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Cooling of chiral heat transport in the quantum Hall effect regime of graphene

Sergey Slizovskiy* and Vladimir Fal’ko
National Graphene Institute, The University of Manchester, Booth St.E., M13 9PL, Manchester, United Kingdom

(Received 3 May 2017; published 28 August 2017)

In the quantum Hall effect (QHE) regime, heat is carried by electrons in the edge states of Landau levels. Here,
we study cooling of hot electrons propagating along the edge of graphene at the filling factor ν = ±2, mediated
by acoustic phonons. We determine the temperature profile extended from a hot spot, where the Hall current is
injected into graphene from a metallic contact, taking into account specifics of boundary conditions for lattice
displacements in graphene in a van der Waals heterostructure with an insulating substrate. Our calculations,
performed using generic boundary conditions for Dirac electrons, show that emission of phonons can explain a
short cooling length observed in graphene-based QHE devices by Nahm, Hwang, and Lee [Phys. Rev. Lett. 110,
226801 (2013)].
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Graphene offers a promising material platform for the
realization of a metrological resistance standard based on
the phenomenon of quantum Hall effect (QHE) [1–11].
Precision metrology requires wide QHE plateaus, such as
observed at filling factor ν = ±2 in epitaxial graphene on
SiC [7,10], and the largest possible breakdown current. The
breakdown of QHE is triggered by the unavoidable hot spots
[3,12,13] formed at the points where current is injected
into the two-dimensional (2D) electron gas from a normal
metal contact. Hot electrons propagating from the hot spot
to the potential contacts used in the QHE measurements
spoil the precision of QHE resistance quantization [14]. In
the QHE regime, the electron energy spectrum is gapped
inside the 2D structure, while the edge states [15–18] carry
nonequilibrium electrons. The chiral nature [15,16] of edge
states means that electrons propagate in only one direction,
making the heat transport unidirectional, Fig. 1, with the
direction of the drift reversed upon reversal of magnetic field,
B = −Bn̂z. Chiral heat transport was experimentally observed
both in semiconductor heterostructures [19] and in graphene
[20]. Here, we propose a theory describing the temperature
profile formed by the competition of chiral heat transport and
acoustic-phonon-mediated cooling of electrons in the QHE
edge states in graphene with filling factor ν = ±2, for which
the gap between LLs is the widest.

To model edge states in graphene, we use the Dirac equation
for electrons with generic boundary conditions [21–23] that
provide zero value for the current across the edges and satisfy
the time-inversion symmetry requirement at B = 0,

vσ · (−ih̄∇ + eA)� = E� ;
[1 − (m · τ ) ⊗ (n · σ )]�|y=0 = 0;
n = n̂z cos φ + [n̂z × n⊥] sin φ.

(1)

Here, σi and τi are Pauli matrices acting separately on
sublattice (A,B) and valley (±K) components of a 4-spinor,
�T = (�KA,�KB,�−KB, − �−KA), describing the electron
amplitudes on sublattices A and B in the valleys ±K . Generic
boundary conditions in Eq. (1) are parameterized by two unit
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vectors, m and n ⊥ n⊥, where n⊥ is normal to the edge in
the 2D plane of graphene, Fig. 1. Both m and n depend on
the microscopic features of the edge in a particular sample. In
particular, deviations of m from n̂z reflect the probability of
intervalley scattering upon specular reflection of an electron
arriving at the incidence angle θ to the edge,

PK→−K = (tan θ )2

(cos φ)2 + (tan θ )2
|m × n̂z|2.

Vector m also accounts for the crystallographic orientation,
η, of the edge: for zigzag edge (η = π

2 ) m = n̂z, for the
armchair edge (η = 0) m = n̂x with φ = ±π

2 . For straight
edges, by exploiting valley degeneracy in Eq. (1) boundary
conditions with different m’s can be reduced by a unitary
transformation in valley space to the ones with m = n̂z, thus,
leaving all the sample-specific microscopic features of the
edge incorporated in a single parameter φ. For example, φ = 0
corresponds to an idealized nearest-neighbor-hopping model
of zigzag edge with equal on-site energies on carbons, which
imposes an artificial electron-hole symmetry on the electronic
spectrum [24–28]. To compare, φ = ±π/2 correspond to the
infinite-mass boundary condition for Dirac fermions [29],
due to the sublattice symmetry breaking by a staggered
potential, 
σz ⊗ τz, with |
| → ∞ at the edge. According
to Ref. [22], boundary parameter φ can be related to staggered
potential −
σz ⊗ τz on 2N rows at a zigzag edge, as cos φ =
1+sinh(κ) sinh(κ+2N
/t)
cosh(κ) cosh(κ+2N
/t) , with sinh κ = 
/(2t) and t being the

nearest-neighbor hopping in the tight-binding model. The
boundary parameter φ also determines a phase shift, γξ =
π + 2 arctan sin θ (cot(φ/2))ξ

