〈M̂+(t)〉| by a single exponential e−t/Tϕ , where
M̂+ ≡ M̂x + iM̂y . In the numerical simulations, we start from
a coherent superposition (| − 5/2〉 + | − 3/2〉)/√2 of the Mn
spin Zeeman eigenstates {|m〉} (m = ±1/2,±3/2,±5/2) and
spin-down state of the electron (with thermal populations
on the ground and first excited orbitals); thus |〈M+(t)〉| =√

5|ρ−5/2,−3/2(t)| and |〈M+(0)〉| = √
5/2.

First, our numerical simulations show that the Mn spin Tϕ

is almost independent of the external magnetic field; e.g., at
T = 50 K, we always have Tϕ ≈ 0.07 μs over the entire range
of magnetic field up to B = 10 T. This behavior is consistent
with the two-level model analysis in Sec. III A 2, but is in sharp
contrast to the dramatic reduction of T1 of the Mn spin upon
increasing the magnetic field [46]. Physically, this qualitative
difference originates from the different energy mismatches
involved in the Mn spin relaxation and Mn spin pure dephasing
processes: the former is caused by the electron-Mn spin
flip-flop and involves a Zeeman energy mismatch ωe − ωM ,
which must be dissipated by the phonon modes at the frequency
ωe − ωM . Therefore, the significant increase of the phonon
density of states with increasing frequency speeds up the
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FIG. 3. Pure dephasing rate 1/Tϕ of the Mn spin as a func-
tion of temperature under an external magnetic field B = 1.5 T
and different spontaneous phonon emission rates: (a) γ = 1 ns−1,
(b) γ = 200 ns−1. The Mn spin locates at (X,Y,Z) = (11.5,10.5,1.6)
nm (i.e., near the center of the QD), corresponding to J11 ≈
124 ns−1,J12 = J21 ≈ 16 ns−1, and J22 ≈ 2 ns−1. The coupled master
equation [Eq. (14)] is solved exactly (empty squares) or under the
approximation Eq. (15) (filled circles). The solid lines in (a) and (b)
denote, respectively, the analytical expression for 1/Tϕ in the strong
non-Markovian regime and Markovian regime.

electron-Mn spin flip-flop with increasing magnetic field. By
contrast, the pure dephasing involves no energy mismatch, so
it is insensitive to the magnetic field.

Second, we show the dependence of the Mn spin pure
dephasing rate 1/Tϕ on the temperature in Fig. 3, where
1/Tϕ is fitted numerically by solving the master equation
[Eq. (14)] for the Mn-electron coupled exactly (empty squares)
or under the approximation in Eq. (15) (filled circles). The
quantitative agreement between these two results suggest that
Eq. (15) serves as an excellent approximation. In Fig. 3(a),
we have |hg − he| = |J11 − J22|/2 ≈ 61 ns−1 and γg + γe =
(2n̄ + 1)ns−1; thus the crossover between the Markovian
and non-Markovian regimes occurs at n̄ ≈ kBT /ω0 ≈ 30.
Therefore, the electron environment is non-Markovian over
the entire range of temperatures shown in Fig. 3(a). As
discussed in Sec. III A 2, the Mn spin coherence |〈M̂+(t)〉|
exhibits exponential decay with a rate n̄γ when n̄ � 1
(shaded region). When the temperature increases to n̄ � 1,
pronounced modulations appear in the dephasing profile,
and the characteristic pure dephasing rate increases linearly
with temperature: 1/Tϕ ∼ n̄γ ≈ γ kBT /ω0. In Fig. 3(b), the
electron total dissipation rate γg + γe = 200(2n̄ + 1) ns−1

is always much larger than |hg − he| ≈ 61 ns−1; thus the
electron environment is Markovian and the Mn spin coherence
|〈M+(t)〉| undergoes exponential decay at a rate well described
by the analytical expression [Eq. (17)] in the Markovian
regime. As discussed in Sec. III A 2, at high temperatures
(n̄ � 1), the dephasing rate begins to decrease with increasing
temperature, reminiscent of the “motional narrowing” phe-
nomenon in NMR spectroscopy.

Third, we consider a most interesting point, i.e., the
dependence of the Mn spin Tϕ on the position R ≡ (X,Y,Z)
of the Mn spin, which determines

|hg − he| = |J11 − J22|
2

= Je[ϕ2
1(X) − ϕ2

2(X)]ϕ2
1(Y )ϕ2

1(Z).

When X = Lx/3 or 2Lx/3, we have |ϕ1(X)| = |ϕ2(X)| and
hence |hg − he| = 0. At these two “sweet spots”, the phonon-
induced random jump of the electron between the ground
orbital and the first excited orbital does not change the effective

FIG. 4. log10 Tϕ (Tϕ in units of μs) as a function of the lateral
position (X,Y ) of the Mn ion. The magnetic field B = 1.5 T and
temperature T = 50 K.

magnetic field on the Mn spin, so the Mn spin dephasing time
should be strongly enhanced, as confirmed by our numerical
simulations in Fig. 4, where Tϕ of the Mn spin is prolonged dra-
matically near the two sweet spots: X = 8 nm and X = 16 nm.
In addition, the Mn spin Tϕ is also enhanced when the Mn spin
locates at the edges of the QD, which trivially follows from
the vanishing electron density (and hence vanishing J11 and
J22) at the edges of the QD.

