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Quantitative relationship between polarization differences and the zone-averaged shift photocurrent

Benjamin M. Fregoso,1 Takahiro Morimoto,1 and Joel E. Moore1,2

1Department of Physics, University of California, Berkeley, California, 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 31 December 2016; revised manuscript received 26 July 2017; published 16 August 2017)

A relationship is derived between differences in electric polarization between bands and the “shift vector”
that controls part of a material’s bulk photocurrent, then demonstrated in several models. Electric polarization
has a quantized gauge ambiguity and is normally observed at surfaces via the surface charge density, while shift
current is a bulk property and is described by shift vector gauge invariant at each point in momentum space. They
are connected because the same optical transitions that are described in shift currents pick out a relative gauge
between valence and conduction bands. We also discuss subtleties arising when there are points at the Brillouin
zone where optical transitions are absent. We conclude that two-dimensional materials with significant interband
polarization differences should have high bulk photocurrent, meaning that the modern theory of polarization can
be used as a straightforward way to search for bulk photovoltaic material candidates.
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I. INTRODUCTION

Many electronic and optical properties of crystals depend
not just on the energy band structure but on the detailed
properties of Bloch wave functions. A simple example is that
optical transitions in a solid, just like in an atom, involve matrix
elements that depend on the symmetries of the underlying
wave functions or orbitals. A deeper example is that the
geometric or Berry phase of Bloch wave functions controls
the electrical polarization and other properties. Although the
spontaneous polarization of solids was already of interest to
the ancients, and the polarization of a finite distribution of
charge density is easily understood, the proper computation of
electrical polarization from a unit cell of an infinite crystal had
to await the “modern theory of polarization” [1–4], which is
now widely used in practical calculations.

The goal of the present paper is to explain the quantitative
connection between bulk nonlinear optical properties of a ma-
terial, specifically the shift current piece of photocurrent linear
in the intensity of applied light, and electrical polarization. The
shift current response is determined by a third rank tensor,

J a
shift = 2

∑
b

σ abbEb(ω)Eb(−ω), (1)

where the electric field is Eb(t) = Eb(ω)e−iωt + Eb(−ω)eiωt .
It is nonvanishing when inversion symmetry is absent, e.g., for
ferroelectric materials. The tensor can be written in an intuitive
way as (see Appendix A)

σabb ≈ e

h̄

∑
nm

∫
BZ

Ra,b
nm εbb

2,nm, (2)

where εbb
2,nm(k,ω) is the diagonal (band-resolved) imaginary

part of the dielectric function, which is proportional to the
density of states, and

∫
BZ ≡ ∫

dk/(2π )d represents an integral
over the Brillouin zone (BZ) in d dimensions. In the following
we often suppress the frequency and momentum dependence
of quantities for simplicity of notation. Importantly, the
shift current includes a geometrical shift vector Ra,b

nm [5–9]
defined by

Ra,b
nm = ∂φb

nm

∂ka
+ Aa

nn − Aa
mm, (3)

where Ab
nm are the Berry connections

Ab
nm = i〈un| ∂

∂kb
|um〉, (4)

and un is the periodic part of the Bloch wave function at wave
vector k. b = x,y,z is a Cartesian axis, and φb

nm is the phase
of the connection Ab

nm = |Ab
nm|e−iφb

nm . The shift vector also
determines the second harmonic generation and electro-optic
responses [7,10] of semiconductors.

We note that the definition of shift vector in (3) involves
the gauge-dependent quantities Ab

nn,A
b
mm, and φb

nm. However,
the combination is gauge invariant, at all points of the BZ
where the optical transition matrix element Ab

nm is nonzero.
Conversely, electrical polarization is written in the standard
theory as an integral of the locally gauge-dependent Berry
connection. In other words, the contribution of a particular
k-point to the electrical polarization is not meaningfully
defined. The total polarization is gauge dependent up to
a quantized ambiguity; in the simplest case of one spatial
dimension, the polarization

e

∫
BZ

Ann = Pn (5)

is defined only up to addition of an integer multiple of electron
charge. For example, gauge transformations un → eiϕnun

change Pn by je, where j ∈ Z is the winding number of
the angular variable ϕn around the BZ. The physical bulk
polarization is defined as a difference with respect to an
inversion-symmetric reference system which is adiabatically
deformed with each other while keeping a fixed value of j .
Nevertheless, the (gauge-invariant) shift vector is directly
related in many cases to (gauge-dependent) polarization
differences between the valence and conduction band.

