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Electronic correlation effects on the neutralization of Ga+ scattered by a gold surface
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The monotonous increasing with temperature behavior of the neutralization of Ga+ scattered by a gold surface
plus the nonmagnetic character of the ion induced to disregard the important electronic correlation effects. In
this work, we show that contrary to this assumption, the electron-electron interaction in the Ga site is crucial for
describing the experimental results. We extend the formalism previously used in the Sr+/Au system to include
more than one valence orbital in the projectile, which is the case of Ga+, where the neutralization occurs to
a p-type shell. We consider the six possible orbital-spin neutral configurations in a correlated way within the
Anderson model. The comparison with the results obtained from a noninteracting electron model allows one to
infer how important the many-body effects in the charge exchange between Ga+ and the gold surface are. We also
found that the proximity of the projectile one-electron energy levels to the substrate Fermi level determines the
influence of electronic correlation effects on the neutral fraction and its temperature and velocity dependences.
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I. INTRODUCTION

It has been invoked that by carefully choosing the projectile-
target combination in low-energy scattering experiments, the
correlated behavior of electrons can be determined [1–8].
In Ref. [1], the temperature and ion velocity dependences
of the neutral fraction of hyperthermal energy Na+ ions
scattered by a Cu(001) surface were experimentally studied,
and theoretically described using a noninteracting Anderson
model, while in Refs. [4,5], the neutral fraction of 2 keV Ga+,
Mg+, and Sr+ ions scattered by a polycrystalline Au surface
was measured as a function of the substrate temperature.
Mg+/Au and Sr+/Au systems have already been theoretically
studied [9–11]. In Ref. [11], a very good agreement with the
experimental results was obtained for the neutralization of
Mg+ on Au, and also in the case of Sr+ on Au if a very
slight temperature dependence of the substrate work function
is assumed. On the other hand, the temperature dependence
of the neutral fraction of Ga+ scattered by a gold surface still
lacks a proper theoretical description.

The effect of many-body interactions in any dynamical
physical process is not straightforward. The first improvement
over the noninteracting Anderson model in the case of neutral
atoms with either one valence electron (Ga, Na, and so on)
or two in a closed s-shell (Sr, Mg, He, and so on) consists
of including the spin-fluctuation statistic, that is, the infinite
correlation limit of the Anderson model. In the first case, we
have the charge fluctuation |00〉 ↔ |↑ 0〉 ; |0 ↓〉 and, due to
the spin degeneration, there are two possibilities of electron
capture against only one in the loss process. In the second case,
the charge fluctuation |↑↓〉 ↔ |↑ 0〉 ; |0 ↓〉 indicates that the
electron loss has two possibilities, while the capture has only
one. These unbalanced capture and loss processes introduce
an important difference with respect to the noninteracting
model, but the effect is negligible if the ionization energy
is well defined either above or below the Fermi energy. For
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instance, in the neutralization of He+ to its ground state, it is
not expected that the spin-fluctuation statistic has an important
effect since its large ionization energy makes the electron-loss
processes unviable [12–16]. Then, we can infer that the strong
electron-electron interaction in the localized projectile site will
introduce appreciable effects when the projectile energy level
is close to the Fermi level. The cases of Sr and Ga interacting
with a gold surface and Na scattered by a Cu surface are
good examples, at least far from the surface where the energy
level is only shifted by the image potential. The shift of the
projectile level caused by the short-range chemical interac-
tions at closer distances from the surface may change this
scenario.

In stationary processes, different regimes in the infinite
correlation limit are identified depending on the relation
between the atom energy level εα (the Fermi level defines the
zero energy) and its width � due to the interaction with the band
states [17,18]. The Kondo regime is reached when εα/� <

−1, the mixed-valence regime when −1 < εα/� < 1, and the
empty orbital regime when εα/� > 1. In the Kondo regime,
the valence occupation decreases with the temperature, while
an increasing occupation with temperature is characteristic
of the empty orbital regime. Both temperature dependences
can occur in the mixed-valence regime, depending on whether
this regime is evolving from a Kondo or to an empty orbital
regime. Therefore, along the projectile trajectory, the ion
energy-level position relative to the target Fermi level and
the projectile-surface interaction lead to different correlation
regimes which will fade away when the projectile is moving
with a finite velocity. It is well known that at low velocities,
the loss of memory of the charge state during the trajectory
is more pronounced. Then, the charge state of the projectile
atom is defined far from the surface at the exit trajectory
[2,19–21]. Therefore, a better-defined correlation regime is
expected in this case, associated with the effective range of
distances of charge definition, determining the temperature
behavior of the neutral fraction. In the case of Sr+ scattered
by an Au surface [11], a Kondo regime is found in the
ion-surface range of distances where the final charge state of
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the projectile is defined. In this case and within the appropriate
hole-picture description, an increase of the valence occupation
(a decrease of the hole-state occupation) with temperature
is found, as expected in the Kondo regime. Then, it is not
necessary to expect a nonmonotonous temperature dependence
of the neutral fraction for inferring electron correlations; and
neither is it necessary to disregard possible correlated electron
behavior in the case of Ga+ because of the nonmagnetic
character of the ion [4].

To assess the relevance of electron correlation effects, we
have to compare the results obtained with a model that includes
them with the corresponding results by using a noninteracting
electron model. The comparison with the experimental data
tells us whether or not the theoretical description of the
electron-electron interaction is applicable.

In this paper, we focus on the scattering of Ga+ by a poly-
crystalline Au surface. By taking into account the ionization
level of Ga (−5.99 eV) compared with the Au work function
(5.1 eV), the resonant process constitutes the main mechanism
of neutralization. The charge fluctuation Ga+(4s24p0) to
Ga0(4s24p1) involves, besides the spin-fluctuation statistic,
the possibility of three different p-orbital configurations. The
three p orbitals are degenerated far from the surface, but at
closer distances this degeneracy is lifted due to the ion-surface
interaction. Then, we consider six orbital-spin configurations
for the neutral Ga, i.e., |ασ 〉 with α = x,y,z, corresponding to
the three pα orbitals and σ =↑ ,↓, and describe the interacting
system by using an Anderson Hamiltonian projected over
the selected atom configuration space. The bond-pair model
[22], proven to be a robust model to properly describe
many interacting atom-surface systems [15,23–25], is used
for calculating the Hamiltonian terms.

The correlation in nonequilibrium processes has also been
described by using physical operators in the mixed boson-
electron space, where the time-dependent Green functions
appropriate for calculating the atom charge state probability
are calculated by using either the noncrossing approximation
(NCA) [6,7] or the equation-of-motion (EOM) method [26].
It was found that the semiclassical approximation leads to
the same rate equations in both calculations, although a
better description of the scattering dynamic process at low
projectile velocity of an exactly solvable model was obtained
for the EOM method, mainly in the Kondo and empty orbital
regime [26]. Here we use the operator projection technique
because it provides a straightforward description when many
orbitals in the atom are included, and calculate the time-
dependent Green functions by using the EOM method closed
up to a second order in the coupling term [26].