4. Electrical control of Mn spin dephasing

The key ingredient of the sweet spot mechanism is the
overlap of the electron orbital wave function with the localized
Mn spin. In practice, it is hard to move the Mn atom in the
QD. Instead, a feasible method is to manipulate the electron
wave function, e.g., by applying an external, in-plane electric
field F . We assume that the electric field is applied along the x

axis. For the electron inside a hard-wall “box” (Lx,Ly,Lz),
the electric-field-induced electron orbital displacement can
only be obtained numerically. To give an analytical analysis,
we replace the hard-wall confinement along the x axis with
a harmonic oscillator potential (1/2)m∗

eω
2
xx

2, where ωx is
determined by Lx/2 ≡ 1/

√
m∗

eωx . Applying an electric field
F shifts the equilibrium position of the electron to

x0 ≡ eF

m∗
eω

2
x

= F
em∗

eL
4
x

16
≈ 2.7 nm × F

kV/cm
; (18)

i.e., increasing the electric field by every 1 kV/cm shifts the
equilibrium position of the electron by 2.7 nm. Using

J22

J11
=

(
ϕ2(X)

ϕ1(X)

)2

= 8(X − x0)2

L2
x

,

the sweet spot condition J22 = J11 is achieved when the
electric field is chosen such that x0 = X ± Lx/(2

√
2). For

example, for the Mn spin located at X = 0, the sweet spot con-
dition is satisfied by applying an electric field F ≈ 3 kV/cm.
In Fig. 5, we plot the pure dephasing rate 1/Tϕ of the Mn spin
located at the center of the QD as a function of the applied
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FIG. 5. Electron-Mn s-d exchange coefficients and Mn spin
pure dephasing rate 1/Tϕ as functions of the applied electric field
under a magnetic field B = 1.5 T and temperature T = 50 K.
(a) and (b): The electron is confined in a 3D harmonic oscillator
potential (1/2)m∗

e (ω2
xx

2 + ω2
yy

2 + ω2
zz

2) with ωα determined by
Lα/2 = 1/

√
m∗

eωα . (c) and (d): The electron is confined in a 3D
hard-wall potential. The inset of (d) shows the electron density
distribution at F ≈ 27 kV/cm for the ground orbital and the first
excited orbital. Other parameters are listed in Table I.

electric field along the x axis. When the electron is confined
in a harmonic oscillator potential [Figs. 5(a) and 5(b)], the
“sweet spot” condition is indeed met at F ≈ 3 kV/cm.
Correspondingly, 1/Tϕ shows a sharp dip at F ≈ 3 kV/cm,
corresponding to Tϕ > 1 μs near the dip. When the electron is
confined in a hard-wall “box” [Figs. 5(c) and 5(d)], applying
an electric field F ≈ 27 kV/cm shifts the electron ground
orbital and first excited orbital to the sweet spot condition
|ϕ1(X)| = |ϕ2(X)|, so that J11 = J22 and hence the Mn spin
Tϕ is significantly prolonged. Here the critical electric field
for the “box” model is much larger than that for the harmonic
potential, because the hard-wall “box” potential makes it more
difficult to shift the electron orbitals. In realistic experiments,
the sweet spot condition depends on the specific size and shape
of the dot. The results from the harmonic oscillator model and
the “box” model can be taken as the lower bound and upper
bound of the required electric field.

B. Negatively charged QD under optical pumping

1. Theoretical model

Experimentally, optical pumping is commonly used to
initialize, manipulate, and/or readout the Mn spin state
[22,27,28,30–38]; thus the Mn spin dephasing due to the fluc-
tuation of the electronic environment during optical pumping
is relevant to many experiments. For a negatively charged
QD, optical pumping excites the single-electron ground orbital
|1〉 to the exciton orbital |2〉, which consists of two electrons
in the spin singlet state and an extra heavy hole. The extra
electron in the ground orbital is coupled to the Mn spin through
the isotropic s-d exchange interaction −Je|ψ1(R)|2M̂ · Ŝe [cf.
Eq. (1)], where Ŝe is the electron spin and ψ1(r) is the
wave function of |1〉. The extra heavy hole in the exciton