The shift current mechanism has recently gained interest
for its potential novel optoelectronic applications based on
ferroelectrics [11–16]. In particular, 2D materials have highly
tunable electronic and optical properties [17–20] and are
expected to generate large shift current [21–23]. We can
identify three factors that determine the magnitude of the
shift current: density of states, velocity matrix elements, and
shift-vector matrix elements. In three dimensions, they are
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all intertwined with no obvious relation among them [8]. In
two dimensions, on the other hand, the density of states is
constant and the optical transitions are determined by velocity
and shift-vector matrix elements. Approximating the dipole
matrix elements |rb

nm|2 by a constant εbb [see Appendix A
Eq. (A1)] we obtain

σabb ≈ −πe3εbb

h̄2

∑
nm

∫
BZ

fnmRa,b
nm δ(ωmn − ω), (6)

where h̄ωnm = h̄ωn − h̄ωm are band energy differences and
fnm = fn − fm differences of Fermi distribution functions
of band n and m. As pointed out in Ref. [23], in real-life
applications such as solar cells, the integrated response over
a frequency range is more important than the response at a
single frequency. Integrating over all frequency,

∫
dωσabb ≈ −πe3εbb

h̄2

∑
nm

∫
BZ

fnmRa,b
nm , (7)

we see that the total short-circuit current is proportional to
the integrated shift vector over the BZ. As shown below,
the integral of the shift vector over the BZ is equal to the
polarization difference evaluated in a specific gauge; the
optical transitions mediated by the shift vector can be viewed
as fixing the relative gauge between valence and conduction
bands, at least in the simplest case where such transitions are
allowed at every k-point. This connection between polarization
and shift vector indicates that materials with significant
polarization differences between bands (minimized over gauge
ambiguities) must have significant shift vectors somewhere in
the BZ. In order to understand this relation we consider simple
models first.

II. RELATIONSHIP BETWEEN SHIFT VECTOR AND
POLARIZATION

We start our analysis focusing on one-dimensional (1D)
systems. Let us consider conduction and valence bands, which
we label with c and v, separated by an energy gap. In particular,
we consider insulators with broken inversion symmetry that
support nonzero polarization, where the wave functions and
off-diagonal Berry connections are complex. In addition, we
adopt the periodic gauge [24,25] defined by ψn(k + G,r) =
ψn(k,r) where ψn are Bloch wave functions and G a reciprocal
lattice vector. In this case, all connections Anm are periodic in
the BZ, i.e., Acv(k + G) = Acv(k) (see Appendix B). Since the
phases φcv at k and k + G coincide modulo 2π , we can define
winding Wcv of the phase φc,v around the BZ as

Wcv = 1

2π

∮
dφcv ∈ Z. (8)

Here the winding Wcv can be any integer because we still
have the freedom to perform transformations such that ∂kϕn

is periodic, e.g., large gauge transformations that change the
value of Wcv and keep ψn periodic over the BZ. We define the
optical gauge by further constraining the periodic gauge such
that φcv = 0 and constant. When Acv = 0 at some k-point in
the BZ (which we call “optical zero”), the phase φcv is not
well defined, and hence, Wcv is multivalued. The existence