Three different calculations are performed related to the
treatment of electron correlation: the noninteracting electron
model, an approximation including the spin fluctuations for
the three p orbitals treated independently, and the more
complete calculation that includes the six orbital-spin neutral
configurations treated in a correlated way. We find that neither
the magnitude nor the temperature dependence of the measured
neutral fraction [4] can be described by the noninteracting
electron model. We show that including all the orbital-spin
configurations as possible neutralization channels is essential
for a proper description of the neutralization of Ga+ in the
scattering by an Au surface.

II. THEORETICAL ASPECTS

A. Atom charge state configurations and model Hamiltonian

The configurations of the projectile atom to be considered in
the charge exchange process are determined from the relative
position of the associated one-electron levels to the Fermi
energy of the surface (EF ). For a Ga+ ion, the neutralization
to Ga0 involves the ionization level (−5.99 eV), while in the
Ga− formation from Ga0, the affinity level becomes active
(−0.31 eV). Given that the work function of a polycrys-
talline Au surface is 5.1 eV, we can state that Ga+ ↔ Ga0

will be the most probable charge exchange process.
The energy of the active one-electron levels of Ga varies

with the normal distance of the atom from the surface (z), as
it can be observed in Fig. 1. In this figure, the following one-
electron levels are shown: those associated to the neutralization
to Ga0(4px), Ga0(4py), or Ga0(4pz); and the lowest-energy
levels, in accordance with the Hund’s rule, for the second
electron in the transition from Ga0(4p1) to Ga−(4p2). We can
observe that near the surface, the degeneracy of the p orbitals
is lifted into the two degenerated px and py orbitals parallel to
the surface, and the pz orbital normal to the surface. Whenever
results for the px state are presented, it is implicit that the ones
for the py orbital are equivalent.

The short-range contributions to the energy levels shown in
Fig. 1 are calculated by using the bond-pair model [22], which
is based on a mean-field approximation and a symmetrically
orthonormalized atomic basis set in the dimeric projectile-
solid atom space. The energy-level shifts shown in Fig. 1 are
due to the overlap and the electrostatic interactions, and they
are calculated without allowing charge exchange between the
atom and the surface [22]. The rather large range of influence of
the interaction, up to about 7 a.u., is due to the the spatial extent
of the atomic orbitals. As typical for metal surfaces, the long-
range contribution is provided by a classical image potential.
Particularly, we include an image potential that matches short-
range interactions at an ion-surface distance of 8 a.u., with the

FIG. 1. One-electron energy levels defined as the difference
between total energies. The Fermi energy is chosen as the zero energy.
The ionization potential EI , Au work function �, and electron affinity
energy EA are indicated for comparison (right side). The Au(100)
total DOS is also shown (shaded area).
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image plane positioned at 1.6 a.u. from the surface [11]. The
atomic states of Ga and Au are described by the Gaussian basis
of Huzinaga [27,28], and the GAUSSIAN98 code [29] is used
for calculating the one- and two-electron integrals required by
the bond-pair model [22].

The position of the Ga− levels relative to the Fermi energy
allows us to infer that the most probable charge configurations
of Ga interacting with a gold surface are as follows:

(i) |0〉: zero electrons in the 4p shell, that is, Ga+, and
(ii) |ασ 〉: one electron in the 4pα orbital (α = x,y,z) with

spin σ =↑ or ↓, that is, the ground state of neutral Ga0.
To disregard the negative charge configurations means an

infinite-U approximation. In this case, the restricted space of
configurations is normalized according to∑

α,σ

|ασ 〉 〈ασ | + |0〉 〈0| = 1. (1)

By projecting the Anderson Hamiltonian over the selected
space of configurations, we arrive at the following expression:

Ĥ =
∑
k,σ

εkn̂kσ +
∑
α,σ

Eα |ασ 〉 〈ασ | + E0 |0〉 〈0|

+
∑
k,α,σ

(Vkαĉ
†
kσ |0〉 〈ασ | + Vαk |ασ 〉 〈0| ĉkσ ). (2)

In Eq. (2), the α (k) index corresponds to the atom
(solid band) states, Eα denotes the total energy of the |ασ 〉
configuration, while the coupling term Vαk corresponds to the
hopping integral between the pα orbital of the Ga atom and the
k-band state of the Au surface. These parameters depend on
the position of the atom with respect to the surface, R, which
in turn depends on time in the ion-surface collision process
through the ion velocity v. The energy differences Eα − E0

define the one-electron levels εα , which tend to the ionization
energy at infinite distance from the surface (see Fig. 1).

The more complete calculation consistent with the Hamil-
tonian (2) involves a correlated treatment of the six |ασ 〉
atomic configurations. Nevertheless, as one of the main aims
of the present paper is to determine the influence of the
electron-electron interaction in the final charge state of the Ga
atom, we perform three different calculations, in increasing
order of complexity:

(i) Spinless (sl): Completely noninteracting spinless calcu-
lation, in which the electron spin is neglected and the different
p-orbital configurations are treated independently.

(ii) Independent states (is): the different p-orbital configura-
tions are treated independently, but the individual spin statistic
is included.

(iii) Correlated states (cs): the six |ασ 〉 atomic configura-
tions are treated together in a correlated way and considering
spin.

The comparative study of these three different approxima-
tions will provide information on how important the role of
the electronic correlation is in this interacting system.

The average occupation number, 〈n̂ασ
〉 = 〈|ασ 〉 〈ασ |〉, gives

the probability of occurrence of the corresponding configu-
ration. The spin index is omitted in the spinless case and,
since the solid is nonmagnetic, there is spin degeneracy in
the other two cases (〈n̂ασ

〉 = 〈n̂ασ
〉). In the next section, we

present the details of the calculation of 〈n̂ασ
〉 in two different

situations: the dynamic scattering process and the stationary
situation of equilibrium.

B. Dynamic and stationary situations

1. Dynamic

The ion scattering by a surface is an out-of-equilibrium
process. The occupation probability numbers are calculated by
using the method of equations of motion (EOM) [30], based
on the time evolution of Heisenberg operators. After some
algebra, we obtain, for the correlated states approximation,

d 〈|ασ 〉 〈ασ |〉
dt

= Im

⎧⎨
⎩

∑
β,k

Vαk(t)
∫ t

t0

dτVkβ(τ )
[
(2 〈n̂kσ 〉 − 1)G|0〉〈βσ |

|ασ 〉〈0|(τ,t) − F
|0〉〈βσ |
|ασ 〉〈0| (τ,t)

]
ei

∫ τ

t
εk(x)dx

⎫⎬
⎭, (3)

where the following Green-Keldysh functions [31] were
introduced:

G
|0〉〈βσ |
|ασ 〉〈0|(t,t

′) = iθ (t ′ − t)〈{|ασ 〉 〈0|(t ′) , |0〉 〈βσ |(t)}〉, (4)

F
|0〉〈βσ |
|ασ 〉〈0| (t,t

′) = i〈[|ασ 〉 〈0|(t ′) , |0〉 〈βσ |(t)]〉. (5)

In Eq. (3), 〈n̂kσ 〉 corresponds to the average occupation of
the k state with spin σ , which is given by the Fermi function
f<(εk) = 1/(1 + e(εk−EF )/kBT ). In the scattering of Ga+ ions,
Eq. (3) is solved with the initial condition 〈n̂ασ

(t0)〉 = 0 for
each |ασ 〉 configuration. Equation (3) is valid for the other two
approximations with small changes. In the independent states
approach, only one state is considered at a time, so β = α and
the sum over β is lost, while in the spinless approximation, the
spin index is also dropped.

