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Vibronic coupling and band gap trends in CuGeO3 nanorods
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We measured the optical response of CuGeO3 nanorods in order to reveal size effects on the electronic
properties. The vibronically activated d-to-d color band excitations are activated by the 131 and 478 cm−1

phonons, with the relative contribution of the lower frequency O-Cu-O bending mode increasing with decreasing
size until it dominates the process. We also uncover trends in the direct band gap, with the charge transfer edge
hardening with decreasing size. These findings advance the understanding of size effects in low-dimensional
copper oxides.
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I. INTRODUCTION

Charge-lattice coupling is one of the most fascinating and
influential interactions in materials. It underpins numerous
scientifically and technologically significant processes includ-
ing superconductivity [1–3], charge density wave transitions
[4–6], vibronic coupling [7,8], and photochemical reactions
[9]. One important example of vibronic coupling is the activa-
tion of d-manifold excitations in transition-metal-containing
materials [10–13]. This mechanism, in which an odd-parity
phonon interacts with an on-site d-to-d excitation to break
inversion symmetry [14,15], has been investigated in a number
of bulk oxides including α-Fe2O3 [16], CuGeO3 [17], and
BiFeO3 [18]. Excitations of this type probe the crystal field
environment and are colloquially called “color bands” when
they appear in the visible range. They are thus responsible
for the vivid colors of the aforementioned magnetic semicon-
ductors. The mechanism is, however, relatively unexplored
in nanomaterials [19,20]. The recent development of a suite
of CuGeO3 nanorods of different lengths [21] offers the
opportunity to unravel size effects on the electronic properties,
with special focus on vibronic coupling and band gap trends.

CuGeO3 is well known as the first inorganic spin-Peierls
material [22]. This system consists of edge-sharing CuO6

octahedra that form quasi-one-dimensional chains along the
crystallographic c axis [23,24]. The Cu centers are d9 and
therefore S = 1/2. The chains dimerize below the 14 K spin-
Peierls transition [22], and spin gaps open because singlets
are formed [22,25]. This process is driven by spin-phonon
interactions, and the coupling phonons have been identified as
the 110 and 222 cm−1 Raman-active and 295 cm−1 infrared-
active B3u modes [26,27]. The recent discovery of size-induced
quenching of the spin-Peierls transition in CuGeO3 nanorods
[21] is also interesting from a mechanistic point of view. From
the electronic point of view, CuGeO3 is a semiconductor with
3.67 and 3.46 eV band gaps for �E ‖ b and �E ‖ c, respectively
[17,28]. Strong on-site d-to-d excitations activated by vibronic

coupling appear below the gap and are responsible for the
bright blue color of the crystals [17]. On the applications
front, CuGeO3 nanowires are already showing promise as
modified electrode materials for cyclic voltammetry and as
composite anode materials for high-energy-density lithium
ion batteries [29,30]. A systematic study of the electronic
properties will provide crucial support for these and other
development efforts.

In this work, we reach beyond traditional temperature,
magnetic field, and pressure tuning techniques to explore the
optical properties of CuGeO3 nanorods as a function of size.
An additional and rather unique aspect of our approach is that
while all nanorod diameters are similar, the growth habit is
such that length can be controlled in the c direction [21]. Our
spectroscopic measurements uncover several important elec-
tronic property trends in these materials including a crossover
in the phonon that activates the d-to-d on-site excitations
(from 478 → 131 cm−1) and a charge gap that relaxes with
ab-plane confinement and then hardens with decreasing rod
length. As part of this effort, we test an updated vibronic
coupling model against the behavior of on-site excitations in
CuGeO3 as well as several other oxides including α-Fe2O3

and Sr3NiIrO6 [31,32]. This model includes a temperature-
independent constant that emanates from distortion-, spin-
orbit-, and exchange-interaction-induced symmetry breaking.
Taken together, these findings advance the understanding
of size-driven changes in the optical properties of complex
oxides. At the same time, they place these materials on a firm
foundation for future device applications.

II. METHODS

CuGeO3 nanorods were prepared by hydrothermal meth-
ods as described previously [21] and characterized using
scanning electron microscopy and x-ray diffraction [33]. For
comparison, single and polycrystalline samples were made
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FIG. 1. Optical spectra of CuGeO3 (a) single crystal, (b) polycrystal, and (c) nanorods at the indicated temperatures. (d)–(f) Oscillator
strength of the color band for the above samples fitted to the modified model discussed in the text, with the corresponding fit parameters
indicated. (g) Frequency of the activating phonon (extracted from the modified model for each sample measured) as a function of size.
(h) Percent contribution to the weighted average of the two participating phonons. The dashed lines guide the eye. (i) f0 and fx as determined
for the CuGeO3 nanorods.