ξ−cos θ (cot(φ/2))ξ , of a plane wave upon specular
reflection of an electron arriving at the incidence angle θ to the
edge at B = 0. Note that the armchair edge boundary condition
is reduced to φ = ±π/2 (after the above-mentioned unitary
transformation in the valley space). In general, a nonzero φ

determines the dispersion of the edge states characteristic for
graphene edge at B = 0,

E(p) = ξ h̄vp sin φ, (2)

where a valley-specific requirement ξp cos φ > 0 (ξ = ±1 for
±K valleys) guarantees confinement of evanescent states near

the edge, �ξ = [
ξ

(tan φ

2 )
ξ ]e−ξpy cos φ+ipx .

2469-9950/2017/96(7)/075434(6) 075434-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.110.226801
https://doi.org/10.1103/PhysRevLett.110.226801
https://doi.org/10.1103/PhysRevLett.110.226801
https://doi.org/10.1103/PhysRevLett.110.226801
https://doi.org/10.1103/PhysRevB.96.075434


SERGEY SLIZOVSKIY AND VLADIMIR FAL’KO PHYSICAL REVIEW B 96, 075434 (2017)

FIG. 1. Heat injection by a hot spot near metallic contact to
graphene in the QHE regime. Edge is oriented at angle η from the
armchair direction.

To analyze the edge-state problem (1) for the geometry of
the edge shown in Fig. 1 (x/y axes chosen along/perpendicular
to graphene edge) and an arbitrary choice of φ and m, we
employ a unitary transformation,

� = e
i

m̂n̂z
2 τ · m×n̂z

|m×n̂z | ⊗ e−iη
σz
2 � ′,

which adjusts the sublattice composition of spinors in Eq. (1)
to the choice of the coordinate system, simplifying the form
of boundary condition by rotating m (to the angle m̂n̂z)
to n̂z axis. Then, we use Landau gauge A = (By,0) for
magnetic field B = −Bn̂z, seeking solutions in the form of
� ′(x,y) = eipxψ(y), where ψT = (ψ+A,ψ+B,ψ−B, − ψ−A).
Now, it is convenient to rewrite the Dirac equation and
its boundary conditions in a Schrödinger-like form using
amplitudes χ+1 ≡ ψ+A and χ−1 ≡ ψ−B on one sublattice only,[

−l2∂2
y +

(
y

l
+ lp

)2

− 1

]
χξ (y) =

(
El

h̄v

)2

χξ (y),

∂yχξ |y=0 =
[
−lp + ξ

lE

h̄v

(
tan

φ

2

)ξ]
χξ

∣∣∣∣
y=0

, (3)

where ξ = ±1, and l =
√

h̄
eB

is a magnetic length.
Numerical solution of Eq. (3) produces spectra E(p) for

electrons near the edge shown in Fig. 2 for various values
of φ ∈ [0, π

2 ]. Spectra for inverted, φ → −φ, values of the
boundary condition parameter can be obtained from those
shown in Fig. 2 by changing E(p) → −E(p), and spectra for
φ → π + φ by swapping χ+ and χ−. In Fig. 2, one can recog-
nize the 2D bulk Landau levels (LLs) at p < 0, transforming
into the edge states near p = 0 The sublattice composition of
the corresponding wave functions is shown in Supplemental
Material, Sec. S1 [30]. Near the edge, the LLs resonantly mix
with the edge states of Dirac electrons in graphene, Eq. (2),
whose spectrum and valley composition depend on φ. This
mixing determines three parametric intervals for the edge
states at EF = h̄v√

2l
, which is the optimum choice of Fermi

energy for developing QHE devices:1

(i) π
6 < φ < π (and 7π

6 < φ < 2π ), where there is one
chiral edge state at the Fermi level, whose wave function is a

1Moving EF within the gap introduces no qualitative changes.

mixture of LLs and the evanescent mode present for B = 0 for
either χ+ or χ− (in only one valley).