The functions G
|0〉〈βσ |
|ασ 〉〈0|(t,t

′) and F
|0〉〈βσ |
|ασ 〉〈0| (t,t ′) are calculated

through the EOM method closed within a strict second order

in the atom-band coupling term [26]. More details are given
in the Appendix.

2. Stationary

The analysis of the stationary case, which corresponds to
the system in equilibrium, allows us to gain insight into the
physics of the more complex and nonintuitive time-dependent
process. In this case, the important quantity is the spectral
density for each atom configuration, given by

ρασ
(ω) = 1

π
Im

[
G

|0〉〈ασ |
|ασ 〉〈0|(ω)

]
. (6)

From the spectral density, we obtain the average occupation
as

〈n̂ασ
〉 =

∫ ∞

−∞
dωf<(ω)ρασ

(ω). (7)
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By Fourier transforming Eq. (A10) of the Appendix, we
obtain the following system of coupled algebraic equations
that determines the Green functions G

|0〉〈βσ |
|ασ 〉〈0|(ω):

[
(ω − εβ − iη) − �t

βσ (ω)
]
G

|0〉〈βσ |
|ασ 〉〈0|(ω)

−
∑
γ 	=β

�t
βγ σ (ω)G|0〉〈γ σ |

|ασ 〉〈0|(ω)

= (〈|ασ 〉 〈βσ |〉 + δαβ 〈|0〉 〈0|〉) + �c
αβσ (ω). (8)

The expression of the self-energy �t
βσ (ω) introduced in

Eq. (8) can be written as the sum of three terms,

�t
βσ (ω) = �0

ββ(ω) + �<
ββσ (ω) +

∑
γ 	=β,σ ′

�<
γσ ′,β (ω), (9)

where

�0
βγ (ω) =

∑
k

VβkVkγ

(ω − εk − iη)
, (10)

�<
βγσ (ω) =

∑
k

VβkVkγ 〈n̂kσ 〉
(ω − εk − iη)

, (11)

�<
γσ,β(ω) =

∑
k

Vγ kVkγ 〈n̂kσ 〉
(ω − εk − εβ + εγ − iη)

. (12)

�0
ββ corresponds to the typical self-energy for noninter-

acting electrons. Then, for the spinless approximation, it is
the only self-energy involved. In this special case, the Green
function is given simply by

G
|0〉〈ασ |
|ασ 〉〈0|(ω) = 1[

ω − εα − �0
αα(ω) − iη

] . (13)

Only the first and second terms of Eq. (9) contribute to
the self-energy in the independent states approximation, while
the three terms participate in the correlated states case. In both
cases, i.e., independent states and correlated states, the hopping
integrals are divided by

√
2 in order to take into account the

spin state degeneracy.
The off-diagonal terms in Eq. (8), �t

βγσ (ω), are given by

�t
βγσ (ω) = �0

βγ (ω) − �<
βγσ (ω). (14)

Finally, the last term on the right-hand side of Eq. (8),
�c

αβσ (ω), is given by

�c
αβσ (ω) = (1 − δαβ)

∑
k

Vβk 〈|ασ 〉 〈0| ckσ 〉
(ω − εk − iη)

− δαβ

∑
k

Vβk 〈|βσ 〉 〈0| ckσ 〉
(ω − εk − iη)

− δαβ

∑
γ 	=β,k,σ ′

Vγ k 〈|γσ ′ 〉 〈0| ckσ ′ 〉
(ω − εk − εβ + εγ − iη)

. (15)

In this expression, the terms such as 〈|ασ 〉 〈0| ckσ 〉 are given
by

〈|ασ 〉 〈0| ckσ 〉 =
∫ +∞

−∞
dωf<(ω)ρc

αkσ
(ω), (16)

where

ρc
αkσ

(ω) = 1

π
Im

⎛
⎝∑

β

VkβG
|0〉〈βσ |
|ασ 〉〈0|(ω)

(ω − εk − iη)

⎞
⎠. (17)

The three terms in Eq. (15) are involved in the correlated
states approximation, while only the second term is involved
in the independent states approach.

III. RESULTS

A. Broaden and shift of the atom energy levels

A broadened atom energy level well defined above the
Fermi energy is expected to be empty, while when it is well
defined below the Fermi energy, it is expected to be occupied.
Based on these intuitive arguments, the first insight into the
charge state of an atom in front of a surface is provided by the
shift and width of its one-electron energy levels. The real and
imaginary parts of the self-energy, given by Eq. (9), evaluated
at the energy level εβ , provide an estimation of the shift and
width of this level, respectively.

Both magnitudes, the shift and the width, require one to
calculate the hybridization terms Vαk. By using the bond-pair
model [22], which is based on the expansion of the k-band
states in the atomic orbitals centered at the atoms of the solid,
these terms are expressed as

Vαk(R) =
∑
i,r

ck
irVαir (R − Rr ). (18)

In the expression above, Vαir (R − Rr ) are the atomic
coupling between the states i of the atom at position Rr in
the solid and the orbital pα of the projectile at position R
(the coordinate system is centered on the scatterer surface
atom with the z axis perpendicular to the surface). The
atom-atom coupling terms Vαir are calculated by including
the two-electron interactions in a mean-field approximation
and by using a symmetrically orthonormalized atomic basis
set in the dimeric space [22]. The coefficients ck

ir of Eq. (18)
are related to the density matrix of the solid, defined as

ρijrs(ε) =
∑

k

(
ck
ir

)∗
ck
jsδ(ε − εk). (19)

The density matrix, calculated with the FIREBALL code
[32,33], corresponds to the Au(100) surface.

In the experiment, the scattering angle is 135◦, and the Ga+
ions impact at 45◦ and exit at 90◦ with respect to the surface.
This geometry allows us to consider, for the calculation, in
and out trajectories that are perpendicular to the surface,
with in and out velocities equal to the normal components of
the experimental ones. The experimental condition of large
scattering angle allows us to take into account only the
surface scatterer atom at Rr = (0,0,0) in Eq. (18). Due to
the low velocity of the projectile, the charge state will be
defined at the exit trajectory, far from the surface and without
keeping memory of the incoming trajectory [2,19–21]. Then,
no parallel velocity effects are expected in this case.

