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Manifestation of a Fermi edge singularity in the cotunneling regime
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The Fermi edge singularity (FES) is a prominent manifestation of the Coulomb interaction. It can be observed
in a controllable way by studying the transport through a quantum dot (QD), which is electrostatically coupled to
the leads. In this paper, we study how FES affects higher-order tunneling processes (cotunneling). To address this
problem we use the bosonic description of the electrons in the leads, which naturally accounts for the Coulomb
interaction. We report the multiscale dependence of the current through the QD on the energy of the QD level
and on the bias between the leads obtained for the limit of large and small bias. The new universal powers are
determined by the scattering phases due to the interaction of electrons in the leads with the charge on the QD.
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I. INTRODUCTION

In contrast to the systems with the Fermi-liquid-like
behavior, the electron-electron interactions become large
in QD-based devices. The Coulomb blockade is the most
prominent manifestation of this effect [1]. Its main feature
is the appearance of the gap in the QD excitation spectra due
to the finite energy required to add electron or hole to a QD.
This energy is of the order of charging energy EC = e2/2C,
where e is the electron charge, and C is the capacitance of the
dot, and it can be controlled by the gate voltage. If in addition
the interaction of the charge on the QD with metallic leads is
taken into account, this results in the power-law dependence
of the tunneling density of states at the energy close to the
Fermi level. This effect is analogous to the one that leads to
the singularity in x-ray absorption spectra in metals [2] and
is often referred to as the Fermi edge singularity. It has been
extensively studied both experimentally [3] and theoretically
[4–8] in various systems.

Because of the large charging energy the dominant contri-
bution to the transport through a QD is sequential tunneling
[1], i.e., the electron (hole) enters the dot only if the previous
one has left it. This leads to the correlation of incoming and
outgoing currents, which can be seen, e.g., in the suppression
of the zero-frequency noise power [9]. The Coulomb blockade
is not very sensitive to the size of the QD, which only affects the
value of the charging energy. Therefore, any mesoscopic QD
demonstrates Coulomb blockade effect at sufficiently small
temperatures.

In contrast, the FES is a more delicate phenomenon. It
arises only if the number of transport channels of the QD is of
the order of one [2]. To be more precise, the exponent of the
power-low energy dependence of the density of states at low
energies is inversely proportional to the number of scattering
channels. Since the large QDs are typically coupled to a large
number of scattering channels, the FES effect is suppressed in
such systems. It has been recently proposed to circumvent this
difficulty by attaching large QDs to the quantum Hall channels
[10], as it has been recently implemented experimentally [11].

Recent breakthrough on the theoretical side, namely, the
development of the nonequilibrium bosonization approach
[12], enabled one to study the FES phenomenon far away
from equilibrium [13]. One of the key results of this study
is the universal dependence of the tunneling current on both

parameters: the energy of the level on the dot and the power of
the nonequilibrium noise, which is controlled by an additional
voltage source and provides the second energy scale. Here we
propose an alternative approach, where the second energy scale
is introduced by keeping the leads at equilibrium. Namely, we
focus on the cotunneling regime away from the QB resonance,
where the sequential tunneling is suppressed, and the transport
is dominated by simultaneous tunneling of two electrons or
holes via the dot [14]. Such a process depends on two energy
scales: the energy of the level on the QD and the bias between
contacts.

Using the same approach that was developed in Ref. [13],
we obtain the universal power-law behavior of the tunneling
current in two limits: in the case of small bias between the
contacts and in the case where the Fermi level in one contact
is close to the energy level on the QD. We obtain new power-
law exponents that depend on the scattering phases of the
electrons in the contacts, thus establishing the connection to
the “classical” FES effect.

The rest of the paper is organized as follows: In Sec. II we in-
troduce the model of a QD tunnel coupled to one-dimensional
(1D) electron channels and present the Hamiltonian of the
system using the bosonization technique. In Sec. III we
present the formal perturbation theory to second order in
tunneling, derive the expression for the cotunneling current,
and discuss its analytical structure. In Sec. IV we obtain new
FES exponents and discuss their physical significance. Finally,
in Sec. V we present conclusions. For the sake of simplicity
we work in the units where e = h̄ = 1.