by floating-zone techniques using an image furnace [34].
Powdered nanorod and polycrystal samples were mixed with
a transparent KBr matrix to form pressed pellets, whereas the
single crystal was cleaved in the bc plane to an appropriate
optical density of ≈ 40 μm. Optical spectra were collected
using a Perkin Elmer Lambda-900 (0.4–6.8 eV). Absorp-
tion was calculated as α = −1

hd
ln[T (ω)], where h is sample

loading, d is thickness, and T (ω) is measured transmittance.
Temperature control was achieved with an open-flow helium
cryostat (4.2–300 K). Oscillator strength was calculated as
f = 2mε0c

Nπe2

∫ ω2
ω1 nα(ω)dω, where N is the density of Cu centers,

n ≈ 2.5 is the refractive index, e and m are the charge and
mass of an electron, ε0 is the vacuum dielectric constant, c

is the speed of light, and ω1 and ω2 are the frequency limits
of integration [17,35]. Proper backgrounds were subtracted
before integration to isolate the oscillator strength of the d-to-d
excitations.

III. RESULTS AND DISCUSSION

A. Size effects on the electronic properties of CuGeO3 nanorods

Figures 1(a)–1(c) display representative optical spectra of
single-crystalline, polycrystalline, and 150 nm nanorods of
CuGeO3 [36]. There are two main structures of interest. The
band near 1.75 eV is assigned as a set of vibronically allowed
on-site d-to-d excitations of Cu2+ [17]. These excitations

075437-2



VIBRONIC COUPLING AND BAND GAP TRENDS IN . . . PHYSICAL REVIEW B 96, 075437 (2017)

are activated by coupling with an odd-parity phonon and
responsible for the bright blue color of CuGeO3 [17]. The
sharply rising absorption above 3 eV is assigned as the edge of
the direct gap. The latter is charge transfer in nature [17]. Both
structures are common in semiconducting transition-metal
oxides [11,37–39].

The oscillator strength of the d-to-d excitations is strongly
temperature-dependent [Figs. 1(d)–1(f)], characteristic of the
phonon-assisted activation mechanism [40]. This process is
typically modeled as f = f0 coth( hω

2kBT
), where ω is the

frequency of the activating phonon, f0 is the limiting low-
temperature value of the oscillator strength, T is temperature,
and h and kB have their usual values. In prior work on CuGeO3

single crystals, this model was used to quantify temperature-
induced changes in the oscillator strength of the d-to-d
excitations. A coupled phonon frequency of ω ≈ 250 cm−1

was extracted [17].
Interestingly, this model does not agree well with our

newly measured single-crystal spectra, particularly in the
low and high temperature regions where we have many
more data points than in the prior work. Inclusion of a
temperature-independent constant, f = fx + f0 coth( hω

2kBT
),

provides a better fit over the full temperature range. While
the revised model improves the fit, it also impacts the coupled
phonon frequency, ω. Applying the extended model to our
single-crystal data, we find ω = 131 cm−1. Both models yield
values that are within the range of observed phonons in
CuGeO3, but the result of the modified fit (131 cm−1) correlates
directly with an a-polarized B1u phonon whereas the result
of the original model (250 cm−1) does not match well with
any phonon [41]. We discuss the physical significance of the
additive constant fx below.

We now turn to the size-dependent electronic properties
of the CuGeO3 nanorods. Importantly, the extended model
incorporating fx is required to produce a reasonable fit to any
of the nanorod data sets (see Supplemental Material [33]). We
therefore apply the revised model to the nanorod data in order
to reveal size effects on the vibronic coupling in CuGeO3.
As an example, the optical response of the 150 nm nanorods
is shown in Fig. 1(c). A fit of the oscillator strength as a
function of temperature yields a coupling phonon frequency
of 226 cm−1. This value is quite different from that of the
single crystal.

Figure 1(g) displays the coupling phonon frequency ω

extracted from this analysis as a function of size. There is
a large jump from the polycrystal value and a strong size
dependence within the nanorods. Importantly, the shifts are
far too large to correlate with a single phonon mode. In
cases where more than one phonon activates the excitation,
ω represents a weighted average of the participating phonon
frequencies [42]. Extrapolation of the nanorod trend reveals
end points of 131 and 478 cm−1, which correspond precisely to
the B1u O-Cu-O bending and O-Cu-O asymmetric stretching
modes, respectively [41]. Comparing these frequencies with
the value of ω from the fitting, we can back-calculate the
contribution of each of the aforementioned modes to the
activation of the d-to-d excitations as a function of nanorod
length [Fig. 1(h)]. Doing so reveals a clear crossover in the
activating phonon. We find that the Cu2+ on-site excitations
in long nanorods are mostly activated by the 478 cm−1 mode.

FIG. 2. Size dependence of the CuGeO3 optical band gap as
determined by the charge transfer edge. Scanning electron microscope
images of representative nanorods are included where the scale bars
are 500 nm for the 150 nm rods and 1000 nm for the larger sizes.

