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Dissipative transport of thermalized electrons through a nanodevice
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An equilibrium distribution function which corresponds to thermalization of electrons in contacts due to
scattering processes is introduced for the purpose of reformulation of the inflow boundary conditions for the
Wigner kinetic equation. The importance of the proposed concept for more realistic descriptions of transport
phenomena in nanodevices is illustrated by determination of characteristics of the nanowire in cases of dissipative
and dissipationless states of its active region. Quantitative results show how transport characteristics of the
nanodevice are modified by the contacts.
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I. INTRODUCTION

Since realistic electronic nanodevices can be regarded as
open quantum systems [1,2], it follows that they are usually
intended to serve as basic building blocks of a larger electrical
circuit. Hence, the importance of the proper description of
the transport phenomena in the nanodevices, which on one
hand should include the wavelike properties of the conduction
electrons, but on the other hand should also cover the exchange
of energy with environment and the exchange of carriers with
the contacts. We may expect that the dynamics of electrons
in the presence of an electric field will be determined by
a nontrivial interplay between the quantum coherence of
the carriers and scattering processes that destroy the phase
coherence. One of the possible approaches that allows one to
consider the loss of the electronic phase coherence in an elegant
way employs the concept of the Wigner distribution function
(WDF). The WDF is defined by the Weyl transform of the
density matrix, ρ(x,x ′), in the following way [3–6]: f (x,k) =
1/(2πh̄)

∫
dXρ(x − X/2,x + X/2) exp (−ikX). The side ef-

fect of this transformation is that WDF takes negative values in
some regions of the phase space [7]. In turn, the Weyl transform
converts the equation of motion for the density matrix to the
form of the kinetic equation for the WDF, wherein the drift
term has the nonlocal form [8].

Currently, the phase space approach to the quantum
mechanics based on the WDF is an active field of research in
different branches of modern physics [9–17]. It stems from the
fact that this approach offers a slightly different point of view
on description of quantum phenomena, and a relatively easy
way to include the interaction with environment [18,19]. On
the other hand, this method has been known for its applications
to simulate the transport properties of nanodevices for many
years, in particular because of the flexibility that makes it
possible to include the scattering term within the relaxation
time approximation [20,21]. The method still remains an
attractive tool for research on the transport properties of the
nanosystems, not free of some drawbacks, however, being
rather technical than conceptual. Skillful analysis based on the
physical arguments removes the difficulties [22–24].

Recently, considerable effort has been devoted to improving
the numerical methods of solving the quantum kinetic equation
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for the WDF. The stochastic methods based on different
variants of the Monte Carlo techniques [8,25–27] seem to be
very promising for the computational nanoelectronics since
they allow for the computer simulations of multidimensional
nanosystems, including the effects of the many electron
interactions. Combinations of Gaussian wave packets entering
an active region of a nanodevice from opposite sides have been
considered [28], and efficient numerical schemes based on the
nonuniform meshes are still developed for the deterministic
discretization methods [29–32]. Moreover, the fast Fourier
transform is also used to solve the equation for the WDF in
the Moyal form via the split-operator method [33–36].

In this paper, we propose the boundary conditions based
on the equilibrium distribution functions corresponding to
thermalization of electrons due to scattering processes taking
place in these parts of nanodevices that are out of scope
of simulation’s active region. Motivation for our proposal
arises out of some hints presented by numerous authors in
the context of generalization of the Landauer current formula,
e.g., in Refs. [37–39]. Furthermore, fabrication of high-quality
contacts, which are not spatially inhomogeneous nor defected,
is a serious experimental problem [40,41].

Presented results shed some light on the theoretical descrip-
tion and methods of simulation, taking into account the quality
of contacts and their influence on the transport characteristics
of nanodevices. For this purpose, we consider a semiconductor
nanowire containing a double-barrier structure, since the
systems of that kind are the subject of many experiments using
various semiconductor materials [42–45]. Based on the results
of Refs. [46,47], we assume that the description of this system
can be reduced to an effectively one-dimensional model of the
nanodevice. This simplification allows us to directly apply the
Wigner kinetic equation with the phenomenological dissipa-
tive term to examine the influence of the proposed boundary
conditions. The obtained results clearly prove that the investi-
gated effect of thermalization strongly reduces the electronic
current through the nanowire, regardless of the dissipative flow
of conduction electrons included in the kinetic equation.