II. MODEL

To grasp the main features of the effect, we model the
transport contacts to the QD by one-dimensional electronic
channels. This model provides an effective description of
metallic leads [15], and can also be applied to quantum
Hall systems [16], such as in the recent experiment [11]. It
is well known [17] that one-dimensional electronic systems
can be described either in terms of the electrons or in terms
of collective excitations (plasmons). FES is a nonperturba-
tive effect in the electron-electron interactions. Since the
Hamiltonian of one-dimensional channels, when expressed in
plasmon fields, preserves its quadratic form in the presence
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FIG. 1. A particular example of a more general system considered
in this paper is schematically shown. This set up has been experimen-
tally studied in Ref. [11] using QH edge states at filling factor ν = 2.
The QD is coupled by the Coulomb interaction (green line) to the
surrounding transport channels. The electrons tunnel from the left
voltage-biased channel to the right grounded channel through the
virtual states of the QD.

of the interactions, we adopt this approach to study the
FES.

In this paper we concentrate on the regime of the elastic
cotunneling [14], which can be realized in relatively small dots
with few levels and relatively low biases. Thus, the minimal
model for the FES includes tunneling coupling of the dot to two
electron channels, and Coulomb coupling to arbitrary number
of channels (see Fig. 1). The Coulomb interaction should be
considered nonperturbatively, while tunneling, in contrast, is
the smallest perturbation. The corresponding Hamiltonian can
be written as follows:

H = H0 + Hd + Hi + Ht, (1)

where the Hamiltonian of the electronic channels reads

H0 = π

∫
dx

∑
a

vaρ
2
a (x)

+ 1

2

∫
dxdy

∑
ab

ρa(x)Vab(x,y)ρb(y). (2)

Here, the first part describes the free propagation of the
charge densities ρa(x) with the speeds va and the second
part accounts for the density-density interactions characterized
by the Coulomb potentials Vab(x,y). For the particular set
up shown in Fig. 1, experimentally studied in Ref. [11],
a = L,R,U,D, thus, enumerating left, right, up, and down
channels respectively. Note that only left and right channel,
denoted by L and R are coupled to the QD by tunneling.

The QD Hamiltonian can be written as Hd = ε0d
†d, where

d is the electron annihilation operator, and ε0 is the bare single-
particle energy of the QD. The effect of FES arises due to the
Coulomb interaction between the electron on the QD and those
in the channels. The corresponding term in the Hamiltonian is
given by

Hi = d†d

∫
dx

∑
a

Ua(x)ρa(x), (3)

where Ua are the Coulomb potentials. We note that the
potentials Ua and Vab do not need to be specified because
of the universality of FES, as we demonstrate below.

Finally, the tunneling Hamiltonian transfers electrons be-
tween the channels in the vicinity of the QD and the QD
level, Ht = d† ∑

a τaψa(0) + H.c., where ψa(x) are the elec-
tron annihilation operators in the channels, and τa are the
amplitudes of tunneling. To make the connection between the
electron and plasmon descriptions, we follow the standard
bosonization procedure [17] and introduce the set of bosonic
fields φa(x), which are defined by ρa(x) = 1

2π
∂xφa(x). They

satisfy standard commutation relations [∂xφa(x),φb(y)] =
2πiδabδ(x − y). The electron operators are related to the
bosonic fields by ψa(x) ∝ eiφa (x). Therefore, the tunneling
Hamiltonian can be written as

Ht = d†
∑

a

τae
iφa (0) + H.c. (4)

As a first step, we follow the procedure outlined in Ref. [13]
and apply the unitary transformation U ≡ eiS that removes the
interaction Eq. (3) in the total Hamiltonian. Here

S = d†d

∫
dx

∑
a

σa(x)φa(x), (5)

and the functions σa(x) are determined by the integral equation

Ua(x) +
∫

dx ′ ∑
b

Vab(x,x ′)σb(x ′) = 0. (6)

On the one hand, such a choice of the functions σa(x) follows
from the requirement of the cancellation of the term Hi in the
Hamiltonian. On the other hand, the functions σa(x) turn out
to be equal to electron densities accumulated in the channels
to screen the extra unite charge on the dot. From this point of
view, Eq. (6) simply states that all the channels are grounded
(see, however, the discussion below).