(ii) 0 < φ � π
8 (and π < φ � 9π

8 ), where there are three
edge modes. Two of these modes (one for χ+ and the other for
χ−) are the counterpropagating evanescent modes with ψ ∝
e
− y√

2l
| cot φ| confined at a short distance, λφ ∼ √

2l tan φ, near
the edge. Due to a strong confinement, λφ −−→

φ→0
0, these modes

have suppressed scattering into the LL edge state. Note that,
for φ → 0, a stronger confinement of evanescent modes would
suggest a stronger intervalley scattering on atomically sharp
edge disorder, localizing the counterpropagating evanescent
modes.

(iii) π
8 � φ � π

6 (and 9π
8 � φ � 7π

6 ), characterized by two
additional counterpropagating modes χ−(χ+) with strongly
overlapping wave functions and one chiral mode χ+(χ−). In
this case, intravalley scattering would lead to localization of
pairs of χ−(χ+) edge states.

As to the phonons, the feature of graphene coupled by
van der Waals forces to the underlying substrate with a
noncommensurate lattice is that vibrational properties in
graphene lattice are only weakly perturbed by the substrate
[31]. Hence, a graphene flake can be described as a membrane
with free edges, where vanishing of stress tensor components
in the direction n⊥ results in a zero deformation potential at
the edge. This should be contrasted to graphene with clamped
edges, where the displacement vector field of graphene is set
to zero at the edge. In principle, both the longitudinal [(LA)
with displacement field u ‖ q] and the transverse [(TA) with
u ⊥ q] acoustic phonons in graphene could be emitted by hot
electrons in the edge states. Those are coupled to electrons via
a potential,

V = g divu + g′σ · w, w = (∂xux − ∂yuy, − 2∂yux),

with [32–37] g ≈ 20 eV and g′ ≈ 2 eV (since graphene is in
the incompressible QHE plateau state, we use the unscreened
value of the deformation potential coupling). As g′ � g, we
base our analysis on emission of LA phonons provided by
deformation potential with the constant g. Note that flexural
phonons couple quadratically to electrons, allowing only
for two-phonon processes that are negligible at low lattice
temperatures [38]. Also, we find (Table I in Supplemental
Material) that the edge-state velocities, ve = ∂E(p)

∂p
|
E=EF

, are

much higher than the speed of longitudinal sound in graphene
[39], s ≈ 2.2 × 104m/s; therefore, phonons are emitted with
the wave vectors almost perpendicular to the edge, q = −qn⊥.
This feature of electron-phonon (E-PH) interaction in the edge
states simplifies the description of their cooling kinetics. In
particular, for the samples where parameter φ belongs to
Interval I, where there is only one edge mode at EF = h̄v√

2l

for ν = 2, the E-PH interaction has the form,

HE-PH = −g

∫
d2q dp

(2π )3

√
h̄|q|
2ρs

(bq + b
†
−q)A(qy)a†

p+qx
ap,

(4)

where b
†
q (bq) and a

†
p (ap) are the creation (annihilation)

operators of LA phonons and of edge-state electrons;
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FIG. 2. Bands E(p) of QHE edge states for various boundary conditions, in units of εB = h̄v/ l, l = √
h̄

eB
. Solid/dashed lines correspond to

solutions for χ+ and χ−, respectively. ν = 2 edge states at energy in the middle between the zeroth and the first LL (EF = 1√
2
εB ) are indicated

by blue circles and square markers, the latter indicating the additional edge states present in intervals II and III and expected to get localized if
impurities are considered. Edge states for φ → −φ can be found by reflection E(p) → −E(p), and for φ → π + φ by swapping the valleys
χ+ ↔ χ−.

ρ ≈ 7.6 × 10−7 kg/m2 is graphene mass density. Here, the
form factor,

A(q) =
∫ ∞

0
dy

√
2 sin(qy)|ψ(y)|2,

takes into account the form of the edge-state wave function
and the phonon displacement field near the edge: for the free
edge the phonon displacement mode behaves as uy ∼ cos(qy),
leading to a deformation potential V ∼ q sin(qy). For the
states marked by dots in Fig. 2, the form factor A(q) has
the following characteristic asymptotics,

A(q) ≈
{√

2r0(ql)−1, q � l−1, r0 = l|ψ(0)|2,
√

2α0ql, q � l−1, α0 = ∫ ∞
0

y

l
|ψ(y)|2dy,

values of parameters r0 and α0 are listed in Table I of the
Supplemental Material.