FIG. 1. (a) Top panel: Photoexcitation induces shift of the
electron wave packet in real space. (a) Bottom panel: Rice-Mele
(RM) tight-binding model. The unit cell of size a has two sites and
alternating hoppings t1 = t/2 + δ/2 and t2 = t/2 − δ/2. The distance
between conduction and valence band centers is R̄cv . For δ = 0, R̄cv =
±a/2 is ambiguous because the system does not break inversion
symmetry. For δ > 0, the centers of charge move towards one
another by a distance d . The polarization is Pv(δ) − Pv(0) = −ed =
(R̄cv − a/2)/2. When a photon is absorbed the electron jumps to
another atom a distance R̄cv away. (b) Integral of the shift vector over
the BZ and polarization difference. R̄cv has an integer discontinuity
at δ = 0. (c) Stream plot of the vector field Rcv = (Rkk

cv ,R
kδ
cv ) which

has vortex of charge +1 in this gauge-independent vector field (see
main text). The discontinuity in R̄cv is the charge of the optical zero.
In the numerical examples � > 0 and t = e = a = 1.

of optical zeros is physical and cannot be removed by gauge
transformations.

Since Rcv is related to the shift of wave packets [see
Fig. 1(a)], we can expect that an integral of Rcv over k has a
relationship to the difference of polarization of the two bands.
Indeed, integrating Rcv = ∂kφcv + Acc − Avv leads to

eR̄cv = ea

∫
BZ

Rcv = eaWcv + aPc − aPv, (9)

where Pc,v is polarization of conduction and valence bands.
Equation (9) shows that the integral of the shift vector over
the BZ is proportional to the polarization difference between
the conduction and valence bands up to an integer Wcv . In
particular, the optical gauge allows us to directly connect shift
vector and polarization as

eR̄cv = aPc − aPv (10)

since Wcv = 0. We emphasize that this is only possible when
there is no optical zero in the region of the integral. Let us
consider some explicit examples.
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III. RICE-MELE MODEL

Let us apply the above analysis to the Rice-Mele (RM)
model [26] [see Fig. 1(a)], which is an archetypal model of
ferroelectricity along the polar axis. It applies to polyacetylene,
BaTiO3, and even monochalcogenides [23]. It is given by

Ĥ =
∑

i

[(
t

2
+ (−1)i

δ

2

)
c
†
i ci+1 + H.c. + (−1)i�c

†
i ci

]
.

(11)

The ci (c†i ) annihilates (creates) s-wave electron states at
site i. The unit cell of size a has two sites; δ parametrizes
the dimerization of the chain and � the staggered on-site
potential, Fig. 1(a). Inversion symmetry is broken if � �= 0
and δ �= 0 and preserved otherwise (for details of the model,
see Appendix D). The shift vector for this (and any two-band)
model can be computed and studied analytically. For example
its gauge invariance is made apparent when we write it in terms
of the Hamiltonian and its derivatives (see Appendix C).

With a gauge in Eq. (D3), we obtain Wcv = 0 [see Fig. 1(b)].
The shift vector Rcv is usually assigned the meaning of
the size of the microscopic dipole formed by the photo-
excited electron [5]. Since Rcv could grow without limit
(see Appendix D), we believe, R̄cv has a more well defined
physical meaning, namely, as the distance between the valence
and conduction centers of charge [Fig. 1(a)] and is therefore
bounded by the lattice spacing a.

At (ka,δ) = (0,0) we have Acv = 0, and the size of the
discontinuity in R̄cv [Fig. 1(b)] is determined by the vorticity
associated with the optical zero as follows. We consider the
parameter δ as if it were a Cartesian direction and define
the gauge invariant shift vectors as R

μν
cv = ∂μφν

cv + A
μ
cc − Aμ

vv

with μ,ν = ka,δ. The singularity at the optical zero is clear
in the vector field Rcv = (Rkk

cv ,R
δk
cv ) shown in Fig. 1(c). At the

optical zero, the shift vector diverges (for details, see Appendix
D). The jump in R̄kk

cv (= R̄cv) at δ = 0 is obtained from the
integral of Rcv along the path γ = ∑4

n=1 γn, which leads to

1

2π

∮
γ2γ4→0

dλ · Rcv = R̄cv(0−) − R̄cv(0+)

a
= 1, (12)

with dλ ≡ (dk,dδ). One can check that the vortex at (ka,δ) =
(π,0) does not contribute to the path integral since Rcv vanishes
at this point. Furthermore, this vortex structure at optical zeros
governs the charge pumping induced by a periodic change of
parameter [e.g., over a path (�,δ) = (cos θ, sin θ ) with θ =
0 → 2π ]. The pumped charge in this circuit is given by “the
Berry curvature” as

∫
S
�cv

μν with �cv
μν = ∂μR

μk
cv − ∂νR

νk
cv .