After the unitary transformation introduced above, the
tunneling Hamiltonian acquires the following form:

H̃t = d†
∑

a

τae
i
∫

dx
∑

b σb(x)φb(x)eiφa (0) + H.c. (7)

It is natural to assume, that the screening charges are accumu-
lated in the vicinity of the point x = 0. Thus, the simplification
arises in the low-energy limit, where the wave length of
plasmons exceeds the size of the QD and leads to the
universal behavior attributed to the FES. In this limit, we can
approximate the fields in Eq. (7) φa(x) ≈ φa(0), which in our
particular case leads to the expression

H̃t = AL + AR + H.c., (8)

with the elementary tunneling operators

AL = τLd†eiφL−i
∑

a ηaφa , (9a)

AR = τRd†eiφR−i
∑

a ηaφa , (9b)

and ηa ≡ − ∫
dxσa(x) being the absolute values of the charges

accumulated in the channels as a result of screening of the extra
electron on the QD.

Finally, it is worth mentioning that the unitary trans-
formation shifts the energy level at the dot Hamiltonian:
Hd → H̃d = εd†d, where

ε = ε0 +
∑

a

∫
dxUa(x)σa(x). (10)
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This shift, obviously, arises due to the Coulomb interaction of
an electron on the dot with the induced charge densities in the
channels.

III. PERTURBATION THEORY

We start with the standard Fermi golden rule expression for
the cotunneling current at zero temperature:

I = 2π
∑
m

|〈m|T̂ |0〉|2δ(Em − E0), (11)

where |m〉 are the eigenstates of the total Hamiltonian in
the absence of tunneling. Since the first-order sequential
tunneling processes are forbidden due to the energy gap
in the cotunneling regime, we use the general expression for
the tunneling transfer operator T̂ in terms of the time-ordered
exponent [18]:

T̂ = d

dt
T̂t e

−i
∫ t

−∞ dt ′Ht (t ′)|t=0, (12)

which gives the familiar expression, when expanded to second
order in tunneling Hamiltonian in the energy domain,

I = 2π
∑
m

|〈m|Â†
LR̂0ÂR|0〉|2δ(Em − E0), (13)

where R̂0 ≡ (E0 − H0 − Hd + i0)−1 is the retarded resolvent.
However, in the present context it is convenient to keep the time
representation Eq. (12) and replace the δ function by an integral
over time. As a result, we arrive at the following expression:

I =
∫ ∞

−∞
dt

∫ t

−∞
dt1

∫ 0

−∞
dt2〈Â†

L(t1)ÂR(t)Â†
R(0)ÂL(t2)〉,

(14)

where the averaging is taken over the ground state.
Next, we substitute tunneling operators Eq. (9) into Eq. (14)

and use the Gaussianity of the fields φa to evaluate the average.
Since the fluctuations of fields in different channels are
independent, the average splits in the product of the four-point
correlators of the form

〈eiξφa (t1)eiζφa (t)e−iζφa (0)e−iξφa (t2)〉

∝ eiδaL�μ(ξ (t2−t1)−ζ t)

(i(t1 − t2) + 0)ξ 2 (it + 0)ζ 2

× (i(t1 − t) + 0)ξζ (−it2 + 0)ξζ

(it1 + 0)ξζ (i(t − t2) + 0)ξζ
. (15)

Here ξ and ζ are arbitrary numbers and δaL is a Kronecker
δ. The exponential oscillation function originates from the
correlator of the fields φL and accounts for the fact that the left
channel is biased.