is coupled to the Mn spin through the Ising-like p-d exchange
interaction −(Jh/3)|ψ2(R)|2M̂zŜh,z [cf. Eq. (2)], where Ŝh is
the spin of the heavy hole (Ŝh,z = ±3/2) and ψ2(R) is the
wave function of the heavy hole in the exciton. The total in-
teraction between the Mn spin and the electronic environment
can be written as M̂ · ĥ, where ĥ = −Je|ψ1(R)|2Ŝe|1〉〈1| −
(Jh/3)|ψ2(R)|2Ŝh,zez|2〉〈2|. Under optical pumping, the elec-
tronic system jumps randomly between the ground orbital
and the exciton orbital, leading to random fluctuation of the
effective magnetic field ĥ on the Mn spin. The fluctuation of
ĥx,ĥy leads to Mn spin relaxation, while the fluctuation of
ĥz leads to Mn spin pure dephasing. The former have been
studied by a series of works [29,30,44,67,68], while the latter
has not been discussed so far. Thus we focus on the Mn spin
pure dephasing and drop hx and hy ; then the electron spin Ŝe,z,
the heavy-hole spin Ŝh,z, and the Mn spin M̂z are all conserved.
We assume the electronic environment is initially in the spin-
down ground state |g〉 ≡ |1,↓〉 with Ŝe,z = −1/2; then optical
pumping creates the spin-down exciton state |e〉 ≡ |2,↓↑⇓〉
with Ŝh,z = −3/2, where |↑〉,|↓〉 are the electron spin-up and
spin-down states and |⇓〉 is the spin-down state of the heavy
hole. Therefore, the sp-d exchange interaction between the
electronic environment and the Mn spin simplifies to

M̂ · ĥ → M̂zĥz ≈ M̂z(J11|g〉〈g| + J22|e〉〈e|),
where J11 ≡ (1/2)Je|ψ1(R)|2 and J22 = (1/2)Jh|ψ2(R)|2.

Under continuous optical pumping, the Hamiltonian
of the electronic environment is Ĥe(t) = ω0|e〉〈e| +
(�R/2)(e−iωt |e〉〈g| + eiωt |g〉〈e|), where ω0 is the exciton
excitation energy, �R is the Rabi frequency, and ω is the
optical pumping frequency. In the rotating frame, the electronic
Hamiltonian becomes

Ĥe = �|e〉〈e| + �R

2
(|e〉〈g| + |g〉〈e|),

where � ≡ ω0 − ω is the detuning of the optical pumping.
The density matrix �̂(t) of the Mn spin and the electronic
environment obeys the Lindblad master equation

�̇ = −i[ωMM̂z + Ĥe + M̂zĥz,�̂] + γ1D[|g〉〈e|]�̂
+ γφD[|e〉〈e|]�̂, (19)

where γ1 (γφ) is the spontaneous emission (pure dephasing)
rate of the exciton. By solving this equation numerically, we
can find �̂(t) and hence the Mn spin coherence |〈M̂+(t)〉| =
| Tr �̂(t)M̂+|. We always fit the decay envelope of |〈M̂+(t)〉|
by a single exponential e−t/Tϕ , which defines the Mn spin
dephasing time Tϕ . In the numerical simulations, we start
from a coherent superposition (| − 5/2〉 + | − 3/2〉)/√2 of
the Mn spin Zeeman eigenstates and the single-electron
spin-up ground state |g〉; thus |〈M̂+(t)〉| = √

5|ρ−5/2,−3/2(t)|
and |〈M̂+(0)〉| = √

5/2.

2. Physical picture: Two-level model

Before going to numerical simulations, we present an
analytical study of the Mn spin pure dephasing by reducing
Eq. (19) to the standard two-level model. This is possible
when γφ � γ1. In this case the off-diagonal elements of �̂(t)
decay much faster than the evolution of the diagonal elements
of �̂(t). Thus the diagonal elements obey a closed set of
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rate equations, as characterized by the optical pumping rate
R ≡ 2π (�R/2)2δ[(γ1+γφ )/2](�). Thus we recover the standard
two-level model, with

hg = J11, he = J22, (20a)

γg = R, γe = R + γ1. (20b)

Then all the analytical results and discussions in Sec. II B and
Sec. III A 2 as well as Fig. 1 are applicable. Moreover, by
comparing Eq. (20) to Eq. (16), we see that optical pumping
corresponds to thermal excitation of an extra electron with
γ → γ1 and n̄ → R/γ1. Tuning the optical pumping strength
can induce the crossover between the Markovian and non-
Markovian regimes:

(1) Markovian regime |J11 − J22| � 2R + γ1. The Mn
spin coherence |〈M̂+(t)〉| decays exponentially with
a rate

1

Tϕ

= 
z

2
= (J11 − J22)2 R(R + γ1)

(2R + γ1)3
, (21)

consistent with our previous work [69], where we applied the
Born-Markov approximation to derive an explicit analytical
expression for the optical-pumping-induced pure dephasing
of the electron spin in the nitrogen-vacancy center. Equa-
tion (21) shows 1/Tϕ is proportional to R when R � γ1

or proportional to 1/R when R � γ1. As a function of
R, the maximal dephasing rate ≈ (J11 − J22)2/(10γ ) oc-
curs at R = (

√
3 − 1)γ1/2 ≈ 0.37γ1. Beyond this critical

value, further increase of R can suppress the Mn spin
pure dephasing, reminiscent of the “motional narrowing”
phenomenon [54].