Edge-state electrons cool down while drifting along the edge.
Assuming that, locally, their equilibration due to Coulomb
interaction is fast, electrons’ distribution can be described
using a Fermi function with a local temperature Te(x). We
note that equilibration of edge channels has been shown to be
nonthermal at longer time scales [40] due to integrability, but
at the comparable time scales the phonon emission becomes
important, breaking the integrability. We also find that for a
slow thermalization of edge-state electrons, their distribution
formed in the course of cooling by phonon emission is almost
indistinguishable from thermal, see Supplemental Material,
Sec. S 2. The cooling power (per unit length) provided by the
phonon emission by the edge-state electrons is

WI = g2T 4
∗

h̄4ρv2
e s

3
fA

(
Te

T∗
,
T

T∗

)
. (5)
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Here, T is graphene lattice temperature, Te is the temperature
of electrons in the edge state, and a factor,

fA

(
τ,

T

T∗

)
= τ 4

4π2

∫ ∞

0
dε ε3

[
A

(
ετ

l

)]2{
nB(ε)

[
1 + nB

(
ετ

T∗
T

)]
− [nB (ε) + 1]nB

(
ετ

T∗
T

)}
−−→
T →0

τ 4

4π2

∫ ∞

0
dε ε3

∣∣∣∣A(
ετ

l

)∣∣∣∣2

nB(ε),

accounts for all phonons emitted at various energies h̄ω = εTe,
with nB(ε) = [eε − 1]−1. The temperature scale,

T∗ = s
√

h̄eB ≈ 6.5
√

B[Tesla] K, (6)

is determined by the energy of phonons with q ∼ 1/l. It marks
a crossover between the two regimes: the high-temperature
regime, Te � T∗, where wavelengths of typical emitted
phonons are smaller than l, ql > 1, and a low-temperature
regime, Te � T∗, where ql < 1. Then, for T � Te, we find

fA

(
Te

T∗
,
T

T∗
= 0

)
≈

⎧⎨⎩
r2

0
12

(
Te

T∗

)2
, Te � T∗,

4π4α2
0

63

(
Te

T∗

)6
, Te � T∗.

For Interval II, the slow counterpropagating modes (seen in
Fig. 2) provide additional cooling power. Since the spatial
scale of their wave functions is reduced to l tan φ, and their
velocity is reduced to v| sin φ|, their cooling power is described
by the same Eq. (5), but with increased T∗ → T∗| cot φ|. This
leads to the extended range of low-temperature asymptotics,
giving a small correction to cooling power

W = WI + 0.62g2T 6
e

h̄4ρv2s3T 2∗
, Te < T∗ cot φ, (7)

which rapidly grows to a dominant term at Te > T∗ cot φ. In
the latter case, the equilibration between the edge channels
shortens the cooling length. For Interval III, Eq. (7) can only
give the lowest bound for the cooling efficiency, as phonons
can be emitted by both intra- and inter-edge-state transitions.

All this leads to the equation for the temperature profile
Te(x) along the edge,

C
∂Te

∂t
+ Ceve

∂Te

∂x
= −W,

where Ce = πTe

6h̄ve
is specific heat of a 1D Fermi gas, ve is

velocity of the fastest propagating edge channel, and C � Ce

is a full specific heat including the contributions from localized
states at the edges. The validity of this equation for Intervals
II and III is provided by cancellation of Ceve contributions
from the counterpropagating edge states and assuming that
temperature equilibration between the edge channels is fast. If
interchannel equilibration is slow, then the effect of additional
edge channels can be neglected. In the steady state, ∂tT = 0,
this reduces to

∂Te

∂x
= −W

Ceve

. (8)

Also, for comparing our results to the experimental data
from Ref. [20], it is convenient to characterize cooling by
a differential cooling length, L(Te), defined as,

L−1 ≡
∣∣∣∣∂ log Te

∂x

∣∣∣∣ = W

CeveTe

. (9)

FIG. 3. (a) Differential cooling length (black lines) computed
for graphene with φ = 0, ± π/4, ν = 2 QHE, and B = 16 Tesla.
Blue blob shows the experimental value Lexp ≈ 22 μm measured by
Nahm, Hwang, and Lee [20]. For comparison, green lines show L(Te)
for a flake with clamped edges (see Supplemental Material, Sec. S
3). Inset: Electron temperature profile, Te(x), along the edge. (b)
High-temperature cooling length, L(Te � T ), for ν = 2 QHE edge
state at B = 16 T, plotted as a function of boundary parameter φ.
Triangle-shaped areas indicate the drop in L(Te) when Te is above
T∗ cot φ, caused by the increasing phonon emission from the pairs of
additional counter-propagating edge states indicated in Fig. 2. Results
for ν = −2 are obtained by the reversal φ → −φ.
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Solving Eq. (8), we find exponentially fast temperature decay

at high temperatures, with γ = g2r2
0 eB

2πh̄2ρv2
e s

, and a slow power-law

low-temperature tail:

Te(x) ≈

⎧⎪⎨⎪⎩
T0 e−γ x, Te > T∗,

0.24
√

r0/α0 T∗

4

√
γ x−ln max

[
1,

T0
T∗

]
+0.003

r2
0

α2
0

max
[

1,
T 4∗
T 4

0

] , Te < T∗.

The crossover between the two asymptotical regimes, from the
fast decay at T > T∗ to the long tail at T < T∗, is illustrated
in the inset of Fig. 3(a), and the values of high-temperature
cooling length,

L(Te � T∗) ≈ 2πh̄2ρv2
e s

g2r2
0 eB

, (10)

are plotted in Fig. 3(b). It is interesting to note that reversing
magnetic field does not change the values of the cooling
length L, which should be, now, applied to the hot electrons
drifting in the opposite direction. However, changing ν = 2 to
ν = −2 by changing polarity of doping, would be equivalent
to swapping φ → −φ in Fig. 3(b), resulting in a different
cooling lengthL for n- and p-doping of the same sample when
φ �= 0, ± π

2 .
In the recent experiments on the chiral heat transport along

the QHE edges in graphene [20], the temperature decay length
L has been measured for the filling factor ν = −2 at B = 16 T,
resulting in Lexp ≈ 22 μm. Estimates, based on the theory of
phonon-assisted scattering in semiconducting heterostructures
[41] have led the authors of Ref. [20] to refute the acoustic

phonon cooling mechanism, leaving their results unexplained.2

Here we rebuff that conclusion. The values ofL(Te), computed
using Eq. (9) and plotted in Fig. 3, show that energy relaxation
due to emission of LA phonons in graphene with free boundary
conditions for lattice vibrations does deliver sufficiently short
cooling lengths in QHE edge-state electrons to explain the
value measured by Nam, Hwang, and Lee [20].

To summarize, the theory of cooling of hot electrons in
the ν = ±2 QHE edge states in graphene presented in this
letter shows that for a mechanically free edge of graphene in
devices where a flake is bound to the substrate by van der Waals
forces, the temperature profile extended from a hot spot near

a current contact decays at the length scale L ≈ 2πh̄2ρv2
e s

g2r2
0 eB

up to

where Te(x) drops to the value T∗ = s
√

h̄eB ≈ 6.5
√

B[Tesla].
After that (at longer distances), Te(x) has a long power-law
tail Te(x) ∼ (x + x0)−1/4. The proposed theory explains the
earlier measured values of temperature decay length. It also
shows that the cooling length L would be strongly modified
by clamping graphene edge, and it predicts an electron-hole
asymmetry of the cooling length, which can be tested by
changing the polarity of doping, from ν = +2 to ν = −2,
in the same sample.

We acknowledge useful discussions with K. von Klitzing,
S. Rozhko, A. Tzalenchuk, J.T. Janssen, R. Nicholas, F. Essler,
and J. Wallbank. This work is supported by Innovate UK
Grant No. 65431-468182 and the European Graphene Flagship
project.

2Here, we neglect the evaporational cooling by emission of hot
electrons into the bulk Landau levels, as it is suppressed by the
Boltzmann factor e−h̄v/(2lkBTe). For B = 16 T h̄v/(2lkB ) = 840 K,
making this mechanism redundant for T � 150 K.

[1] K. V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45,
494 (1980).

[2] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
[3] K. von Klitzing, Rev. Mod. Phys. 58, 519 (1986).
[4] A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov, S. Paolillo,

M. Syväjärvi, R. Yakimova, O. Kazakova, T. J. B. M.
Janssen, V. Fal’ko, and S. Kubatkin, Nat. Nanotech. 5, 186
(2010).

[5] T. J. B. M. Janssen, A. Tzalenchuk, S. Lara-Avila, S. Kubatkin,
and V. I. Fal’ko, Rep. Prog. Phys. 76, 104501 (2013).