As previously discussed, the real part of the self-energy of
Eq. (9) corresponds to the shift of the energy level, while the
imaginary part corresponds to its width. It is worth writing
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FIG. 2. Energy widths of the shifted energy levels for each
approximation as a function of the distance to the surface.

explicitly the level width expressions in order to discuss the
contribution from each term of Eq. (9). By replacing the
expansion (18) in the expressions (10)–(12), and taking into
account Eq. (19), the width � of the εβ level can be written as

�t
βσ (εβ) = �0

ββ(εβ) + �<
ββσ (εβ) +

∑
γ 	=β,σ ′

�<
γσ ′,β(εβ), (20)

where

�0
ββ(εβ) = π

∑
i,j

ρij (εβ)VβiVjβ, (21)

�<
ββσ (εβ) = πf<(εβ)

∑
i,j

ρij (εβ)VβiVjβ, (22)

�<
γσ,β(εβ) = πf<(εγ )

∑
i,j

ρij (εγ )Vγ iVjγ . (23)

In Fig. 2, we show the widths of the shifted energy levels
corresponding to each approximation as a function of the
normal distance to the surface at T = 300 K. Strictly at
T = 0 K, the contribution �<

ββσ (εβ) comes into play when
εβ is below EF . Therefore, if the levels are above EF , the
width in the independent states approach will be half of the
corresponding spinless width, due to the renormalization of
the hopping in the independent states case. Otherwise, both
approximations, spinless and independent states, lead to the
same level width. This analysis remains valid in the range of
temperatures studied (up to 900 K). The larger widths of the
pz state are due to the stronger coupling with the orbitals of the
scatterer atom in the scattering geometry we are considering.

In Fig. 3, we show the shifted energy levels for the different
approximations, assuming the energy widths shown in Fig. 2
as the energy uncertainty of the one-electron levels (the
substrate temperature is fixed at 300 K). For the spinless and
independent states approximations, εx remains near EF , and it
is slightly broadened and shifted. Under the correlated states
approximation, the last term of Eq. (20), �<

γσ,β(εβ), contributes
to the total width when the remaining energy levels (γ 	= β)
are below the EF . This produces a broadening of the εx level
while εz is below EF , as can be seen in Fig. 2(c) and in the
inset of Fig. 3(c). The shift of the εx level is due to the real
part of �<

zσ,x(εx) [see Eq. (9)]. The εz level is not affected by
the presence of the other states because εx (and εy) are above
the Fermi level at distances where the couplings between the
px (py) orbital of the Ga atom and the orbitals of the surface
atom are appreciable.

FIG. 3. Ga 4p states shifted energy levels (full line) with their
corresponding widths (shaded) as a function of the normal projectile-
surface distance. The results are shown for each approximation. The
original levels are also depicted (dashed line).

With just a quick glance at Fig. 3, we expect a smaller
occupation probability for the |xσ 〉 (|yσ 〉) configuration in the
spinless approximation when contrasted to the independent
states approach, at distances close to the surface. A negligible
〈n̂xσ

〉 (〈n̂yσ
〉) is expected for the correlated states calculation.

We can also infer from Fig. 3 that neglecting electron
correlation leads to 〈n̂zσ

〉 occupations larger than that of
independent states and correlated states, for which similar
probability of occupations is expected.

We can see in the forthcoming section that the evolution
of the occupation probabilities along the ion trajectory in both
the stationary and dynamic situations is in line with this initial
intuition.

B. Evolution along the ion trajectory of
the occupation probabilities

In the scattering process, the turning point is chosen to
be 5 a.u. As in Refs. [9–11], the choice of the distance of
closest approach was calculated as the sum of the atomic
radii for Ga (2.45 a.u.) and Au (2.55 a.u.) [34]. The rationale
of this assumption lies in the very low incoming velocity of
the projectile. Nevertheless, even when higher turning points
could be justified using different definitions of atomic radius
(covalent radius, Van der Waals radius), the calculated neutral
fractions slightly depend on the choice of distance of the
closest approach for higher turning points within a reasonable
range. The neutral fraction is calculated for an incoming ion
energy of 2 keV, as in the experiment [4]. The energy-loss
factor of the Ga-Au elastic collision with a 135◦ scattering
angle, corresponding to 0.28, was used to calculate the exit
velocity of the ion. In this section, the Au temperature is set at
300 K.

In Fig. 4, we show the probabilities of occupation along
the ion trajectory for the three approximations: spinless (sl),
independent states (is), and correlated states (cs), and the
two situations analyzed: stationary [Fig. 4(a)] and dynamic
[Fig. 4(b)]. In the independent states and correlated states
approaches, the probabilities are summed over spin to make
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FIG. 4. (a) Equilibrium occupation probabilities in the stationary
problem. (b) Evolution of the occupation probability along the
incoming (left) and outgoing (right) trajectory. The probability of
occupation of the |xσ 〉 and |zσ 〉 configurations is shown for the three
approximations: spinless (sl), independent states (is), and correlated
states (cs). The probabilities in the independent states and correlated
states are summed over spin.

them comparable with the spinless case, that is,
∑

σ 〈n̂ασ
〉

is shown for each α. Far from the surface, the equilibrium
values correspond to the configurations considered: 1 for the
single spinless configuration; 1

2 for the independent states
case with spin fluctuation and independent states; and 1

6 for
the correlated states approximation where all six states are
considered together. The dynamic evolution [Fig. 4(b)] shows
the initial condition 〈n̂ασ

(t0)〉 = 0.
As commented before, for the energy levels above EF ,

the width in the spinless approximation is twice that of
the independent states approach, while both approximations
lead to the same width for levels below EF . Then, the
electron-loss process is less probable in the independent states
approximation and therefore the probability of occupation
must be larger, as it can be observed for 〈n̂xσ

〉 in Fig. 4(a).
The previous reasoning is strictly valid while the broadened

levels are either well below or well above EF in both
approximations, but is not so conclusive when they are
relatively close to the Fermi energy. For instance, the larger
width of εz in the spinless approximation when the atom level
is above the Fermi energy makes it more possible that the
electron-loss processes are far from the surface. In this form,
we can understand the results of Fig. 4(a) for distances >9 a.u.,
which show that the equilibrium value of 〈n̂zσ

〉 in the spinless
approximation is smaller than the corresponding one in the
independent states case. Nevertheless, comparing Figs. 3(d)
and 3(e), we see that the larger width which remains when the
εz level is near EF in the spinless case allows capture processes
near the surface. This gives place to a higher equilibrium
value of 〈n̂zσ

〉 in this approximation for distances <9 a.u.
[see Fig. 4(a)].