IV. 1D THREE-BAND MODEL WITH INVERSION
BREAKING

Next we show that the direct relationship between shift
vector and polarization is not limited to the two-band models
by demonstrating the relationship in the case of general number
of bands. As an example, we consider the three-band model
described by

Ĥ =
∑

j

tj c
†
j cj+1 + H.c., (13)

FIG. 2. Polarization and integrated shift vector in a three-band
model, Eq. (13). We find jumps in W12 indicating that no single
gauge choice gives vanishing winding numbers over the parameter
α. However, eR̄12 = a(P1 − P2) + W12ea holds for all α. We used
parameters B/A = 0.5, e = a = 1 and 0 < ε 	 1. In evaluating
P1 − P2, we adopted the gauge given in Eq. (E4) with ϕn = 0.

with tj = A + B cos (2πj/3 − α). In this model the lower
band pumps −2e while the other two pump e per cycle in
α ∈ [0,2π ]. (For details of the model see Appendix E.) To be
concrete, let us consider the lowest two bands n = 1,2. As
can be seen from Fig. 2, R̄12 has integer discontinuities at the
values of α for which A12 = 0 and φ12 is not well defined.
The exact location of the discontinuities is determined by the
vorticity of the field R12 and whether it vanishes or not, see
Appendix E.

V. TWO AND THREE DIMENSIONS

We have shown in detail how the integral of the shift vector
is related to the electric polarization differences in 1D. We
next consider generalizations to higher dimensional. In higher
dimensions the shift vector has two or more Cartesian indices
a,b = x,y,z. The analogous definition to Eq. (8) is

Wa,b
nm = v

la

∫
BZ

∂φb
nm

∂ka
, (14)

where la is the primitive lattice vector component and v is the
volume of the primitive unit cell. If we define the integral of
shift vector over the BZ as

R̄a,b
nm = v

∫
BZ

Ra,b
nm , (15)

then we obtain

eR̄a,b
nm = v

(
P a

n − P a
m

) + Wa,b
nm vQa, (16)

where Qa = ela/v is the quantum of polarization along the
a Cartesian axis. There are two situations of interest. First, if
there are no optical zeros on the parameter space path, we can
define an optical gauge where the polarization difference can
be inferred from the integral of the shift vector with Wa,b

nm = 0.
In this case, eR̄a,b

nm = v(P a
n − P a

m) holds and materials with
large polarization differences (the right hand side) lead to
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efficient photovoltaic responses (through shift vector in the
left hand side).

Second, if there exist optical zeros, the optical gauge has
discontinuities. Then, Wab

nm is not quantized since a winding
number

∫
dka∂ka

φb
nm as a function of kc (c �= a) in general has

jumps at optical zeros. In this case, while we cannot directly
relate R̄a,b

nm and P a
n − P a

m, the right hand side including Wa,b
nm

can be evaluated in a fairly easy way, providing a guideline to
search efficient photovoltaic materials. In particular, Eq. (16)
shows that the polarization difference and locations of optical
zeros (that determine Wa,b

nm ) are important in understanding
photovoltaic responses in the left hand side.

As an example, consider a simple extension of the RM
model to two dimensions. It consists of two 1D RM models,
one in the x direction and the other in the y direction, with
dimerization parameters, δx,δy . We suppose that the staggered
potential is modulated along x but constant along y. It is easy
to show that the electrical polarization is along x and only
transitions from bands 1 → 3 and 2 → 4 are allowed. There
is a line of optical zeros at (kx,ky,δx) = (0,ky,0) for all ky and
one can define gauge-invariant fields in the plane (kx,δx) with
similar vorticity as in Fig. 1(c). As long as δx �= 0 the winding
Wxx

12 = 0. Similarly to the RM model in 1D, the existence of
the singularity at δx = 0 gives rise to a discontinuity of R̄xx

12 .