The 131 cm−1 mode begins to play a role as length decreases,
eventually becoming the dominant coupling phonon in the
shortest rods. We note that a similar size-induced crossover
of the activating phonon takes place in α-Fe2O3 nanoparticles
[19]. Whether this is a general aspect of vibronic coupling in
nanoscale transition-metal oxides remains to be tested in other
systems.

The optical properties of this set of nanomaterials also allow
exploration of the charge transfer edge, which defines the direct
band gap in CuGeO3. It is obtained from plots of (αE)2 vs
energy extrapolated to the abscissa. Figure 2 summarizes the
size dependence of this structure. There are two important
trends. First, the charge gap redshifts by 0.5 eV between the
polycrystal and the longest nanorods. This is different than
the standard size-induced band gap hardening [43–46] and
can likely be attributed to aspect ratio effects and the rodlike
morphology. Second, the charge gap hardens with decreasing
size, from 2.7 eV in the longest nanorods to 2.9 eV in the
shortest. This blueshift is overall consistent with modeling and
experiments on a number of other materials [46–49], and in
this case, the trend may also be due to development of flatter
bands from reduced intralayer bonding [50]. We anticipate
much more rapid band gap hardening at even smaller sizes
[44,51,52], a supposition that can be tested as smaller CuGeO3-
based nanomaterials become available.

B. Extended oscillator strength analysis: The role of fx

As mentioned above, we include a temperature-independent
constant fx in the extended oscillator strength model. As
exemplified by the r2 values [Figs. 3(a) and 3(b)], this improves
the overall fit to the single-crystal data. The difference between
the two models is subtle, and it might not have been noticed
without many low and high temperature data points and a
careful fitting analysis. This modification is, however, crucial
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FIG. 3. Oscillator strength analysis for d-to-d excitations mea-
sured along the b and c directions of single-crystalline CuGeO3

using (a) the standard model and (b) the modified model. The same
comparison between standard (c) and updated (d) models for the
smallest nanorods emphasizing the necessity of the fx parameter.

for reasonable fitting of the nanorod data [Figs. 3(c) and 3(d)].
Fits to the standard vibronic coupling model for the 150 nm
rods are, for instance, wholly unacceptable (r2 = 0.87). The
addition of fx improves the r2 value to 0.99, which is in the
acceptable range.

For the extended vibronic coupling model to have a firm
foundation beyond simply improving the fits, the additional
term must have some physical origin. There are many
cases where the basic model has been successfully applied
[17,53–58]. A literature search also reveals that a constant
like fx has been included in modeling efforts for a number of
other materials. For example, in KCuF3 this term is ascribed
to magnetic-dipole-allowed transitions [59]. However, the
authors show that these features are small and temperature-
dependent, in contrast with the model and large value of fx .
In CsFeCl3, a constant the same order of magnitude as f0 was
included, although the physical origin was not discussed at all
[60]. A study of Ag+ ions in various halide crystals even found
fx to be negative [61]. This term is clearly not well understood
and requires further investigation.

In order to gain insight into the origin of fx , we examined d-
to-d excitations in several other bulk oxides including α-Fe2O3

and Sr3NiIrO6 (see Supplemental Material [33]). Again, the
extended model yields reasonable fits to the oscillator strength

trends. The results reveal that fx can be smaller or larger than
f0 as in α-Fe2O3 and Sr3NiIrO6, respectively. Based on these
examples, fx likely represents oscillator strength contributed
by symmetry-breaking processes such as spin-orbit coupling,
exchange interactions, or distorted crystal field environment,
which vary from material to material, as does fx . This is why
the term is present even in single-crystal samples.

Returning to CuGeO3, the size dependence of fx [Fig. 1(i)]
may also hold some clues as to its origin. The value is small for
both polarizations of the single crystal (≈ 4 × 10−6), but larger
and nearly constant for the nanorods (≈ 4 × 10−5, excluding
the 200 nm rods). The increase in fx on progressing from single
crystal to nanorod morphology likely springs from additional
distortion and broken symmetry at the grain boundaries. We
therefore expect fx to increase sharply at even smaller sizes as
the surface-to-volume ratio rises.

IV. CONCLUSION

We measured the optical properties of a suite of CuGeO3

nanorods and compared the response with single- and poly-
crystal samples in order to explore size effects on the electronic
properties. By so doing, we reveal a size-dependent crossover
in the phonon that activates the Cu2+ on-site excitations (from
478 → 131 cm−1). The latter dominates at small sizes. As part
of this analysis, we test an extended model for vibronic cou-
pling and argue that the expression should also contain a term
to quantify spin-orbit coupling, exchange interactions, and
crystal field distortions. The latter is present but challenging to
detect in single crystals. This term becomes very important in
the nanorods, probably due to additional symmetry-breaking
distortions at the surface. Band gap trends involve substantial
size-dependent shifts in the charge transfer edge. The direct
gap redshifts upon formation of the nanorods and subsequently
hardens to 2.9 eV in the smallest nanomaterials measured
here. These findings highlight the importance of size effects
in determining the electronic properties of multifunctional
materials.
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