When the different neutral configurations are considered
together, that is, in a correlated way, a strong shift of the
εx (εy) level occurs [see Fig. 3(c)], decreasing in this form
the equilibrium average occupation 〈n̂xσ

〉 (〈n̂yσ
〉) to negligible

values close to the surface.
The correlated behavior of the different atom configura-

tions, associated to the third terms of Eqs. (9) and (15), is
clearly evidenced near 10 a.u., where the atom levels are
crossing the Fermi level. The εz level crosses the EF farther
from the surface than the εx level, and the appreciable width
in this region [see inset of Fig. 3(f)] allows electron-loss
processes while the εx (εy) level remains below EF . In this
form, the occupations of the |xσ 〉 and |yσ 〉 configurations
increase at the expense of the decreasing occupation of the
|zσ 〉 one. The increase of the equilibrium value 〈n̂zσ

〉 when the
other levels are above the Fermi energy is less important due to
the negligible coupling of the px (py) orbital with the surface.

The previous discussion also applies to the analysis of the
dynamic evolution of 〈n̂ασ

〉 presented in Fig. 4(b). For the
px orbital, the spinless and independent states approximations
give similar results, while correlated states give place to a
smaller value of 〈n̂xσ

〉. The spinless result for the occupation
probability of the |zσ 〉 configuration is much greater than in
the other cases, as a consequence of the larger width of the
εz level, which remains close to the EF during almost the
entire trajectory. For the other two approximations, the results
differ near the surface and then converge to a similar value.
The final value for the probability of occupation of the |zσ 〉
configuration is the largest, dominating the neutral fraction.

It is expected that the lower the ion velocity, the charge
states of the projectile are defined at larger distances from the
surface and become more similar to the equilibrium values.
In this case, it is observed from Fig. 4 that the dynamic and
stationary calculations give similar results in the outgoing part
of the trajectory between 8 and 10 a.u., mainly in the correlated
states case.

From this analysis, we can conclude that the spin-
fluctuation statistic plus the correlated treatment of the
different orbital configurations play an important role in the
charge exchange between the Ga atom and the Au surface.
Taking into account the spin statistics seems to be crucial in
the case of the |zσ 〉 occupation, while the correlated treatment
of all configurations has a higher impact on the occupations of
|xσ 〉 and |yσ 〉.

C. Temperature dependence

1. Stationary

The ratio rc
β = εβ/�0

ββ(εβ) indicates the different correla-
tion regimes in the infinite-U limit. Values of |εβ | > �0

ββ(εβ)
correspond to a Kondo regime when the energy level is below
EF (rc

β < −1) or to an empty orbital regime otherwise (rc
β >

1). Intermediate values of rc
β correspond to a mixed-valence

regime [17].
Taking into account the energy levels and their widths

shown in Fig. 3, a mixed-valence regime evolving from a
Kondo regime is expected far from the surface for all the
configurations. It changes when the levels cross EF : εx remains
above EF and, in this case, a mixed valence evolving to an
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FIG. 5. Atom spectral density (ρασ
) for the |xσ 〉 configuration

in the correlated states approximation at selected temperatures and
atom-surface distances of (a) 5 a.u., (b) 8 a.u., and (c) 10 a.u. The
dash-dotted lines indicate the position of the energy levels εβ ;
the resonance of the spectral density occurs in the shifted εβ levels.
The temperature dependence of the occupation probability is shown
in the inset.

empty orbital regime is expected, while the proximity of εz

to EF suggests a better-defined mixed-valence regime for the
pz orbital.

Figures 5 and 6 show the temperature dependence of
the spectral densities [Eq. (6)] for the correlated states
approximation. Depending on the distance to the surface,
we observe either a decreasing occupation with temperature,
indicating a mixed-valence regime evolving from a Kondo
one, or an increasing occupation with temperature, indicating
a mixed-valence regime evolving to an empty orbital. The
|xσ 〉 (|yσ 〉) configuration responds to a mixed-valence regime
evolving from a Kondo one for large distances and to an
empty orbital regime for distances close to the surface. For
the |zσ 〉 configuration, the mixed-valence regime prevails for
practically all the range of distances where the interaction
is non-null. In this form, all the configurations respond to a
mixed-valence regime evolving from a Kondo regime as the
atom approaches the surface.

It is worth noting the peculiar behavior of the spectral
density of the |zσ 〉 configuration at 10 a.u. [Fig. 6(c)].
In this case, an increment of the occupation probability
with temperature is observed while the εz level remains
below the Fermi energy, a situation in which the opposite
behavior is expected. This fact can be best understood by

FIG. 6. Same as Fig. 5 for the |zσ 〉 configuration. Atom spectral
density (ρασ

) in the correlated states approximation at selected
temperatures and atom-surface distances of (a) 5 a.u., (b) 8 a.u., and
(c) 10 a.u.. The dash-dotted lines indicate the position of the energy
levels εβ . The temperature dependence of the occupation probability
is shown in the inset.

means of Fig. 7, which shows the temperature dependence
of the occupation probabilities in the correlated states and
independent states approaches. The correlation between the
different configurations introduces a nontrivial dependence on
temperature in the zone where the energy levels cross the
Fermi energy. In this zone (around 10 a.u.), the occupation of
the |xσ 〉 (|yσ 〉) configuration increases at the expense of the
|zσ 〉 one, and shows an opposite dependence on temperature:
〈n̂xσ

〉 (〈n̂yσ
〉) decreases with temperature, while 〈n̂zσ

〉 increases
[see Fig. 7(a)]. As previously outlined, this behavior can also
be observed from the spectral densities at 10 a.u. shown
in Figs. 5(c) and 6(c), which are in correspondence with a
mixed-valence regime evolving from a Kondo one in the case
of the |xσ 〉 (|yσ 〉) configuration, and a more defined mixed
valence in the case of the |zσ 〉 one. This peculiar behavior is not
observed in the case of considering only the spin-fluctuation
statistic, which is the approximation of independent states (is)
shown in Fig. 7(b). In this case, we observe that the occupation
probabilities decrease with temperature when the energy level
is below the Fermi energy, while the opposite behavior is
observed when the energy level is above the Fermi energy.

The increasing occupation of the |zσ 〉 configuration at close
distances from the surface is explained by the proximity of the
shifted εz level to the Fermi energy and its increasing width
[see Fig. 3(f)]. This is also seen from the wide resonance of
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FIG. 7. (a) Equilibrium 〈n̂ασ
〉 as a function of distance, in the

correlated states approximation for the |xσ 〉 and |zσ 〉 configurations
at several temperatures. (b) The same as in (a), but for the independent
states case.

the spectral density shown in Fig. 6(a), which, on the other
hand, is showing a well-defined mixed-valence regime at this
distance.