VI. DISCUSSION AND CONCLUSIONS

We demonstrated that the integral of the shift vector is a
dominant factor in determining the total shift current generated
in 2D materials. Barring points where the optical transitions
are forbidden, the integral of the shift vector has the meaning
of polarization differences between conduction and valence
bands. We also describe the theoretical tools for analyzing the
polarization differences in the presence or absence of optical
zeros. With the caveats explained above, Eq. (7) gives

∫
dωσaaa ≈ −πe2εaa

h̄2

∑
nm

fnm

(
P a

n − P a
m

)
, (17)

where we assumed the optical gauge and zero temperature
where fnm = −1 for n(m) a conduction (valence) band and
=1 when n(m) a valence(conduction) band. The short-circuit
current on a device is proportional to the sum of polarization
differences. Since the electronic part of the spontaneous
polarization is the sum over all occupied (valence) band
polarizations, Eq. (17) suggests that 2D ferroelectrics are
natural candidates for materials with large shift-current gener-
ation. Hence, our results provide the long-sought link between
electric polarization and shift current.

There is numerical evidence that 2D ferroelectric single-
layer IV monochalcogenides have large shift current [22,23].
A recent experiment measuring shift current on thin films of
GeS is consistent with our results [27]. We also expect large
shift current in the recently discovered 2D ferroelectric SnTe
[28]. Finally, the right-hand side of Eq. (16) is easier to evaluate
than the left-hand side with standard ab initio methods and
serves as an estimate of shift current generation and provides
a practical guideline to search for materials with large shift
currents.
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APPENDIX A: PHASE-INDEPENDENT EXPRESSION OF
SHIFT VECTOR

The shift current tensor, Eq. (2) in the main text, in d

dimension is usually written as [7]

σabc(0; ω, − ω) = iπe3

2h̄2

∫
BZ

∑
nm

fnm

(
rb
mnr

c
nm;a + rc

mnr
b
nm;a

)

× δ(ωmn − ω). (A1)

Here we defined the integral as
∫

BZ ≡ ∫
dk/(2π )d over the

Brillouin zone (BZ) in d dimensions for notational conve-
nience. h̄ωnm = h̄ωn − h̄ωm are band energy differences and
fnm = fn − fm differences of Fermi distribution functions of
band n and m. The dipole matrix elements ra

nm and generalized
derivatives are

rb
nm ≡ Ab

nm [n �= m and 0 otherwise] (A2)

rb
nm;a ≡ ∂rb

nm

∂ka
− i

(
Aa

nn − Aa
mm

)
rb
nm. (A3)

Ab
nm = i〈un| ∂

∂kb |um〉 are the Berry connections, h̄ωnm =
h̄ωn − h̄ωm are the band energies, and fnm = fn − fm are
the fermionic occupation numbers. We can write Ab

nm =
vnm/iωnm, for nondegenerate bands where vb

nm is the velocity
matrix element. Setting b = c for linear polarization and using
polar representation, ra

nm = |ra
nm|e−iφa

nm , Eq. (A1) reduces to

σabb(0; ω, − ω) = −πe3

h̄2

∫
BZ

∑
nm

fnmRa,b
nm

∣∣rb
nm

∣∣2
δ(ωmn − ω),

(A4)

where Ra,b
nm is the so-called shift ‘vector,’

Ra,b
nm = ∂φb

nm

∂ka
+ Aa

nn − Aa
mm. (A5)

An alternative expression for the shift vector, which avoids the
use of φb

nm, can be obtained from Eq. (A1). Since σ2(0; ω, − ω)
is real we have

Ra,b
nm

∣∣rb
nm

∣∣2 = −Im
[
rb
mnr

b
nm;a

]
. (A6)

The right-hand side is gauge invariant and has simple analyt-
ical expressions for effective models of monochalcogenides
[22,23]. It contains two important physical effects, density
of states and the geometry of Bloch wave functions. To
disentangle these effects, let us consider the case where
rb
nm �= 0 (equivalently vb

nm �= 0) then the shift vector itself is
well defined,

Ra,b
nm = − 1∣∣rb

nm

∣∣2 Im
[
rb
mnr

b
nm;a

]
, (A7)
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and independent of the density of states. In the independent-
particle approximation, the imaginary part of the dielectric
function,

εab
2 (ω)

ε0
= δab − e2π

ε0h̄

∫
BZ

∑
nm

fnmra
nmrb

mnδ(ωmn − ω), (A8)

is dominated by the second term and comparing with Eq. (A4)
we obtain Eq. (2) in the main text.