Since the time evolution of the dot operators is trivial d̂(t) =
e−iεt d̂ , their four-point correlator is just an oscillatory factor.
Knowing the expressions for all the averages that appear in
Eq. (14) and manipulating with the time variables and the
integration contours, we arrive at the following expression for

the cotunneling current:

I ∝
∫ ∞

−∞
dt

∫ ∞

0
dt ′

∫ ∞

0
dt ′′

ei�μte−ε(2t ′+t ′′)

(2t ′ + t ′′ + it)1−β(it + 0)1−γ

× t ′α(t ′ + t ′′)α

(t ′ + t ′′ + it)α(t ′ + it)α
, (16)

where the exponents are given by

α = (β + γ )/2, β = 2ηL −
∑

a

η2
a, γ = 2ηR −

∑
a

η2
a,

(17)

and the parameter ε is defined by the relation

ε ≡ ε + ηL�μ − �μ. (18)

This parameter represents the difference between the energy
level of the dot, shifted by the voltage bias of the left channel,
and the Fermi energy of this channel. The value of energy shift,
ηL�μ, has the transparent physical meaning: The voltage bias,
applied to the left channel, induces the extra electron density
�σa(x) = �μ

∫
dx ′V −1

aL (x,x ′) in the channel a, which follows
from Eq. (6) with zeros on the right-hand side replaced by
δaL�μ. Replacing in Eq. (10) σa with σa + �σa and using
again Eq. (6) with the definition of ηL, one arrives at the
desired value of the energy shift. Thus ε is an effective size of
the energy gap for the virtual state in the cotunneling process,
where the dot is occupied by an extra electron.

At this point we want to make the following remark about
the restriction on the screening fractions ηa and, thus, on
the exponents Eq. (17). According to the electroneutrality
condition

∑
a ηa = 1. However, this identity changes if some

fraction of the QD charge ηg is screened by metallic gates
surrounding the QD. These gates may be considered as
an ensemble of ng effectively one-dimensional scattering
channels enumerated by i with screening fractions ηi . We
consider these channels separately from those enumerated by
a due to the different strength of the interaction, since the
wave-length of the electrons in the metal is much smaller
than the one in two-dimensional electron gas. Therefore, the
number of these channels is large, and necessarily ηi 
 1 for
all i. Therefore, even though the total screening fraction of
metal is finite

∑
i ηi = ηg , its contribution to the exponents

Eq. (17) is negligible, since
∑

i η
2
i scales as 1/ng . Therefore,

below we neglect the contribution of the effective channels in
the gates to the FES exponents. However, we keep in mind that
the more general restriction on ηa holds:

∑
a ηa = 1 − ηg � 1.

All the integrals in Eq. (16) are convergent, since each
time variable enters the integral with negative power and
is integrated either with the oscillatory factor or with the
exponential function, which decay rapidly at infinity. The
analytical structure of the integrand as a function of t is
presented in Fig. 2. It has one branch cut that connects four
branching points, which follows from the fact that the total
power of the denominator as a function of t is integer. The
integration over t from −∞ to ∞ allows one to deform the
contour, and thus simplifies calculations.

In the case of free fermions, i.e., where ηa = 0 for all a,
the integral Eq. (16) can be calculated exactly, leading to the
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FIG. 2. The analytical structure of the expression under the
integral Eq. (16) as a function of the variable t is schematically
shown. The curly line represents the branch cut that connects four
branching points.

well-known expression for the cotunneling current

I ∝ �μ

ε(ε + �μ)
, (19)

where, obviously, ε = ε − �μ = ε0 − �μ. Below, we will
use this result to compare to the interacting case. In general,
the evaluation of the integral Eq. (16) as a function of two
parameters, �μ and ε, presents a challenge, and does not
seem to be instructive. Indeed, only in the limits of the small
bias, �μ 
 ε, and large bias, �μ � ε, one approaches the
thresholds in the spectrum associated with two biased Fermi
seas and thus expects the universal power-law behavior of the
current. Therefore, in the rest of the paper we will concentrate
on finding the asymptotic forms of the integral Eq. (16).

IV. FES EXPONENTS

We start with the low-bias regime and analyze the asymp-
totic behavior of the integral Eq. (16) for �μ 
 ε. Note that
in this regime ε ≈ ε, and we neglect the difference. We expect
the linear dependence of the current on �μ, because in this
regime the interactions are effectively screened. Indeed, in the
course of electron tunneling from one channel to another, that
occurs on the time scale 1/�μ, quantum fluctuations of charge
on the QD with characteristic time scale 1/ε are relatively fast
and average to negligible values. Thus, cotunneling in this
case can be considered as tunneling of an electron through an
effective potential barrier, which only depends on the energy
gap ε.