2. Dynamic

The average occupation 〈n̂ασ
〉 is the probability of having

the neutral atom in the |ασ 〉 state. Therefore, the neutral
fraction 〈n〉 in the correlated states case is given by

〈n〉cs =
∑
α,σ

〈n̂ασ
〉 . (24)

In the other two approximations, i.e., spinless and inde-
pendent states, where independent events are considered, the
neutral fractions are given by

〈n〉sl =
∑

α

〈n̂α〉
∏
β 	=α

(1 − 〈n̂β〉) (25)

in the spinless approximation, and by

〈n〉is =
∑
α,σ

〈n̂ασ
〉
∏
β 	=α

(
1 −

∑
σ ′

〈n̂βσ ′ 〉
)

(26)

in the independent states one.
Each term in the sum of either Eq. (25) or (26) gives the

probability of occupation of one configuration remaining and
the others empty. The total neutral fraction and the contribu-
tions from these terms [summed over spin in independent states
and correlated states] are compared with the experimental
results [4] in Fig. 8. The spinless approximation overestimates
the measured neutral fraction and is not able to reproduce
the measured temperature dependence. The experiment is

FIG. 8. Temperature dependence of the neutral fraction and the
contributions of the |xσ 〉 and |zσ 〉 configurations, for each approxi-
mation. The contributions are summed over spin in the independent
states (is) and correlated states (cs) cases. The experimental data [4]
are also shown.

better reproduced by the correlated states calculation, which
contemplates all possible configurations simultaneously. The
main differences with the independent states approach are
found in 〈n̂xσ

〉 and 〈n̂yσ
〉. These occupations are higher in

the independent states approach, as we can see from Figs. 8(b)
and 8(c). From Fig. 8, we can infer that not only the magnitude
but also the temperature dependence of the measured neutral
fraction is better reproduced when the correlation between the
different neutralization channels is taken into account.

D. Work-function dependence

Given the proximity of the projectile atom energy levels
to the surface Fermi energy, the system is expected to be
quite sensitive to the Au work function. In Fig. 9, the neutral
fractions calculated under the correlated states approximation
are shown as a function of temperature for several work
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FIG. 9. Temperature dependence of the neutral fraction in the
correlated states approximation at several work-function values. The
experimental data [4] are also shown (squares).

functions. We observe that all the experimental data are found
within the band of theoretical values obtained by varying
the work function up to the experimental uncertainty (5.1 ±
0.1 eV) [4].

In the previously studied Sr+/Au system [11], a non-
monotonous behavior of the work function with temperature
was proposed to account for the measured temperature
dependence of the neutral fraction [4]. Two possible causes
for this dependence were proposed: sample heating, which
involves thermal expansion of the crystal and thermal vibration
of the atoms, and sample contamination under detection limits
[11]. In light of our theoretical results for the Ga+/Au system,
we conclude that the nonmonotonous behavior of the gold
work function with temperature is not intrinsic of the metal
surface. Instead, it might be associated with Sr implantation.

E. Projectile velocity dependence

As previously discussed, for very slow motion, the pro-
jectile charge state is defined at large distances from the
surface and the memory of the interacting region closer to
the surface is practically lost. As the velocity increases, it is
expected that the effective distances for defining the projectile
charge state become shorter. With these concepts in mind
and the shifted and broadened levels shown in Fig. 3, we
can understand quite well the velocity dependences of the
occupations of the |xσ 〉 and |yσ 〉 configurations in the different
approximations (Fig. 10). For the |xσ 〉 configuration, the
electron-loss processes dominate over practically the whole
effective interaction region. Then, for a longer interaction time
(lower velocity), the occupation of this configuration is less
probable. As we have noticed already, the spin-fluctuation
statistics does not introduce practically any changes with
respect to the spinless calculation for this configuration.
Instead, for the |zσ 〉 configuration, the larger spinless level
width [Figs. 3(d) and 3(e)] enables the electron-loss and
capture processes as the velocity increases, leading to a
minimum in the dependence of the occupation with the
incident projectile energy. When the spin-fluctuation statistic

FIG. 10. Incident projectile energy dependence of 〈n̂xσ
〉 and 〈n̂zσ

〉
in the three approximations at 300 K (full line), 600 K (dashed
line), and 900 K (dotted line). The cases independent states (is) and
correlated states (cs) are summed over spin.

is included, only electron-loss processes are enabled as the
velocity increases (in the range of velocities of Fig. 10),
and a decreasing occupation is obtained. This monotonous
decreasing behavior with velocity is more pronounced in the
correlated states approximation. We also can see that the
dependence on the velocity of the 〈n̂xσ

〉 (〈n̂yσ
〉) occupation

is more affected by considering the correlated p orbitals.
An increasing occupation with temperature is observed

in the whole range of velocities analyzed, except for the
correlated states |xσ 〉 (|yσ 〉) configuration, which presents an
inversion of the dependence product of the interaction between
states. As already noticed, for the |zσ 〉 configuration, the
spin statistic introduces a stronger dependence on temperature
compared with the spinless calculation.

The neutral fraction in the correlated states approach is
shown as a function of temperature for several projectile
incident energies (EP ) [Fig. 11(a)] and as a function of EP for
three different temperatures [Fig. 11(b)]. In Fig. 11(a), we can
observe that the temperature dependence is less pronounced
for energies larger than 2 keV; this can be explained from the
results shown in Figs. 10(e) and 10(f), which show that for
EP > 3 keV, the 〈n̂xσ

〉 (〈n̂yσ
〉) occupation decreases with the

temperature while the 〈n̂zσ
〉 occupation increases.

The dependence on the projectile energy shown in
Fig. 11(b) for different temperatures is qualitatively very
similar to that found when positive Na+ ions are scattered by
a Cu(001) surface [1]. In this system [1], the neutral fraction
calculated by using a noninteracting electron model shows
a minimum with an increasing dependence on the projectile
exit perpendicular velocity, ve

P , when ve
P > 0.01 a.u. However,

the experimental results show a slight dependence with ve
P .

In the present Ga+/Au system, our spinless calculation is
consistent with the theoretical findings reported in Ref. [1]
[see Fig. 11(b)]. Nevertheless, when electronic correlation is
introduced, we find a decreasing neutral fraction tending to a
slight dependence on velocity for the analyzed values range.
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FIG. 11. (a) Temperature dependence of the neutral fraction in
the correlated states approach for several incident projectile energies
(EP ). (b) EP dependence of the neutral fraction in the correlated
states (black) and spinless (red) approaches, for 300 K (full line),
600 K (dashed line), and 900 K (dotted line).

This effect is originated in the modified interaction with the
band states due to the electronic repulsion, mainly associated
to the new self-energy terms [Eq. (9)].

When the velocity increases, the time-energy uncertainty
relation, proper for a dynamical scattering process (�Eu ≈
ve

P /2 a.u.), starts to be comparable to the levels widths
[25]. Within the energy uncertainty, the differences of the
self-energies of the different approaches [Eq. (9)] become
negligible. Therefore, the correlation evidenced in the system
in the range of velocities studied is expected to be blurred
in the limit of high velocities. Figure 12 shows the projectile
energy dependence of the neutral fraction in each approach
in a larger energy scale. It is worth noting that, as anticipated,
results obtained from the three approaches converge to a single
velocity dependence at incoming energies around 400 keV.
Although an experiment at these velocities would probably
be unfeasible, it is a sign of the consistency of the theoretical
model applied.