(2) Strong non-Markovian regime |J11 − J22| � 2R + γ1.
For R � γ1, the Mn spin coherence |〈M̂+(t)〉| decays ex-
ponentially with a rate 1/Tϕ ≈ R. For R � γ1, pronounced
modulations appear, but the characteristic decay rate is still
1/Tϕ ∼ R.

3. Numerical results and discussion

For the numerical simulation, we consider 3D harmonic
oscillator potential (1/2)m∗(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) for the

electron and the heavy hole, where ωα is determined by the
effective QD size Lz = 4 nm, Lx = 24 nm, Ly = 20 nm
through Lα/2 = 1/

√
m∗ωα , m∗ = m∗

e (for the electron) or
m∗

h (for the heavy hole), and other parameters are listed in
Table I. Here, following Refs. [70,71], we have assumed that
the typically weaker confinement potential {ωα} of the heavy
hole compared with the electron (due to the typically smaller
valence band offset compared with the conduction band offset
[72]) is compensated by its heavy mass, so that the electron and
hole have the same effective QD size. We take the detuning
� = 1 meV and the Mn spin to locate at the center of the
QD, i.e., the minimum of the 3D harmonic potential, thus
ψ1(R) = ψ2(R) = √

8/(LxLyLz)/π3/4. Other parameters are
listed in Table I, from which we obtain J11 ≈ 8.5 ns−1 and
J22 ≈ −34 ns−1.

In Fig. 6, we show the Mn spin pure dephasing rate 1/Tϕ

as a function of the optical pumping rate R with γ1 = γφ =
1ns−1. The behavior of 1/Tϕ is determined by three key
parameters: |J11 − J22| ≈ 42 ns−1, the spontaneous emission

FIG. 6. Mn spin pure dephasing rate 1/Tϕ obtained by nu-
merically solving Eq. (19) as a function of optical pumping rate
R, with γ1 = γφ = 1 ns−1. The solid lines shows non-Markovian
limit 1/Tϕ = R and the Markovian approximation 1/Tϕ = (J11 −
J22)2/(8R). The vertical dashed line marks the crossover point
between the Markovian and non-Markovian regimes.

rate γ1 = 1 ns−1, and R. The crossover between the Markovian
and non-Markovian regimes occurs at |J11 − J22| ≈ 2R + γ1,
corresponding to a critical pumping rate Rc ≈ 21 ns−1, as
marked by the dashed line in Fig. 6. Suppose we start from
the strong non-Markovian regime R � γ1 (� |J11 − J22|) and
gradually increase R; the Mn spin undergoes exponential
decay (see the inset of Fig. 6) with a rate that increases
linearly: 1/Tϕ ∼ R (see the blue solid line). When R becomes
comparable with γ1, pronounced modulations appear (see the
inset of Fig. 6) and the Mn spin dephasing rate remains
1/Tϕ ∼ γ1 upon further increase of R. When R � Rc, we
enter the Markovian regime and the Mn spin dephasing
becomes exponential again (see the inset of Fig. 6) and the
decay rate 1/Tϕ ∝ 1/R decreases with further increase of R

(see the blue solid line in Fig. 6).
Similar to the case of thermal fluctuation (see Sec. III A 4),

the Mn spin dephasing due to optical pumping can also be
controlled by applying an external electric field, which shifts
the electron and hole envelope functions ψ1(r) and ψ2(r)
away from the center of the QD (where the Mn spin locates).
Consequently, the sp-d exchange coefficients J11 and J22

decrease continuously with increasing electric field, as shown
in Fig. 7(a). This in turn could significantly suppress the Mn
spin dephasing, as shown in Fig. 7(b). Under strong optical
pumping R = 103 ns−1 [black squares and lines in Fig. 7(b)],
the electronic environment is Markovian, so the Mn spin pure
dephasing rate 1/Tϕ ∝ (J11 − J22)2 decreases continuously
with increasing electric field. Under weak optical pumping
R = 10−3 ns−1 [orange squares in Fig. 7(b)], the electronic
environment is strongly non-Markovian in zero electric field,
so the Mn spin pure dephasing rate remains 1/Tϕ ≈ R with
increasing electric field, until |J11 − J22| becomes comparable
with 2R + γ1 ≈ γ1—the crossover from the non-Markovian
regime into the Markovian regime [as marked by the arrow
in Fig. 7(b)]. Afterwards, further increasing the electric field
leads to significant suppression of the Mn spin dephasing
according to 1/Tϕ ∝ (J11 − J22)2.
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FIG. 7. Electric field control of the sp-d exchange coefficients
(a) and hence the Mn spin pure dephasing rate (b) under different
optical pumping strengths: R = 103 ns−1 (empty squares) and R =
10−3 ns−1 (filled squares). The black solid lines denotes the analytical
approximation Eq. (21) in the Markovian regime for the case R =
103 ns−1. We take γ1 = 1 ns−1 and γφ = 1000 ns−1.