This paper is organized as follows: In Sec. II we present
and discuss the proposed modification of the boundary
conditions for the Wigner equation and present a model
of the semiconductor nanowire to which we apply those
conditions. Section III contains the results of calculations,
their discussion, and further generalization. Finally, Sec. IV
contains conclusions and summary of the results.
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II. THEORY

In many cases, when we think about conduction electrons
which are injected into a nanosystem, we assume that they are
described by the plane waves, i.e., we apply the free electron
model in which the distribution of electronic states is described
by the Fermi-Dirac distribution function [48]

f L(R)(E(k)) = 1

exp
[E(k)−μL(R)

kBT

] + 1
, (1)

where E(k) = h̄k2/2m∗ is the quadratic dispersion relation,
T is the temperature, μL(R) is the electrochemical potential in
the left (right) contact, and the rest of symbols have their
usual meaning. This line of thinking can bring about the
boundary conditions that assume that the states of conduction
electrons flowing into the nanosystem depend on the states of
the contacts as follows [20]:

f (x = 0,k)|k>0 = f L(E(k)),
(2)

f (x = L,k)|k<0 = f R(E(k)),

where f L(R)(E(k)) are the Fermi-Dirac functions for the left
(L) and right (R) contacts. The logic of this approach leads
to the artificial spatial separation between the nanosystem
and the contacts, which is inconsistent with the nonlocal
character of the quantum mechanics and sometimes may
produce unphysical results, as was pointed out in Refs.[23,49].
One possible way to overcome these difficulties is to include
the interaction of the carriers with phonons and impurities in
the considered nanodevices, which diminishes the effect of
the interfaces [50]. This idea can be realized by averaging the
Fermi-Dirac function over the energy, with a weight function
that depends on those processes via the appropriate relaxation
times [51]. The resulting distribution function guarantees
thermal equilibrium for the conduction electrons [52].

According to the above statement, we modify the standard
inflow boundary conditions [Eq. (2)] in such way that the
scattering processes in contacts are also included. To achieve
this, we replace the Fermi-Dirac function with its convolution
with the broadened Dirac delta δ�(E), namely [51–53]

f L(R)
eq (E(k)) =

∫ ∞

0
dE δ�(E − E(k)) f L(R)(E), (3)

where δ�(E) is represented by a �-parametrized Lorentzian-
shape function with a width proportional to the phase-breaking
strength � (see Appendix for more details on the choice of
Lorentzian),

δ�(E − E(k)) = 1

π

�

[E − E(k)]2 + �2
. (4)

We note that the standard form of the distribution function
given by Eq. (1) is recovered from Eq. (3) in the limit of
� → 0. Then, the sequence of the functions given by Eq. (4)
is replaced by the Dirac delta distribution that can be regarded
as a spectral weight function for the free electron gas [51],
which, in principle, justifies our strategy. In general, a finite
value of � may be due to the energy exchange between
interacting electrons, the interaction between electrons and
phonons, or other scattering processes. For the purpose of this
study, we define the parameter � as the imaginary part of the

self-energy �. Calculating the self-energy is a complex task
and it depends on the details of the electronic structure, but for
simplicity we assume that the one-particle electronic quantities
are smooth functions. Hence, the lowest order of the Born
approximation in the scattering is a reasonable approximation
for the present consideration of the self-energy. Within the
simplest approximation we can write the relation between the
imaginary part of the self-energy and the relaxation time as

� = −� � = h̄

2τ�

, (5)

where τ� is the relaxation time for the scattering processes
included in the equilibrium distribution [Eq. (3)] [51].