[6] T. J. B. M. Janssen, S. Rozhko, I. Antonov, A. Tzalenchuk, J. M.
Williams, Z. Melhem, H. He, S. Lara-Avila, S. Kubatkin, and R.
Yakimova, 2D Materials 2, 035015 (2015).

[7] J. A. Alexander-Webber, J. Huang, D. K. Maude, T. J. B. M.
Janssen, A. Tzalenchuk, V. Antonov, T. Yager, S. Lara-Avila, S.
Kubatkin, R. Yakimova, and R. J. Nicholas, Sci. Rep. 6, 30296
(2016).

[8] M. Woszczyna, M. Friedemann, M. Götz, E. Pesel, K. Pierz,
T. Weimann, and F. J. Ahlers, Appl. Phys. Lett. 100, 164106
(2012).

[9] F. Lafont, R. Ribeiro-Palau, D. Kazazis, A. Michon, O.
Couturaud, C. Consejo, T. Chassagne, M. Zielinski, M. Portail,

B. Jouault, F. Schopfer, and W. Poirier, Nat. Commun. 6, 6806
(2015).

[10] M. Yang, O. Couturaud, W. Desrat, C. Consejo, D. Kazazis,
R. Yakimova, M. Syväjärvi, M. Goiran, J. Béard, P. Frings, M.
Pierre, A. Cresti, W. Escoffier, and B. Jouault, Phys. Rev. Lett.
117, 237702 (2016).

[11] T. Shen, W. Wu, Q. Yu, C. A. Richter, R. Elmquist, D. Newell,
and Y. P. Chen, Appl. Phys. Lett. 99, 232110 (2011).

[12] J. Weis and K. von Klitzing, Philos. T. Roy. Soc. A 369, 3954
(2011).

[13] Y. Kawano and S. Komiyama, Phys. Rev. B 68, 085328 (2003).
[14] A. M. R. Baker, J. A. Alexander-Webber, T. Altebaeumer, and

R. J. Nicholas, Phys. Rev. B 85, 115403 (2012).
[15] M. Büttiker, Phys. Rev. B 38, 9375 (1988).
[16] B. I. Halperin, Phys. Rev. B 25, 2185 (1982).
[17] Q. Niu and D. J. Thouless, Phys. Rev. B 35, 2188 (1987).
[18] Q. Niu, D. J. Thouless, and Y.-S. Wu, Phys. Rev. B 31, 3372

(1985).
[19] G. Granger, J. P. Eisenstein, and J. L. Reno, Phys. Rev. Lett.

102, 086803 (2009).
[20] S.-G. Nam, E. H. Hwang, and H.-J. Lee, Phys. Rev. Lett. 110,

226801 (2013).