C. Other fluctuations of the electronic environment

In addition to the thermal excitation of the electron
and optical pumping of negatively charged excitons, other
commonly encountered sources of fluctuation include the
thermal excitation of the hole, optical pumping of neutral
and positively charged excitons, tunneling between the QD
and an electron/hole reservoir nearby, and random flip of
the electron/hole spin. Here we briefly discuss the Mn spin
pure dephasing caused by these mechanisms based on the
two-level model in Sec. II B, which has three key parameters:
γg,γe, and |hg − he|. According to the discussions in Sec. II C,
the Mn spin pure dephasing rate 1/Tϕ in the Markovian
and non-Markovian regimes are summarized in Eq. (13). For
specificity we consider the Mn spin located at the center of a
CdTe QD described by the “box” model. For the QD size as
listed in Table I, the ground orbital and first excited orbital of
the hole are the same as those of the electron, but the hole-Mn
p-d exchange constant Jh ≈ −60 meV nm3 is four times that of
the electron-Mn s-d exchange constant Je ≈ 15 meV nm3; thus
J11 ≈ 124 ns−1 (J22 ≈ 2 ns−1) for an electron in the ground
(first excited) orbital, and J11 ≈ 496 ns−1 (J22 ≈ 8 ns−1) for
a heavy hole in the ground (first excited) orbital. Since the
heavy-hole effective mass m∗

h is about five times that of the
electron effective mass m∗

e (see Table I), the orbital excitation
energy of the heavy hole is about 4 meV (corresponding to a
temperature ∼50 K), i.e., 20% that of the electron.

The thermal excitation of the heavy hole corresponds to
|hg − he| = |J11 − J22|/2 ≈ 244 ns−1, which is four times
that of the electron. For the spontaneous phonon emission rate
γ � 244 ns−1, we are always in the non-Markovian regime up
to T = 50 K, so Eq. (13) gives 1/Tϕ ≈ γ . For γ � 244ns−1,

we are always in the Markovian regime; thus 1/Tϕ decreases
with increasing γ , e.g., 1/Tϕ ∼ 5 ns−1 at γ = 1 ps−1 and
T = 50 K.

For the electron or hole tunneling between the QD and
an electron/hole reservoir nearby, |g〉 corresponds to zero
electron/hole in the QD, |e〉 corresponds to one electron/hole in
the ground orbital, γg = γe = 
t corresponds to the tunneling
rate, and |hg − he| = |J11|/2 is 62 ns−1 for electron tunneling
and 248 ns−1 for hole tunneling. For typical tunneling rates

t ∼ a few kHz (Refs. [39,73]), we are always in the
non-Markovian regime; thus 1/Tϕ ≈ 
t.

For the electron or hole spin relaxation, |g〉 and |e〉
correspond to the spin-down and spin-up states, respectively,
γg ≈ γe = γsf corresponds to the spin-relaxation rate, and
|hg − he| = |J11| is 124 ns−1 for the electron and 496 ns−1 for
the heavy hole. Previous experiments at low temperatures have
reported an electron spin relaxation rate ranging from ∼10 Hz
to ∼10 kHz (Ref. [39]) and a hole spin relaxation rate ranging
from ∼100 kHz (Refs. [74,75]) to ∼10 MHz (Refs. [76,77]), so
we are always in the non-Markovian regime, i.e., 1/Tϕ ≈ γsf .

Finally, applying an in-plane electron field of a few (or a few
tens) of kV/cm can significantly reduce the electron-Mn and
hole-Mn coupling coefficients (see Figs. 5 and 7) and hence
|hg − he|. So we expect the electrical control of the Mn spin
pure dephasing due to all the mechanism mentioned above to
remain effective.

IV. Mn SPIN DEPHASING BY NUCLEAR
SPIN ENVIRONMENT

At low temperature, the thermal fluctuation of the electronic
environment and hence the resulting Mn spin dephasing
are suppressed. For example, in Fig. 3(a), the Mn spin
pure dephasing rate 1/Tϕ ≈ n̄γ ≈ e−ω0/(kBT ) ns−1 is sup-
pressed exponentially when kBT � ω0; e.g., Tϕ ≈ 0.2 ms
for T ≈ 22 K and Tϕ ≈ 0.4 s for T ≈ 11 K. Even for a
much larger spontaneous phonon emission rate γ = 200 ns−1

(Refs. [64,65]), the Mn spin pure dephasing rate [see Fig. 3(b)]
1/Tϕ ≈ (J11 − J22)2e−ω0/(kBT )/(4γ ) at low temperature still
becomes very small, e.g., Tϕ ≈ 26 ms at T ≈ 11 K. Therefore,
at low temperature, the thermal fluctuation mechanism is not
relevant to Mn spin dephasing.

In many quantum information systems (such as semi-
conductor QDs, phosphorus and bismuth donors in silicon,
and nitrogen-vacancy centers in diamond), the nuclear spin
environment dominates the dephasing of the central electron
spin qubits at low temperature and sets the ultimate limitation
to their applications. This motivates us to investigates the Mn
spin dephasing caused by the nuclear spin environment.