To investigate the impact of the reformulated boundary
conditions on the transport characteristics of the considered
nanodevice, we solve the Wigner kinetic equation with the
dissipative term which is modeled within the relaxation time
approximation. This approach is fully justified in relation to
the considered nanodevice [54], therefore the Wigner kinetic
equation can be written in the form

h̄k

m∗
∂f (x,k)

∂x
+ 1

2πih̄

∫
dk′ W (x,k − k′)f (x,k′)

= −f (x,k) − f 0(x,k)

τ
, (6)

where f 0(x,k) is the equilibrium WDF, τ is the relaxation time
related to the scattering processes taking place in the active
region of the nanodevice, and the integral kernel W (x,k) is
given by the formula

W (x,k) =
∫

dξ

[
U

(
x + ξ

2

)
− U

(
x − ξ

2

)]
e−ikξ , (7)

where U (x) is the total potential energy of the conduction
electron. For the present calculations, U (x) consists of the
sum of two terms, namely

U (x) = Ucb(x) + Uel(x). (8)

The term Ucb(x) results from the discontinuity of the conduc-
tion band, while Uel(x) includes the potential energy due to the
bias voltage V applied between the left and the right contact.

Equation (6) is solved numerically on the computational
grid with Nx = 133 mesh points for the space coordinate x,
and Nk = 150 points for the wave vector k, chosen accordingly
to the restrictions on the minimum momentum resolution
imposed by the uncertainty principle [31]. In the first step,
the drift and diffusion terms in the Wigner equation are
discretized [20] while the scattering termon the right-hand
side of Eq. (6) is neglected. The application of the proposed
boundary conditions leads then to a system of linear equations
given by N2

x × N2
k matrix, which is solved to find the values

of f 0(x,k) at all points of the computational grid. In the next
step, the equation must be discretized once more, this time
including the scattering term, to find the WDF f (x,k). The
whole procedure is then repeated for all required values of the
applied bias voltage and relaxation times τ and τ� .

The calculations that demonstrate the impact of the
proposed generalization were performed for a nanowire of
length L = 75 nm with embedded GaAs/AlGaAs double-
barrier structure. Figure 1 shows the schematic and the
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FIG. 1. (a) Schematic of the nanowire with active region con-
taining embedded GaAs/Al0.3Ga0.7As double-barrier structure. (b)
Potential energy profile along the axis of the nanowire resulting from
the conduction band discontinuity, and for the applied bias voltage
V = 50 mV.

potential energy profile along the axis of the nanodevice. The
active region of the nanowire consists of two Al0.3Ga0.7As
barriers surrounded by the GaAs spacers and separated by the
GaAs quantum well. The simulation region also includes the
n-GaAs leads, which are prone to nonuniform doping during
the fabrication process [55]. The width of each of the barriers
is 2.8 nm, the same as for the leads, and the well’s width is
4.5 nm.

The effect of the adopted boundary condition is that the
magnitude of the WDF at the boundaries of the contacts is
reduced when compared to the standard boundary condition,
i.e., to the case of � = 0, as illustrated in Fig. 2 by the example
of the WDF calculated for the bias voltage matching the peak in
the current-voltage characteristics. It shows that the scattering
processes reduce the magnitude of the WDF at the boundaries,
in particular for small k.

III. RESULTS AND DISCUSSION

The results of the calculations that are presented below
were obtained for the temperature T = 77 K and for the
electrochemical potential in the contacts equal to 86 meV. The
height of each of the two Al0.3Ga0.7As barriers is 0.27 eV, and
because of their relatively small width constant effective mass
of GaAs, m∗ = 0.067m0, is assumed for the whole device (m0

is the free electron mass).
A solution of the Wigner kinetic Eq. (6) allows determining

the WDF for a given value of the applied bias voltage V related
to the boundary condition. Then the electronic current, I , as a
function of the bias voltage is calculated as a first moment of

units]

FIG. 2. The Wigner distribution function calculated for the bias
voltage corresponding to the peak of the current, (a) without scattering
and (b) for scattering times τ� = 15 fs and τ = 50 fs.

the WDF in accordance to the formula

I (V ) = e

2π

1

L

∫ L

0
dx

∫
dk

h̄k

m∗ f (x,k; V ). (9)