To find the asymptotic form of the integral Eq. (16), we
integrate separately “fast” and “slow” functions. We note that
the exponential function limits the integrals over variables t ′
and t ′′ to small intervals of the size of the order of 1/ε around
zero. On the other hand, slowly oscillating function of t limits
the integral over t to large interval of the size of the order
of 1/�μ. Therefore, taking into account the relation Eq. (17)
that connects the exponents, and keeping leading order terms
in �μ/ε, we replace four purely imaginary branch points in
the complex plane of t (shown in Fig. 2) with one pole of the
power 2. Evaluating the contribution of this pole, we obtain
the integral,

I ∝ �μ

∫ ∞

0
dt ′

∫ ∞

0
dt ′′e−ε(2t ′+t ′′)t ′α(t ′ + t ′′)α, (20)

which readily gives us the final expression,

I ∝ �μ

ε2+β+γ
, �μ 
 ε. (21)

Here, we again used the relation Eq. (17) to express the power-
law function of ε in terms of the exponents β and γ , associated
with two channels that are tunnel coupled to the QD. We note
that Eq. (21) for β = γ = 0 coincides with the free-fermionic
expression Eq. (19) for small biases.

Next, we concentrate on the regime of the large bias,
where the energy gap becomes small, ε 
 �μ, and one
approaches another threshold in the spectrum associated with
the Fermi level of one of the leads. Taking the advantage of fast
oscillations in the integral Eq. (16), we deform the contour of
integration over the variable t and observe, that the integral is
limited to the interval t ∼ 1/�μ away from the origin. Since
the decay of the integrand as a function t ′ and t ′′ is determined
by the parameter ε, and thus it is much slower, we conclude that
among the four branch points shown in Fig. 2, only the one at
t = 0 contributes to the integral. This allows us to evaluate the
integral over t by neglecting the exponential function e−ε(2t ′+t ′′)

and then restoring it for the integral over variables t ′ and t ′′.
The integrals become trivial, and we obtain the new power-law
behavior:

I ∝ 1

�μγ ε1+β
, �μ � ε. (22)

The noninteracting limit of this result agrees with Eq. (19) for
free fermions at large biases.

Interestingly, β and γ are exactly the FES exponents for
the sequential tunneling to the QD from the corresponding
channels, and vice versa. For instance, the rate of the sequential
tunneling from the left and right lead scales as 1/εβ and 1/εγ ,
respectively, where this time ε denotes the excess energy of an
electron; i.e., we replaced ε → −ε. Thus, in the cotunneling
regime this implies the multiplicative FES effect from both
leads, and the extra factor of 1/ε for each virtual transition.
Finally, we note, that by doing the measurements of the current
as a function of �μ and ε in the regime of large bias, one
can extract both FES exponents, β and γ . It would be then
interesting to compare these results with the measurements of
the current as a function of ε in the low bias regime, in order
to verify our theory.

V. CIRCUIT FEEDBACK EFFECT

If the characteristic time scales associated with the plas-
monic excitations in the channels �μ−1 or ε−1 becomes larger
than the response time of the external circuit τRC, we expect
the dynamical Coulomb blockade [19] type of effect to arise.
In this regime, the averaging in Eq. (15) is modified by the
feedback currents from the external circuit. First, we note that
the original problem can be reformulated in terms of the set
of Langevin equations for the fluctuating parts of the bosonic
fields,

1

2π
∂tφa(t) = −δj s

a (t), (23)

where the 1D currents δj s
a can be viewed as the equilibrium

Langevin sources with the correlation functions,

〈δj s
a (ω)δj s

b (ω′)〉 = 2πδabδ(ω + ω′)Gqωθ (ω), (24)
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FIG. 3. The equivalent circuit representing the whole system is
shown. It includes the mesoscopic system from Fig. 1 denoted by
M , which is connected in series with the capacitor, C, and the shunt
resistor, Rc. To be specific, we assume that only channels on the right
from the QD are coupled to the capacitor and thus affected by the
circuit feedback via the charge Q. One of the channels on the left of
the QD is biased, while the second one is grounded.

Gq being the conductance quantum. This formulation [20]
leads to the same results as in the previous sections and can be
straightforwardly generalized to account for the effects of the
external circuit.