FIG. 12. Dependence of the neutral fraction for a large scale of
projectile energies in the three approaches, for 300 K (full line), 600 K
(dashed line), and 900 K (dotted line).

IV. CONCLUSIONS

We proposed a theoretical model that successfully describes
the experimental neutral fraction temperature dependence
in low-energy collisions between Ga+ and a gold surface.
Six neutralization channels are considered simultaneously,
consistent with the six spin and orbital components of an
electron in a p state.

We found that including the spin fluctuations (infinite
correlation limit) is essential to describe the major contribution
to the occupation (pz orbital), while the correlated treatment
of all the involved atomic configurations mainly affects the
minority occupations (px and py orbitals).

The analysis of the stationary interaction allows us to
identify the different correlation regimes appearing in the
adiabatic motion of the projectile along its trajectory. A
mixed-valence regime prevails in the region where the
ion final charge state is defined, suggesting an increasing
valence occupation with the temperature as it is found
experimentally.

The best agreement with experimental data was obtained
when the electronic correlation was included in the model.
Disregarding the electron correlation leads to a pronounced
overestimation of the neutral fraction and to a practically
nondependence with target temperature.

Unlike our previous study on Sr+/Au, the calculated neutral
fraction temperature dependence reproduces the measured
data without the need to assume any gold work-function
temperature dependence [11]. In light of these results, we
conclude that in Ref. [11] the temperature dependence of the
proposed work function is not intrinsic to the metal surface,
but it might be linked to Sr implantation.

In addition, we show strong evidence suggesting that
electron correlation effects might be essential to explain
the velocity dependence of the neutral fraction experimen-
tally found in alkaline positive ions scattered by metal
surfaces [1].

Based on these findings, we conclude that the arguments
based on the magnetic nature of the ion projectile to predict the
importance of the electron correlation effects on the behavior
of the neutral fraction with temperature are not valid. When
dealing with closed-shell ions, the underlying reason is a
change to a magnetic state (associated to an unpaired electron
in the atom) when a resonant charge transfer process takes
place.

The proximity between the surface Fermi level and the
projectile one-electron energy levels is identified as a deter-
minant factor in the final projectile charge state in low-energy
collisions. Charge fluctuations involving energy levels close
to the Fermi energy are more affected by electron-electron
repulsion. The neutralization in these specific projectile/target
systems will be particularly sensitive to temperature and
work-function variations.
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APPENDIX: DYNAMIC PROCESS EQUATIONS

In this Appendix, we present the calculation of the Green functions required to describe the time evolution of the occupation
probabilities [Eq. (3)]. The Green functions, defined in Eqs. (4) and (5), are

G
|0〉〈βσ |
|ασ 〉〈0|(t,t

′) = iθ (t ′ − t)〈{|ασ 〉 〈0|(t ′) , |0〉 〈βσ |(t)}〉, (A1)

F
|0〉〈βσ |
|ασ 〉〈0| (t,t

′) = i〈[|ασ 〉 〈0|(t ′) , |0〉 〈βσ |(t)]〉. (A2)

These Green functions are calculated by using the equations-of-motion method, which is based on the time evolution of an
operator in the Heisenberg picture,

dÔ

dt
= −i[Ô,Ĥ ]. (A3)

The derivative of both Green functions with respect to the first time variable t , maintaining the second one fixed, t ′, leads to
the following expressions:

i
dG

|0〉〈βσ |
|ασ 〉〈0|
dt

(t,t ′) = δ(t ′ − t)(〈|ασ 〉 〈βσ |〉(t ′) + δαβ 〈|0〉 〈0|〉(t ′)) + (Eβ − E0)G|0〉〈βσ |
|ασ 〉〈0|(t,t

′)

+
∑

k

VβkG
|0〉〈0|ckσ

|ασ 〉〈0| (t,t ′) +
∑

k,γ,σ ′
Vγ kG

|γσ ′ 〉〈βσ |ckσ ′
|ασ 〉〈0| (t,t ′), (A4)

i
dF

|0〉〈βσ |
|ασ 〉〈0|
dt

(t,t ′) = (Eβ − E0)F |0〉〈βσ |
|ασ 〉〈0| (t,t ′) +

∑
k

VβkF
|0〉〈0|ckσ

|ασ 〉〈0| (t,t ′) +
∑

k,γ,σ ′
Vγ kF

|γσ ′ 〉〈βσ |ckσ ′
|ασ 〉〈0| (t,t ′). (A5)

The notation for the new Green functions should be understood as in the definitions of Eqs. (A1) and (A2), for instance,

F
|γσ ′ 〉〈βσ |ckσ ′
|ασ 〉〈0| (t,t ′) = i〈[|ασ 〉 〈0|(t ′) , |γσ ′ 〉 〈βσ | ckσ ′(t)]〉. (A6)

The following step is to perform the time derivative with respect to t of the new Green functions appearing in Eqs. (A4) and
(A5). The equations of motion are then closed by using mean-field approximations. For example,

F
|0〉〈βσ |c†k′σ ′ ckσ ′
|ασ 〉〈0| (t,t ′) = δk′k 〈c†k′σ ′ckσ ′ 〉 F

|0〉〈βσ |
|ασ 〉〈0| (t,t ′). (A7)

In this form, after performing the phase transformations,

g
|0〉〈βσ |
|ασ 〉〈0| (t,t

′) = G
|0〉〈βσ |
|ασ 〉〈0|(t,t

′)ei
∫ t

t ′ εβdx, (A8)

f
|0〉〈βσ |
|ασ 〉〈0| (t,t ′) = F

|0〉〈βσ |
|ασ 〉〈0| (t,t ′)ei

∫ t

t ′ εβdx, (A9)

we arrive at

i
dg

|0〉〈βσ |
|ασ 〉〈0|
dt

(t,t ′) = δ(t ′ − t)(〈|ασ 〉 〈βσ |〉(t ′) + δαβ 〈|0〉 〈0|〉(t ′)) +
∫ t ′

t0
dτ�t

βσ (τ,t)g|0〉〈βσ |
|ασ 〉〈0| (τ,t

′)e−i
∫ τ

t
εβdx

+
∑
γ 	=β

∫ t ′

t0
dτ�t

βγσ (τ,t)g|0〉〈γ σ |
|ασ 〉〈0| (τ,t

′)e−i
∫ τ

t ′ εγ dxe−i
∫ t ′
t

εβdx + �c
αβσ (t ′,t)e−i

∫ t ′
t

εβdx, (A10)

i
df

|0〉〈βσ |
|ασ 〉〈0|
dt

(t,t ′) =
∫ t ′

t0

dτ
(
�

t(r)
βσ (τ,t)f |0〉〈βσ |

|ασ 〉〈0| (τ,t ′) + �t
βσ (τ,t)g|0〉〈βσ |

|ασ 〉〈0| (τ,t
′)
)
e−i

∫ τ

t
εβdx +

∑
γ 	=β

∫ t ′

t0

dτ
(
�

t(r)
βγ σ (τ,t)f |0〉〈γ σ |

|ασ 〉〈0| (τ,t ′)