APPENDIX B: THE OPTICAL GAUGE

The solutions of the Schrodinger equation with a periodic
potential are Bloch wave functions,

ψn(k,r) = eik·run(k,r), (B1)

where n is the bands index and k the crystal momentum.
un(k,r + R) = un(k,r) is the cell periodic part of the wave
function and R is a lattice vector. The solutions of the
Schrodinger equation are invariant under phase transforma-
tions [U (1) gauge transformations],

ψ ′
n(k,r) = eiϕn(k)ψn(k,r). (B2)

Under gauge transformations the Berry connections trans-
form as

A′b
nm = Ab

nmei(ϕm−ϕn) (B3)

A′b
mm = Ab

mm − ∂ϕm(k)

∂kb
. (B4)

The diagonal matrix elements can change by an arbitrary phase
ϕn. Hence choosing the diagonal elements is equivalent to
fixing a particular gauge. On the other hand, the off diagonal
Berry connections transform as operators and therefore, if
Ab

nm = 0 in one gauge it vanishes in all gauges. The dipole
matrix elements and its generalized derivatives transform as
operators

r ′b
nm = ei(ϕm−ϕn)rb

nm (B5)

r ′b
nm;a = ei(ϕm−ϕn)rb

nm;a, (B6)

but the standard derivative ∂rb
nm/∂ka does not transform as a

tensor. From these results we see that the shift vector, Eq. (A7),
is gauge invariant.

Now, the Bloch states at k and k + G, with G a reciprocal
lattice vector, are physically equivalent states. They can differ
at most by a phase λ,

ψn(k + G) = λnψn(k), (B7)

where λn = eiθn(k,G) is determined by the choice of ϕn. For
arbitrary λn the connections at k and k + G are related as

Ab
mm(k + G) = Ab

mm(k) + λ∗
mi

∂λm

∂kb
(B8)

Ab
nm(k + G) = λ∗

nλmAb
nm(k). (B9)

In general, the off-diagonal elements at k and k + G differ by
an arbitrary phase, but if we choose the periodic gauge where
λn = 1, then both the Bloch wave functions and connections
(diagonal and off-diagonal) are periodic. Note that the phases

at k and k + G may differ by an integer multiple of 2π .
The ambiguity in Ab

nn gives rise to an integer ambiguity in
the polarization and the ambiguity in Ab

nm to the interband
winding number Wb,b

nm described in the main text. This is
because we still have freedom to impose gauge transformations
in which ∇kϕ(k) is periodic [25], which include large gauge
transformations. Let us call the subset with Wa,b

nm = 0 the
optical gauge.

APPENDIX C: SHIFT VECTOR OF TWO-BAND MODEL
FROM HAMILTONIAN DERIVATIVES

For a two-band Hamiltonian given in first quantization as
H = ∑

i diσ
i , where d = (dx,dy,dz), the right-hand side of

Eq. (A6) is

Im
[
rb

12r
b
21;a

] = εmij

1

4E5
(dmdi,a dj,bdldl,a − E2dmdi,adj,ab).

(C1)