Next, we consider a particular situation, where only the
incoming channels on the right of the QD (see Fig. 1) are
coupled to the node with a small RC-time, while the feedback
from the other nodes is negligible. Such coupling to the circuit
is shown in Fig. 3. The Langevin Eqs. (23) have to be modified
accordingly [20]:

1

2π
∂tφL(t) = −δj s

L(t),

1

2π
∂tφD(t) = −δj s

D(t),

1

2π
∂tφR(t) = −δj s

R(t) + GqQ(t)

C
,

1

2π
∂tφU (t) = −δj s

U (t) + GqQ(t)

C
, (25)

where Q(t) is the charge on the capacitor. The dynamics of
this charge satisfies the Kirchhoff’s law,

∂tQ(t) = − (Gq + Gc)Q(t)

C
− δj s

U (t) − δj s
c (t) + δj s

D(t),

(26)

where Gc = 1/Rc is the conductance of the external circuit.
Here, the Langevin source δj s

c (t) represents the current fluc-
tuations in the circuit with the following correlation function,

〈δj s
c (ω)δj s

c (ω′)〉 = 4πδabδ(ω + ω′)Gsωθ (ω). (27)

Note the extra factor of 2 on the right-hand side of this equation
as compared to the Eq. (24). It arises because of the absence
of chirality restriction on the circuit current.

We are interested in the low-energy limit, therefore we
neglect the time derivative on the left hand side of the Eq. (26),

Q(t) = −Gq + Gc

C

[
δj s

U (t) + δj s
c (t) − δj s

D(t)
]
. (28)

Thus, the fields Eqs. (25) are expressed through the sources
as well, which allows us to calculate the cotunneling current
using the Eq. (14), and in the same manner as in the previous

section. The asymptotic calculations reveal the following result
for �μ 
 1/τRC 
 ε,

I ∝ �μ1+2/g

ε2+β+γ
, (29)

where g = 1 + Gc/Gq is the total conductance of the meso-
scopic system and the external circuit normalized to the
conductance quantum. Thus, the linear dependence of the
current on the bias is modified by the typical dynamical
Coulomb blockade correction [19]. In the opposite case of
�μ � 1/τRC � ε, the current is modified as

I ∝ 1

�μγ ε1+β−χ/g
, (30)

where χ = 2(ηR + ηD)(ηR + ηU ). We conclude, that the
universality of the power law exponents does not hold in the
low energy limit �ε 
 1/τRC or μ 
 1/τRC , when the circuit
feedback leads to the effects of dynamical Coulomb blockade
type.

VI. CONCLUSION

The FES effect manifests itself as a power-law singularity
in the density of states of tunneling to a QD at Fermi level
of the metallic leads and presents a textbook example of
the phenomenon originating from interactions that cannot be
accounted for perturbatively. The key feature of the effect is
the fact that the exponents of the power-law singularity are
universal, since they depend only on the screening charges
accumulated in the leads when one adds an electron or hole to
the QD.

Despite being thoroughly studied in various systems both
experimentally and theoretically, this effect has recently
received an attention in the context of the systems, where
the number of Fermi edges is more than one [21]. Namely, it
has been proposed to attach to a QD system in the FES regime
an addition voltage source that irradiates the QD with the shot
noise [13]. This leads to a number of new interesting effects of
essentially non-equilibrium character. In the present work, we
have proposed an alternative approach, based on cotunneling
through a QD. This process does not perturb the leads, so they
retain the equilibrium state.

Since two electrons participate in cotunneling through
a QD in the Coulomb blockade regime, two Fermi edges
are involved, and consequently two energy scales: potential
difference and the Coulomb energy gap. We investigate this
problem using the bosonization approach, which accounts
the Coulomb long-range interactions exactly. We consider
two limits of low and large bias, and find new power-law
exponents in these regimes. It turns out that they present
a linear combination of “classical” FES exponents for the
sequential tunneling, so that the contribution of two leads to the
FES effect has a multiplicative character. The interplay with
the dynamical Coulomb blockade due to the external circuit is
also studied. We suggest an experiment where our predictions
can be verified without any fitting parameter.
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