We consider a single substitutional Mn atom on the Cd
site of the CdTe lattice. Only four stable isotopes of Te and Cd
have nonzero nuclear spins (I = 1/2): 111Cd, 113Cd, 123Te, and
125Te. Their gyromagnetic ratio [in units of 106 rad/(T s)] and
natural abundance are 56.9 (12.8%), 59.6 (12.2%), 70 (7.1%),
and 85.1 (0.9%), respectively. Due to the highly localized
nature of the Mn 3d5 electrons, these nuclear spins are coupled
to the Mn electron spin primarily through the dipolar hyperfine
interaction M̂ · ĥ, where ĥ is given by Eq. (3). As discussed
previously, the fluctuation of ĥx ,ĥy leads to Mn spin relaxation,
while the fluctuation of ĥz leads to Mn spin pure dephasing.
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FIG. 8. Distribution of nuclear environment induced T ∗
2 of the

Mn spin, obtained from the statistics of 100 000 repeated simulations
for a 9 × 6 × 5 lattice of the CdTe crystal.

Under a moderate magnetic field, the large Zeeman energy
mismatch between the Mn spin and the nuclear spin suppresses
the Mn-nuclear spin flip-flop and hence the Mn spin relaxation,
similar to the suppression of electron spin relaxation induced
by nuclear spins in QDs. Then M̂ · ĥ can be replaced by M̂zĥz,
where ĥz = ∑

n an · În is the nuclear Overhauser field, and

an =
∑

n

μ0

4πρ5
n

γeγn

(−3ρn,xρn,z, − 3ρn,yρn,z,ρ
2
n − 3ρ2

n,z

)
.

Due to the extremely small magnetic momentum of the nuclear
spins, we have kBT � nuclear spin Zeeman splitting even
under a strong magnetic field (e.g., a few teslas) and low
temperature (e.g., a few kelvins), so the nuclear spins are
in the completely random state. Therefore, ĥz is a random
variable with vanishing mean 〈ĥz〉 = 0 but strong static,
thermal fluctuation:

〈
ĥ2

z

〉 =
∑

n

I (I + 1)

3
|an|2.

The resulting Mn spin pure dephasing is referred to as
inhomogeneous dephasing and the characteristic time scale
can be estimated as T ∗

2 ≈ 1/〈ĥ2
z〉1/2.

Since |an|2 ∝ 1/ρ6
n decays rapidly with the distance ρn,

the dominant contribution to 〈ĥ2
z〉 comes from those nuclei

on the nearest-neighbor Te sites. In our numerical calculation,
we find it sufficient to consider a 9 × 6 × 5 CdTe crystal and
replace the center Cd atom by the Mn atom. In the worst case,
i.e., when the four nearest-neighbor Te sites are all occupied
by 125Te, we may neglect the effect of other nuclear spins
and obtain T ∗

2 ≈ 5 μs. This serves as the lower bound of
T ∗

2 caused by the nuclear spins and agrees qualitatively with
the Rabi oscillation decay time ∼0.5 μs of diluted Mn spins
in the MgO crystal [48]. In practice, we obtain different T ∗

2
for different occupations of the nearest-neighbor sites by the
spinful Te isotopes, as shown in Fig. 8. The peaks at T ∗

2 ≈ 7 μs,
10 μs, and 12 μs correspond, respectively, to the four nearest-
neighbor Te sites being occupied by two 123Te, one 123Te, and
one 125Te. The possibility for more than two nearest-neighbor
Te sites to be occupied by spinful Te isotopes is too small to
be observed. The peaks at T ∗

2 > 20 μs correspond to none
of the nearest-neighbor Te sites being occupied by spinful Te
isotopes.

In addition to the surrounding Te nuclei, the Mn electron
spin is also coupled to the on-site 55Mn nuclear spin I = 5/2
through the contact hyperfine interaction AM̂ · Î of strength
A = 0.68μeV ≈ 1 ns−1. This interaction can significantly
change the dynamics of the Mn electron spin on a time scale
of 1 ns−1. Fortunately, the 55Mn nuclear spin is a well-isolated
quantum system, so it does not induce irreversible Mn spin
dephasing, but just modulates the Larmor precession of the
Mn spin, as observed in a recent experiment by Goryca et al.
[38]. This suggests that the 55Mn nuclear spin could be utilized
as a quantum memory to store long-lived quantum information.

Finally, we notice that for the electron spin qubit in semi-
conductor QDs, phosphorus and bismuth donors in silicon,
and nitrogen-vacancy centers in diamond, the inhomogeneous
dephasing caused by the static thermal fluctuation of the
nuclear spin environment can be efficiently removed by spin
echo techniques. Here we expect that the same technique can
be used to remove the Mn spin inhomogeneous dephasing by
the nuclear spin environment.