±E(k) are the eigenvalues of the Bloch Hamiltonian, and
di,a = ∂di/∂ka . This result is easier to obtain by expanding
both sides of the identity ∂kb∂ka 〈un|H |um〉 = δnm∂kb∂kaEn.
From this we obtain an expression for the generalized
derivative in terms of velocity matrix elements only [7,22],
(n �= m)

ra
nm;b = − 1

iωnm

[
va

nm�b
nm + vb

nm�a
nm

ωnm

− wab
nm

+
∑

p �=n,m

(
va

npvb
pm

ωpm

− vb
npva

pm

ωnp

)]
, (C2)

where vb
nm = 〈n|∂kb

H |m〉 are the velocity matrix elements,
�b

nm = vb
nn − vb

mm, wba
nm = 〈n|∂kb

∂ka
H |m〉 and h̄ωnm = En −

Em. In the evaluation, we used various standard identities.
Note the extra term wab

nm compared to Ref. [7], where
H = p2/2m + V (x) and wab

nm = δnmδab/m is diagonal. Tight-
binding models are, of course, approximations to real-life solid
state Hamiltonians and comparison with experiments must
proceed with caution to avoid spurious terms arising from
the use of a tight-binding model. rb

nm can also be obtained
in terms of Hamiltonian derivatives. Recall that by definition
only off-diagonal terms contribute,

∣∣rb
12

∣∣2 = 1

4E2
(
E2−d2

z

) [(dzE,b−dz,bE)2 + (dxdy,b−dx,bdy)2].

(C3)

Hence the shift vector written as

R
a,b
12 = −εmij

(
E2 − d2

z

)
(dmdi,adj,bdldl,a − E2dmdi,adj,ab)

E3[(dzE,b − dz,bE)2 + (dxdy,b − dx,bdy)2]

(C4)

is explicitly gauge independent. In particular, the expression
for the shift vector for b = a reduces to

Ra,a
cv = − |d|d · (d′ × d′′)

|d|2|d′|2 − (∂ka |d|2)2/4
, (C5)

where d ′
i = ∂kadi .
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APPENDIX D: SHIFT VECTOR AND CURRENT IN
RICE-MELE MODEL

In this section the shift vector and shift current for the Rice-
Mele model of ferroelectrics is computed. The Hamiltonian is

ĤRM =
∑

i

[(
t

2
+ (−1)i

δ

2

)
(c†i ci+1 + H.c.) + (−1)i�c

†
i ci

]
,

(D1)

where ci(c
†
i ) destroys (creates) electron states at site i, δ

parametrizes the dimerization of the chain, and � is the
staggered potential on sites A and B. If � �= 0 and δ �= 0
inversion symmetry is broken. The unit cell (of length a) has
two sites. We obtain the Bloch Hamiltonian,

HRM =
∑

i

diσi = σxt cos ka/2 − σyδ sin ka/2 + σz�,

(D2)

and eigenfunctions,

uc = eiϕc

√
2

(
v

ueiφ

)
uv = eiϕv

√
2

(
u

−veiφ

)
, (D3)

where HRMuc,v = ±Euc,v,φ = arctan[(−δ/t) tan(ka/2)]
(mod π ) is the azimuthal angle of the vector HRM in the Bloch
sphere, u = √

1 − �/E, v = √
1 + �/E, and the eigenvalues

are given by E = (t2 cos2 ka/2 + δ2 sin2 ka/2 + �2)1/2 for
the conduction and −E for the valence band (φ should
not be confused with φcv). We have added a gauge
dependence ϕn, (n = c,v). The Berry connection will
depend explicitly on the gauge used but results on the shift
vector/current are gauge independent. In this section we
choose ∂kϕn = 0. The Bloch wave functions are ψn(k,r) =∑

j eikaj [uA
n (k)χ (r − aj ) + eika/2uB

n (k)χ (r − aj − a/2)],
where χ are the atomic wave functions and uA,B

n projections
of the eigenfunctions on site A(B). The Berry connections,

Ann = iu†
n∂kun = atδ(E ∓ �)

4E(E2 − �2)
(n = c,v) (D4)

Acv = iu†
c∂kuv = aie−i(ϕv−ϕc)

8E2
√

E2 − �2
[�(t2−δ2) sin ka+2iδtE],

(D5)

are both periodic with period 2π/a. We define the phase
φcv by Acv = |Acv|e−iφcv = |Acv|(cos φcv, − sin φcv), and its
derivative is

∂kφcv = �

2E

aδt(δ2 − t2)[4E2 cos ka + (t2 − δ2) sin2 ka]

[�2(δ2 − t2)2 sin2 ka + 4δ2t2E2]
.