This calculation scheme is used to investigate the influence
of electron’s thermalization effect on the current-voltage char-
acteristics of the nanodevice. The shape of this characteristic
exhibits a peak that is a result of resonant tunneling through
the double-barrier structure [56,57], as shown in Fig. 3(a).
The position and width of this peak depend on the geometrical
and material parameters of the resonant structure in the active
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FIG. 3. (a) Current-voltage characteristics of the nanowire ob-
tained when no scattering processes of any kind are included, and
illustrating the definitions of the peak (valley) voltages, Vp(v), and
currents, Ip(v). The characteristics calculated for varying relaxation
time, τ� , corresponding to the scattering processes in the contacts, is
presented in (b) for the case without scattering inside the nanodevice,
(c) For τ = 300 fs, and (d) for τ = 50 fs. In (b), (c), and (d), the blue
dashed line shows the current for � = 0, while the gray dotted line
indicates, for comparison, the characteristics shown in (a).

region. In order to show the significance of the proposed
distribution function [cf. Eq. (3)] for the boundary conditions
and thereby its effect on the transport characteristics, we have
examined two operating regimes of the nanodevice.

In the first case, the active region of the nanowire and the
leads are treated as dissipationless parts of the nanodevice.

FIG. 4. Relative change of the peak current as a function of the
parameter � for τ = 50,100,300 fs. The dashed gray line corresponds
to the case without scattering inside the nanowire.

Current-voltage characteristics for such a device were obtained
from Eq. (9), with the WDF, which is the solution of
Eq. (6) when the dissipation term is neglected. The results
are presented in Fig. 3(b). The dotted line corresponds to the
current values calculated with the boundary condition [Eq. (2)]
generated using the bare Fermi-Dirac distribution function,
which corresponds to the free electrons model. Analysis of the
results obtained for the considered range of the parameter τ�

reveal that when thermalization effects are taken into account,
the peak value of the current is up to 35% smaller than for the
case of free electrons. It shows that thermalization of electrons
in the contacts cannot be neglected because the considered
effect is relatively significant.

In the second case, we have analyzed the changes of
current-voltage characteristics when dissipation inside the
nanowire is included. The range of the used relaxation times
is estimated with respect to the effective value of mobility in
GaAs, μ = eτ/m∗. Solution of Eq. (6) for this case leads to
the results presented in Figs. 3(c) and 3(d), which also show
values obtained when no scattering in the nanodevice or in
the contacts is taken into account (gray dotted line). Based
on those relations, we may conclude that scattering of the
thermalized electrons significantly affects the current-voltage
characteristics. For example, when τ = 300 fs, the peak value
of current is reduced by ca. 60% compared to the coherent
current of free electrons, and up to 70% when thermalization of
electrons is considered with τ� = 20 fs. For shorter relaxation
time, τ = 50 fs, those changes are smaller, about 35% and
55%, correspondingly. A more detailed investigation of those
effects is possible based on the values of the relative change
of peak current, according to the formula


I

Ic

= Ic − I (�)

Ic

, (10)

where Ic is the current of the dissipationless flow of free
electrons [58]. Figure 4 shows 
I/Ic calculated for the peak
current as a function of intensity of scattering.

This result demonstrates that contribution of the thermal-
ization of electrons in the contacts leads to the 10-20% change
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FIG. 5. The absolute value of the negative resistance Rn for τ =
50,100,300 fs, and for the case when no scattering inside the nanowire
is assumed (dashed gray line). The inset shows the peak-to-valley ratio
(PVR) as a function of the parameter �.

of the current, depending on the intensity of dissipation in
the nanowire. It proves that the transport properties of real
nanodevices depend not only on the quality of the active region
(in this case, inside a nanowire), but also on the quality of
contacts influenced by various scattering processes resulting
in thermalization of conduction electrons.

The above analysis can be extended into another transport
characteristic of the nanodevice [59]. In particular, we inspect
the influence of the thermalization effect on the negative
resistance which is defined as

Rn = Vv − Vp

Ip − Iv

, (11)

where Vp and Vv are the peak and valley voltages, while Ip

and Iv are the corresponding peak and valley currents [cf.
Fig. 3(a)], found separately for different relaxation times.
As it follows from the results shown in Fig. 5, the negative
resistance for short relaxation times τ� , up to about 50 fs,
decreases with increasing τ� , while for longer times it
remains approximately constant. Independently of the negative
resistance, we perform analysis of the peak-to-valley ratio
(PVR) which is another figure of merit used to characterize the
current-voltage characteristics. In this case PVR decreases as a
function of increasing � in the whole range of the values used
in our calculations (see the inset of Fig. 5). When compared to
the value obtained without scattering, PVR decreases by about
45% when τ = 100 fs (but without scattering in contacts), and
by 70% when additionally τ� = 20 fs is assumed.