V. CONCLUSIONS

We have provided exact analytical solutions and further
perform numerical simulations to study the time scale and
temporal profile of the pure dephasing of a single Mn
spin due to its sp-d exchange interaction with a fluctuating
electronic environment and its hyperfine interaction with the
nuclear spin environment. Our analytical results provide a
clear physical picture and can be applied to estimate the Mn
spin pure dephasing caused by a large variety of fluctuations
of the electronic environment, such as thermal fluctuation,
optical pumping, electron/hole tunneling, and electron/hole
spin relaxation. It also reveals a series of interesting behaviors,
such as thermal, optical, and electrical control of the crossover
between the Markov and non-Markov regimes. In particular,
we find that the fluctuation of the electron or hole between
different orbitals due to thermal excitation or optical pumping
could rapidly dephase the Mn spin on a nanosecond time
scale, but this efficient pure dephasing mechanism can be
strongly suppressed by applying an external electric field
to tune the relative position between the Mn spin and the
electron envelope functions. In the nuclear spin environment,
the Mn spin inhomogeneous dephasing time is sensitive to
the distribution of spinful isotopes on the nearest-neighbor
lattice sites surrounding the substitutional Mn atom, with a
typical inhomogeneous dephasing time of few microseconds.
Our work may be useful to understanding and suppressing
the Mn spin pure dephasing for its applications in quantum
technologies.
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APPENDIX A: ELECTRON–ACOUSTIC
PHONON INTERACTION

Here we give a brief introduction to the calculation of
acoustic phonon modes and their deformation and piezoelec-
tric interactions with the electron.

1. Continuous elastic model

In the continuous elastic model, the displacement of the
atoms is characterized by the displacement field u(r,t) obeying
the equation of motion ρü(r,t) = ∇ · σ , where σ (r) is the
symmetric stress tensor as determined by the symmetric
strain tensor eij = (1/2)(∂jui + ∂iuj ) via σij = ∑

kl Cij,klekl .
In general, the elastic moduli C obey Cij,kl = Cji,kl = Cij,lk =
Ckl,ij . For a zinc-blende crystal and in the coordinate system of
the crystal structure, i.e., the x direction along (100), y along
(010), and z along (001), the nonvanishing elements of the
elastic moduli are

Cxx,xx = Cyy,yy = Czz,zz ≡ C11,

Cxx,yy = Cxx,zz = Cyy,zz ≡ C12,

Cxy,xy = Cxz,xz = Cyz,yz = 2C44,

so the equation of motion of the displacement field reduces to

ρüα = C44∇2uα + (C12 + C44)∂α(∇ · u)

+ (C11 − C12 − 2C44)∂2
αuα,

where ∂α ≡ ∂/∂xα , α = x,y,z, and ρ is the mass density of
the material. Assuming u(r,t) = eqe

i(q·r−ωt), we have

ω2ρeqα = C44q
2eqα + (C12 + C44)qα(q · eq)

+ (C11 − C12 − 2C44)q2
αeqα.

For a given wave vector q, there are three solutions, corre-
sponding to the three acoustic branches of the phonon. For q
along certain high-symmetric axes, the three solutions can be
classified into one longitudinal acoustic (LA) mode and two
transverse acoustic (TA) modes. For example, for q along the
z axis, we have one LA mode and two degenerate TA modes
with polarization vectors eq,LA = q/q and eq,TA1,eq,TA2 ⊥ ez

and frequencies ωq,LA = √
C11/ρq and ωq,TA = √

C44/ρq,
where q ≡ |q|. When q = (q/

√
3)(1,1,1), we have one LA

mode and two degenerate TA modes with polarization vectors
eq,LA = q/q and eq,TA1,eq,TA2 ⊥ q, and frequencies

ωq,LA =
√

(C11 + 2C12 + 4C44)/(3ρ)q,

ωq,TA =
√

(C11 − C12 + C44)/(3ρ)q.

For a general wave vector, the solutions cannot be classi-
fied into LA and TA modes. However, if we neglect the
anisotropy of the solid by setting C11 = C12 + 2C44, then
the solutions always consist of one LA mode eq,LA = q/q,
ωq,LA = √

C11/ρq ≡ cLAq and two degenerate TA modes
eq,TA1,eq,TA2 ⊥ q and ωq,TA = √

C44/ρq ≡ cTAq, where cLA

and cTA are the corresponding sound velocities.
Upon second quantization, the displacement field operator

in the Schrödinger picture can be expanded as the sum of

phonon modes as

û(r) = −i
∑
qλ

eqλ√
2ρV cλq

(âqλ + â
†
−q,λ)eiq·r,

where λ runs over one LA mode and two TA modes and the
polarization vectors obey the phase convention e∗

q,λ = −e−q,λ,
so that û(r) is Hermitian. Similarly, the strain tensor can also
be expanded as

eij (r) = 1

2

∑
qλ

(eqλ)iqj + (eqλ)j qi√
2ρV cλq

(âqλ + â
†
−q,λ)eiq·r.