075434-5

https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/RevModPhys.58.519
https://doi.org/10.1103/RevModPhys.58.519
https://doi.org/10.1103/RevModPhys.58.519
https://doi.org/10.1103/RevModPhys.58.519
https://doi.org/10.1038/nnano.2009.474
https://doi.org/10.1038/nnano.2009.474
https://doi.org/10.1038/nnano.2009.474
https://doi.org/10.1038/nnano.2009.474
https://doi.org/10.1088/0034-4885/76/10/104501
https://doi.org/10.1088/0034-4885/76/10/104501
https://doi.org/10.1088/0034-4885/76/10/104501
https://doi.org/10.1088/0034-4885/76/10/104501
https://doi.org/10.1088/2053-1583/2/3/035015
https://doi.org/10.1088/2053-1583/2/3/035015
https://doi.org/10.1088/2053-1583/2/3/035015
https://doi.org/10.1088/2053-1583/2/3/035015
https://doi.org/10.1038/srep30296
https://doi.org/10.1038/srep30296
https://doi.org/10.1038/srep30296
https://doi.org/10.1038/srep30296
https://doi.org/10.1063/1.4704190
https://doi.org/10.1063/1.4704190
https://doi.org/10.1063/1.4704190
https://doi.org/10.1063/1.4704190
https://doi.org/10.1038/ncomms7806
https://doi.org/10.1038/ncomms7806
https://doi.org/10.1038/ncomms7806
https://doi.org/10.1038/ncomms7806
https://doi.org/10.1103/PhysRevLett.117.237702
https://doi.org/10.1103/PhysRevLett.117.237702
https://doi.org/10.1103/PhysRevLett.117.237702
https://doi.org/10.1103/PhysRevLett.117.237702
https://doi.org/10.1063/1.3663972
https://doi.org/10.1063/1.3663972
https://doi.org/10.1063/1.3663972
https://doi.org/10.1063/1.3663972
https://doi.org/10.1098/rsta.2011.0198
https://doi.org/10.1098/rsta.2011.0198
https://doi.org/10.1098/rsta.2011.0198
https://doi.org/10.1098/rsta.2011.0198
https://doi.org/10.1103/PhysRevB.68.085328
https://doi.org/10.1103/PhysRevB.68.085328
https://doi.org/10.1103/PhysRevB.68.085328
https://doi.org/10.1103/PhysRevB.68.085328
https://doi.org/10.1103/PhysRevB.85.115403
https://doi.org/10.1103/PhysRevB.85.115403
https://doi.org/10.1103/PhysRevB.85.115403
https://doi.org/10.1103/PhysRevB.85.115403
https://doi.org/10.1103/PhysRevB.38.9375
https://doi.org/10.1103/PhysRevB.38.9375
https://doi.org/10.1103/PhysRevB.38.9375
https://doi.org/10.1103/PhysRevB.38.9375
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevB.35.2188
https://doi.org/10.1103/PhysRevB.35.2188
https://doi.org/10.1103/PhysRevB.35.2188
https://doi.org/10.1103/PhysRevB.35.2188
https://doi.org/10.1103/PhysRevB.31.3372
https://doi.org/10.1103/PhysRevB.31.3372
https://doi.org/10.1103/PhysRevB.31.3372
https://doi.org/10.1103/PhysRevB.31.3372
https://doi.org/10.1103/PhysRevLett.102.086803
https://doi.org/10.1103/PhysRevLett.102.086803
https://doi.org/10.1103/PhysRevLett.102.086803
https://doi.org/10.1103/PhysRevLett.102.086803
https://doi.org/10.1103/PhysRevLett.110.226801
https://doi.org/10.1103/PhysRevLett.110.226801
https://doi.org/10.1103/PhysRevLett.110.226801
https://doi.org/10.1103/PhysRevLett.110.226801


SERGEY SLIZOVSKIY AND VLADIMIR FAL’KO PHYSICAL REVIEW B 96, 075434 (2017)

[21] E. McCann and V. I. Fal’ko, J. Phys.: Condens. Matter 16, 2371
(2004).

[22] A. R. Akhmerov and C. W. J. Beenakker, Phys. Rev. B 77,
085423 (2008).

[23] M. Wimmer, A. R. Akhmerov, and F. Guinea, Phys. Rev. B 82,
045409 (2010).

[24] N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B
73, 125411 (2006).

[25] D. A. Abanin, P. A. Lee, and L. S. Levitov, Phys. Rev. Lett. 96,
176803 (2006).

[26] L. Brey and H. A. Fertig, Phys. Rev. B 73, 195408 (2006).
[27] D. A. Abanin, P. A. Lee, and L. S. Levitov, Solid State Commun.

143, 77 (2007).
[28] J. L. Lado, N. García-Martínez, and J. Fernández-Rossier, Synth.

Met. 210, 56 (2015).
[29] M. V. Berry and R. J. Mondragon, Philos. T. Roy. Soc. A 412,

53 (1987).
[30] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.96.075434 for the plots of wave functions

and form-factors, discussion of thermalization, and calculations
for the clamped edge case.

[31] E. Koren, E. Lörtscher, C. Rawlings, A. W. Knoll, and U. Duerig,
Science 348, 679 (2015).

[32] S. Ono and K. Sugihara, J. Phys. Soc. Jpn. 21, 861 (1966).
[33] K. Sugihara, Phys. Rev. B 28, 2157 (1983).
[34] H. Suzuura and T. Ando, Phys. Rev. B 65, 235412 (2002).
[35] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997).
[36] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[37] D. Midtvedt, C. H. Lewenkopf, and A. Croy, 2D Materials 3,

011005 (2016).
[38] M. Katsnelson and A. Geim, Philos. T. Roy. Soc. A 366, 195

(2008).
[39] D. L. Nika and A. A. Balandin, J. Phys.: Condens. Matter 24,

233203 (2012).
[40] D. L. Kovrizhin and J. T. Chalker, Phys. Rev. B 84, 085105

(2011).
[41] T. Martin and S. Feng, Phys. Rev. Lett. 64, 1971 (1990).