The presented results can be further generalized if the
momentum- and energy-dependence of the relaxation time is
considered, which leads to the self-consistent calculations of
the relaxation time derived within the Wigner formalism [60]

τ−1
� (k,ω) = 2π

h̄

1

�

∑
k′

nI |M(k′,k; ω)|2

× h̄τ−1
�

( k+k′
2

)
π

{[
E(k) − E(k′) + h̄ω

]2 + [
h̄τ−1

�

( k+k′
2

)]2} ,

(12)

where M(k′,k; ω) is the transition matrix element due to
quasielastic or inelastic scattering processes (ω = 0 corre-
sponds to a purely elastic scattering), and nI is the concen-
tration of scattering centers in the contact having volume �.
It is interesting to note that the inverse of the relaxation time
given by Eq. (12) is proportional to the product of the transition
matrix element and broadened Dirac delta, provided that we
neglect its momentum dependence.

IV. CONCLUSIONS

We have reformulated the inflow boundary conditions
which are commonly used for the description of the transport
properties of the nanodevices by means of the Wigner equation
or Wigner-Poisson approach. For this purpose, we have used
the equilibrium distribution function, which is defined as the
convolution of the Fermi-Dirac distribution with the spectral
weight function, instead of the bare Fermi-Dirac distribution
function for the free electrons model. Owing to that, it is
possible to take into consideration the scattering processes in
these parts of nanodevices, which are outside the simulated
region.

We have tested the influence of the proposed boundary
condition on the transport characteristics of the nanodevice in
which the active region consists of a double-barrier structure
embedded in a nanowire. We have performed the calculations
in two transport regimes. In the first case, we have assumed that
transport through the active region and leads is dissipationless,
while in the second case it is dissipative. The latter has
been achieved by including the scattering integral to the
Wigner equation and modeling it within the relaxation time
approximation.

Our calculations show how transport characteristics, i.e., the
current-voltage dependence, the negative resistance, or peak-
to-valley ratio, are modified when the scattering processes
are included, in comparison to the calculations conducted
without any type of scattering taken into account, or only with
inclusion of the scattering processes in the active region of the
nanodevice. We have found that the expected decrease of the
peak current due to the thermalization effects can estimated to
be about 10-20%.

The performed calculations show that the analysis of the
transport properties of the active region of nanodevices cannot
be conducted independently of the contacts, or otherwise the
results can be overstated. This conclusion can be additionally
enhanced by results presented in Refs. [61,62], where authors
performed Monte Carlo simulations of Wigner wave packets
scattered on static or dynamic potential barrier, simulating
the effect of noncoherent scattering in contacts. Moreover,
the nonequilibrium Green function method was applied to
investigate the influence of some particular mechanisms, i.e.,
geometry of leads and doping on the transport characteristics
of the nanodevice [41,63]. Our approach generalizes these
results in some sense and entitles us to formulate a statement
that if any scattering mechanisms exist, not defined explicitly
but resulting in thermalization of electrons in contacts (in
particular scattering on dopants), they damp the current-
voltage characteristics by a factor related to the imaginary
part of the self-energy. Such influence of the quality of
contacts indicates necessity of further studies devoted to the
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transport properties of nanodevices treated as open systems,
most notably with detailed analysis of individual scattering
mechanisms in contacts which may help to establish their
contributions to the total thermalization of electrons.

Summarizing, we believe that the inflow boundary condi-
tion based on the proposed form of the equilibrium distri-
bution function together with the given generalization can
be applied in calculations of the transport properties of
various nanosystems in different transport regimes, which
are determined by the appropriate characteristic length-scale
relationship (i.e., involving the coherence length, the effective
wavelength, the mean free path and the lengths of the system
and its active region), to make a substantial advance in the
realistic description of the transport properties beyond the
dissipationless Landauer formula.

ACKNOWLEDGMENTS

This work was supported by the Polish Ministry of Science
and Higher Education and its grants for scientific research.