+�t
βγσ (τ,t)g|0〉〈γ σ |

|ασ 〉〈0| (τ,t
′)
)
e−i

∫ τ

t ′ εγ dxe−i
∫ t ′
t

εβdx + �c
αβσ (t ′,t)e−i

∫ t ′
t

εβdx . (A11)

The expressions of the different quantities introduced in Eq. (A10) are given by

�t
βσ (τ,t) = �0

ββ(τ,t) + �<
ββσ̄ (τ,t) +

∑
γ 	=β,σ ′

�<
γσ ′,β(τ,t), (A12)

�t
βγσ (τ,t) = �0

βγ (τ,t) − �<
βγσ (τ,t), (A13)
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�c
αβσ (t ′,t) = iθ (t ′ − t)(1 − δαβ)

∑
k

Vβk(t) 〈|ασ 〉 〈0| ckσ 〉(t ′) e
i
∫ t ′
t

εkdx

− iθ (t ′ − t)δαβ

∑
k

Vβk(t) 〈|βσ̄ 〉 〈0| ckσ̄ 〉(t ′) e
i
∫ t ′
t

εkdx

− iθ (t ′ − t)δαβ

∑
k,γ 	=β,σ ′

Vγ k(t) 〈|γσ ′ 〉 〈0| ckσ ′ 〉(t ′) e
i
∫ t ′
t

(εk+εβ−εγ )dx, (A14)

where

�0
βγ (τ,t) = iθ (τ − t)

∑
k

Vβk(t)Vkγ (τ )ei
∫ τ

t
εkdx, (A15)

�<
βγσ (τ,t) = iθ (τ − t)

∑
k

Vβk(t)Vkγ (τ ) 〈nkσ 〉 ei
∫ τ

t
εkdx, (A16)

�<
γσ,β(τ,t) = iθ (τ − t)

∑
k

Vγ k(t)Vkγ (τ ) 〈nkσ 〉 ei
∫ τ

t
(εk+εβ−εγ )dx. (A17)

The retarded self-energies introduced in Eq. (A11) are related to Eqs. (A12) and (A13) through the relations

�
t(r)
βσ (τ,t) = [

�t
βσ (t,τ )

]∗
, (A18)

�
t(r)
βγ σ (τ,t) = [

�t
γβσ (t,τ )

]∗
. (A19)

The rest of the quantities introduced in Eq. (A11) are given by

�t
βσ (τ,t) = �0

ββ,σ (τ,t) + �<
ββσ̄ ,σ (τ,t) +

∑
γ 	=β,σ ′

�<
γσ ′,β,σ (τ,t), (A20)

�t
βγσ (τ,t) = �0

βγ,σ (τ,t) − �<
βγσ,σ (τ,t), (A21)

�c
αβσ (t ′,t) = i(1 − δαβ)

∑
k

(2 〈nkσ 〉 − 1)Vβk(t) 〈|ασ 〉 〈0| ckσ 〉(t ′) e
i
∫ t ′
t

εkdx

− iδαβ

∑
k

(2 〈nkσ 〉 − 1)Vβk(t) 〈|βσ̄ 〉 〈0| ckσ̄ 〉(t ′) e
i
∫ t ′
t

εkdx

− iδαβ

∑
k,γ 	=β,σ ′

(2 〈nkσ 〉 − 1)Vγ k(t) 〈|γσ ′ 〉 〈0| ckσ ′ 〉(t ′) e
i
∫ t ′
t

(εk+εβ−εγ )dx, (A22)

where

�0
βγ,σ (τ,t) = i

∑
k

(2 〈nkσ 〉 − 1)Vβk(t)Vkγ (τ )ei
∫ τ

t
εkdx, (A23)

�<
βγσ ′,σ (τ,t) = i

∑
k

(2 〈nkσ 〉 − 1)Vβk(t)Vkkγ (τ ) 〈nkσ ′ 〉 ei
∫ τ

t
εkdx, (A24)

�<
γσ ′,β,σ (τ,t) = i

∑
k

(2 〈nkσ 〉 − 1)Vγ k(t)Vkγ (τ ) 〈nkσ ′ 〉 ei
∫ τ

t
(εk+εβ−εγ )dx. (A25)

The atom-band crossed terms 〈|ασ 〉 〈0| ckσ 〉(t) appearing in Eqs. (A14) and (A22) are given by

〈|ασ 〉 〈0| ckσ 〉(t) = 1

2

∑
β

∫ t

t0

dτVkβ (τ )
(
(2 〈n̂kσ 〉 − 1)g|0〉〈βσ |

|ασ 〉〈0|(τ,t) − f
|0〉〈βσ |
|ασ 〉〈0| (τ,t)

)
ei

∫ τ

t
(εk−εβ )dx. (A26)

The integrals in k space, involved in all of the expressions above, are replaced by integrals over the band energies by
considering the linear combination of atomic orbitals (LCAO) expansion of the coupling parameters, given by Eq. (18). In this
form, we have, for any function h(εk, . . .),∑

k

Vαk(t)Vkβ(τ )h(εk, . . .) =
∑
i,j,r,s

Vαir (t)[Vβjs(τ )]∗
∫ ∞

−∞
ρijrs(ε)h(ε, . . .)dε, (A27)

where ρijrs(ε) is the density matrix of the solid, given by Eq. (19).
A description of the numerical details for solving a system of coupled integrodifferential equations such as Eqs. (A10) and

(A11) is given in Ref. [35]. Here we outline the main steps. Equation (A10) is integrated for each fixed time t ′, from t = t ′ to
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t = t0 (initial time corresponding to the atom-surface systems without interaction) by considering the boundary condition for
t = t ′,

g
|0〉〈βσ |
|ασ 〉〈0| (t → t ′,t ′) = i(〈|ασ 〉 〈βσ |〉(t ′) + δαβ 〈|0〉 〈0|〉(t ′)). (A28)

Then, we integrate Eq. (A11) from t = t0 to t = t ′ by using the boundary condition based on the noninteracting atom-surface
system at t = t0 and the initial atom electronic configuration 〈n̂ασ

(t0)〉 = 0,

f
|0〉〈ασ |
|ασ 〉〈0| (t0,t

′) = −g
|0〉〈ασ |
|ασ 〉〈0|(t0,t

′). (A29)

Equation (3) is then integrated to obtain the occupations and the calculation continues by incrementing the fixed value of t ′
in such a way that it runs over the complete time interval from t0 to tmax (the time value for which the atom-surface interaction
becomes negligible along the outgoing trajectory).
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