075434-6

https://doi.org/10.1088/0953-8984/16/13/016
https://doi.org/10.1088/0953-8984/16/13/016
https://doi.org/10.1088/0953-8984/16/13/016
https://doi.org/10.1088/0953-8984/16/13/016
https://doi.org/10.1103/PhysRevB.77.085423
https://doi.org/10.1103/PhysRevB.77.085423
https://doi.org/10.1103/PhysRevB.77.085423
https://doi.org/10.1103/PhysRevB.77.085423
https://doi.org/10.1103/PhysRevB.82.045409
https://doi.org/10.1103/PhysRevB.82.045409
https://doi.org/10.1103/PhysRevB.82.045409
https://doi.org/10.1103/PhysRevB.82.045409
https://doi.org/10.1103/PhysRevB.73.125411
https://doi.org/10.1103/PhysRevB.73.125411
https://doi.org/10.1103/PhysRevB.73.125411
https://doi.org/10.1103/PhysRevB.73.125411
https://doi.org/10.1103/PhysRevLett.96.176803
https://doi.org/10.1103/PhysRevLett.96.176803
https://doi.org/10.1103/PhysRevLett.96.176803
https://doi.org/10.1103/PhysRevLett.96.176803
https://doi.org/10.1103/PhysRevB.73.195408
https://doi.org/10.1103/PhysRevB.73.195408
https://doi.org/10.1103/PhysRevB.73.195408
https://doi.org/10.1103/PhysRevB.73.195408
https://doi.org/10.1016/j.ssc.2007.04.024
https://doi.org/10.1016/j.ssc.2007.04.024
https://doi.org/10.1016/j.ssc.2007.04.024
https://doi.org/10.1016/j.ssc.2007.04.024
https://doi.org/10.1016/j.synthmet.2015.06.026
https://doi.org/10.1016/j.synthmet.2015.06.026
https://doi.org/10.1016/j.synthmet.2015.06.026
https://doi.org/10.1016/j.synthmet.2015.06.026
https://doi.org/10.1098/rspa.1987.0080
https://doi.org/10.1098/rspa.1987.0080
https://doi.org/10.1098/rspa.1987.0080
https://doi.org/10.1098/rspa.1987.0080
http://link.aps.org/supplemental/10.1103/PhysRevB.96.075434
https://doi.org/10.1126/science.aaa4157
https://doi.org/10.1126/science.aaa4157
https://doi.org/10.1126/science.aaa4157
https://doi.org/10.1126/science.aaa4157
https://doi.org/10.1143/JPSJ.21.861
https://doi.org/10.1143/JPSJ.21.861
https://doi.org/10.1143/JPSJ.21.861
https://doi.org/10.1143/JPSJ.21.861
https://doi.org/10.1103/PhysRevB.28.2157
https://doi.org/10.1103/PhysRevB.28.2157
https://doi.org/10.1103/PhysRevB.28.2157
https://doi.org/10.1103/PhysRevB.28.2157
https://doi.org/10.1103/PhysRevB.65.235412
https://doi.org/10.1103/PhysRevB.65.235412
https://doi.org/10.1103/PhysRevB.65.235412
https://doi.org/10.1103/PhysRevB.65.235412
https://doi.org/10.1103/PhysRevLett.78.1932
https://doi.org/10.1103/PhysRevLett.78.1932
https://doi.org/10.1103/PhysRevLett.78.1932
https://doi.org/10.1103/PhysRevLett.78.1932
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1088/2053-1583/3/1/011005
https://doi.org/10.1088/2053-1583/3/1/011005
https://doi.org/10.1088/2053-1583/3/1/011005
https://doi.org/10.1088/2053-1583/3/1/011005
https://doi.org/10.1098/rsta.2007.2157
https://doi.org/10.1098/rsta.2007.2157
https://doi.org/10.1098/rsta.2007.2157
https://doi.org/10.1098/rsta.2007.2157
https://doi.org/10.1088/0953-8984/24/23/233203
https://doi.org/10.1088/0953-8984/24/23/233203
https://doi.org/10.1088/0953-8984/24/23/233203
https://doi.org/10.1088/0953-8984/24/23/233203
https://doi.org/10.1103/PhysRevB.84.085105
https://doi.org/10.1103/PhysRevB.84.085105
https://doi.org/10.1103/PhysRevB.84.085105
https://doi.org/10.1103/PhysRevB.84.085105
https://doi.org/10.1103/PhysRevLett.64.1971
https://doi.org/10.1103/PhysRevLett.64.1971
https://doi.org/10.1103/PhysRevLett.64.1971
https://doi.org/10.1103/PhysRevLett.64.1971