APPENDIX: SPECTRAL FUNCTION
AND BOUNDARY CONDITION

It is generally accepted that the collisions of the conduction
electrons with impurities, phonons, or other electrons in
contacts leads to thermal equilibrium between the electrons
and their surroundings [48]. Regardless, it is also known that
the scattering of the electrons on impurities can modify an
electron’s interaction with phonons or electrons [64]. In these
cases, the transfer of energy between the electron gas and the
phonon gas due to an inelastic or quasielastic scattering has a
statistical nature. As a consequence, spontaneous transitions
between different energetic states of the electrons are observed
in contacts. Theoretical description of these processes can be
derived from the effective one-particle Hamiltonian in which
the potential energy is represented by the self-energy, �̂, i.e.,

Ĥ = Ĥ0 + �̂, (A1)

where Ĥ0 is the free-electron Hamiltonian. In principle, the
self-energy is a complex function,

�̂ = � �̂ + i � �̂, (A2)

where the matrix elements of the real part, � � = �R , corre-
spond to the effective shift and renormalization of the kinetic
energy of the free electrons, whereas the matrix elements of the
imaginary part, � � = −�, correspond to the finite lifetime of
the momentum states due to the above-mentioned interactions.
Therefore, it can be expressed by the relaxation time τ� via
the formula � = h̄/(2τ�), which stems from the Fermi golden
rule and the Born approximation. On the other hand, the
self-energy determines the analytic structure of the retarded
Green function, which in turn can be used to determine the
spectral function in the following way [51]:

A(k,E) = −2 � 1

E − E(k) − �(k,E)
. (A3)

In this case, the self-energy �(k,E) is a complex function of
momentum and energy, and its form can be determined from

the solution of the following self-consistent equation,

�(k,E) = nI

�

∑
k′

|M(k′,k)|2
E − E(k′) − �(k′,E)

, (A4)

where M(k′,k) corresponds to the transition matrix element.
Hence, we can conclude that the relaxation time defined by the
imaginary part of the self-energy depends on the momentum
and energy variables. However, we should point out that if the
self-energy is a slowly varying function of momentum, then it
can be replaced by its average value or it can be calculated in
the first Born approximation.

The spectral function allows counting the number of
states with energy E and momentum k participating in the
termalization due to the scattering process in contacts. Simple
algebraic manipulations allow writing the spectral function in
the form

A(k,E) ∝ 1

π

�(k,E)

[E − E(k) − �R(k,E)]2 + �2(k,E)
, (A5)

which is a Lorentzian-type function peaked around E =
E(k) + �R(k,E), with the width proportional to the imaginary
part of the self-energy. We note that if the interactions are weak,
then the self-energy is small, and the corresponding spectral
function is more peaked. In turn, the absence of the interactions
(the free electron model) leads to the Dirac-delta form of
the spectral function. Inclusion of the interactions creates
the possibility of modeling the spectral function by other
functions that approach the Dirac delta. We have performed
some additional calculations utilizing the Gaussian and the
Voigt profile, but the results show that the impact of these
changes on current-voltage characteristics is nearly the same
as for the Lorentzian form of the spectral function. Further,
the spectral function is related to the equilibrium distribution
function

f L(R)
eq (E(k)) =

∫ ∞

0
dE δ�(E − E(k)) f L(R)(E) (A6)

via the fluctuation-dissipation theorem, namely [51,64]

−iG<(k,E) = 2πA(k,E)f L(R)(E), (A7)

where f L(R)(E) is the Fermi-Dirac distribution function for
the free electrons in the contacts, and G<(k,E) is the lesser
Green function. From Eq. (A7) results, the fluctuations at
equilibrium due to the interactions with phonons or electrons
in the presence of the impurities are related to the dissipation
in the contacts. Based on these results, we can further conclude
that the dissipation in contacts destroys the phase coherence
of the injected conduction electrons, since the change of
phase estimated from the uncertainty principle is equal 
ϕ� =

E τ�/h̄, where 
E results from the exchange of the energy
between electrons and phonons systems. Moreover, in the
Schrödinger’s approach to quantum mechanics, the wave
functions of the injected electrons, which are solutions of the
Schrödinger equation with the complex potential, are not plane
waves, but include an additional exponential damping factor
which depends on �.
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