2. Interaction between electron and acoustic phonons

There are two kinds of interactions between the electron and
the acoustic phonons: the deformation potential interaction
and the piezoelectric interaction. The deformation potential
interaction is one of the most common phonon scattering
mechanisms, in which a long-wavelength acoustic wave
locally deforms the crystal and hence locally perturbs the
energy bands of the electron by an amount

V̂ DP(r) =
∑
αβ

�αβeαβ −→ �∇ · u(r),

where �αβ are deformation potential constants for a particular
electron energy band and the last step applies to a spherically
symmetric energy band in a zinc-blende crystal, in which
�αβ = δαβ�. Thus the deformation potential interaction can
be written as V̂ DP(r) = ∑

qλ

MDP
qλ (âqλ + â

†
−q,λ)eiq·r, where

MDP
qλ = �(q · eqλ)√

2ρV cλq
.

The piezoelectric electron-phonon interaction arises from
the polar nature of compound materials, such as GaAs and
other III–V compounds that lack an inversion symmetry. In
these materials, strain in the lattice will produce a macroscopic
polarization Pi(r) = ∑

jk hijkejk(r) through the piezoelectric
effect, where h is the piezoelectric tensor. This in turn induces a
built-in electric field E(r) = −∇�(r) that can be determined
from ∇ · D = 0, where Di(r) = ∑

j κijEj (r) + Pi(r) is the
electric displacement vector and κ is the dielectric tensor.
The resulting piezoelectric interaction is V PZ(r) = −e�(r) =∑

q V PZ
q eiq·r, where

V PZ
q = ie

∑
ijk qihijkejk(q)∑

ij qiκij qj

,

e > 0 is the proton charge, and eij (q) is the Fourier
transform of eij (r). For zinc-blende crystals, we have
κij = δij κ and the nonvanishing elements of the piezoelec-
tric tensor are hxyz = hxzy = hyzx = hyxz = hzxy = hzyx ≡
h14, so the piezoelectric interaction simplifies to V PZ(r) =∑

qλ MPZ
qλ (âqλ + â

†
−q,λ)eiq·r, where

MPZ
qλ ≡ i

eh14

κ
√

2ρV cλq
Aλ(θ,ϕ)

and

Aλ(θ,ϕ) ≡ 2
qxqy(eqλ)z + qyqz(eqλ)x + qzqx(eqλ)y

q2
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is the anisotropy factor that depends on the polar angle θ and
azimuth angle ϕ of the wave vector q.

In zinc-blende crystals with the anisotropy neglected by
setting C11 = C12 + 2C44, the acoustic phonons can always be
classified into one LA mode and two TA modes. Their polariza-
tion vectors are eq,LA = q/q, eq,TA1 = (sin ϕ,− cos ϕ,0), and
eq,TA2 = (cos θ cos ϕ, cos θ sin ϕ,− sin θ ). Substituting them
into the expressions of MDP

qλ and MPZ
qλ shows that only the

LA mode contributes to the deformation potential interaction,
while all the acoustic modes contribute to the piezoelectric
interaction, with the anisotropy factor given by

ALA(θ,ϕ) = 3 sin2 θ cos θ sin(2ϕ),

ATA1(θ,ϕ) = − sin(2θ ) cos(2ϕ),

ATA2(θ,ϕ) = sin θ (3 cos2 θ − 1) sin(2ϕ).

For LA phonons, the total coupling is Mq,LA = MDP
q,LA +

MPZ
q,LA. Since MDP

q,LA and MPZ
q,LA differ by a phase factor i,

their contributions are additive:∣∣Mq,LA

∣∣2 = ∣∣MDP
q,LA

∣∣2 + ∣∣MPZ
q,LA

∣∣2
.

APPENDIX B: NUMERICAL SOLUTION TO LINDBLAD
MASTER EQUATION

In order to solve the Lindblad master equation

�̇ = −i[Ĥ ,�̂] +
∑

α

γαD[L̂α]�̂ (B1)

for the density matrix �̂(t) of the electron-Mn coupled system,
we span the Hilbert space of the coupled system with the
basis |i〉|u〉|m〉, with i = 1,2 for the electron orbitals, u = ↑,↓
for the electron spin states, and m = ±1/2,±3/2,±5/2 for
the Mn spin Zeeman eigenstates under the external magnetic
field. The total number of basis states is N = 24, so Eq. (B1)
is a set of linear equations for the N × N matrix elements
{�ij }(i,j = 1,2, . . . ,N):

�̇ij (t) =
∑
kl

Sij,kl�kl(t), (B2)

where

Sij,kl ≡ −i(Hikδj,l − δk,iHlj ) +
∑

α

γα

(
(Lα)ik(L†

α)lj

− (L†
αLα)ikδl,j + δi,k(L†

αLα)lj
2

)
,

and Oij ≡ 〈i|Ô|j 〉. To solve this equation numerically, we map
the N2 matrix elements {�ij } to an N2-dimensional column
vector X, so that Eq. (B2) can be written as Ẋ = SX, where
S is a N2 × N2 complex matrix constructed from {Sij,kl}. The
solution is given by X(t) = eStX(0) and eSt is numerically
evaluated by diagonalizing the matrix S.
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