(D6)

This expression is smooth for δ �= 0. If δ = 0 it can be seen
that Acv = 0 at ka = 0, π . The shift vector, Rcv = ∂kφcv +
Acc − Avv , can be computed analytically as

Rcv = �

2E

aδt(δ2 − t2)[4E2 cos ka + (t2 − δ2) sin2 ka]

[�2(δ2 − t2)2 sin2 ka + 4δ2t2E2]

− �

2E

atδ

(E2 − �2)
. (D7)

Some observations about the behavior of the shift vector in the
RM model are in order: (a) Generally, the shift vector does not
vanish. (b) The shift vector is peaked at ka = 0 or ka = π ,
and (c) the shift vector can exceed the lattice spacing a. To
illustrate this consider some limiting values of the shift vector,

Rcv|limk→0 = − at�

2δ
√

t2 + �2

∣∣∣∣
limδ→0

= ∞ (D8)

Rcv|limk→π/a = − aδ�

2t
√

δ2 + �2

∣∣∣∣
limδ→0

= 0 (D9)

Rcv|limδ→t = − a�

2
√

t2 + �2

∣∣∣∣
lim�→0

= −a�/2t

(flat band limit). (D10)

Hence one can check that at ka = π the field Rcv = (Rkk
cv ,R

δk
cv ),

defined in the main text, vanishes and at ka = 0 it diverges.
Shift current. If the electric field is along the chain, e.g., the

z direction, the shift current is

J z
shift(ω) = 2σ zzz(0; ω, − ω)Ez(ω)Ez(−ω). (D11)

For the two-band model this reduces to

σ zzz(0; ω, − ω) = e3
∫ 2π/a

0
dk

|〈uc|vz|uv〉|2Rcv

h̄2ω2
δ

(
2E

h̄
−ω

)
,

(D12)

where the matrix elements of the velocity operator vz =
h̄−1∂HRM/∂k are

|〈uc|vz|uv〉|2 = a2

16h̄2

1

E2(E2 − �2)
(�2(t2 − δ2)2 sin2 ka

+ 4t2δ2E2). (D13)

The shift vector and the matrix elements of the velocity
each have complicated expressions, but the combination (the
‘integrand’),

h̄2
∣∣vz

cv

∣∣2

4E2
Rcv = ∣∣rz

cv

∣∣2
Rcv = −Im

[
rz
cvr

z
vc;z

]
, (D14)

is simply

Im
[
rz
cvr

z
vc;z

] = a3tδ�

32E3
. (D15)

For δ 	 �, Rcv is sharply peaked at ka = 0 but |rz
cv| peaks

at ka = π . As δ increases the peak in Rcv and |rz
cv|2 broadens

but their peaks’ maximum also decreases. The dependence on
the velocity matrix elements (imaginary part of the dielectric
function) is very prominent here because the system is 1D. The
analytical expression for the shift current of the RM model
simplifies to

σ zzz(0; ω, − ω) = − e3a3tδ�

8h̄4ω3

∑
i

1

|∂kE(ki)| , (D16)

where ∂kE = a(δ2 − t2) sin ka/4E is the velocity at momen-
tum k and ki are the two solutions of 2E(ki) = h̄ω for
h̄ω > 2E. In 1D, σ zzz diverges as ω−3(2E − h̄ω)−1/2 at the
band edge, but is suppressed in 2D, where the role of the shift
vector becomes prominent.
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FIG. 3. (a) polarizations of each band of model Eq. (E1) as a function of α. (b) W12 changes at optical zeros α = 0,4π/3 and at the inversion
symmetric point α = 5π/3. (c) Gauge-invariant field (Rkk

12 ,R
δk
12) showing the vorticity of the optical zeros giving the discontinuities of R̄12. The

loop γ = ∑
n γn encloses a vortex of charge +1 (see main text). One can check that R12 = 0 at ka = 0, and hence it does not contribute to the

path integral. We chose units such that e = a = 1.

APPENDIX E: POLARIZATION AND SHIFT VECTOR IN A
THREE-BAND MODEL

Let us consider the 1D model Hamiltonian

Ĥ3B =
∑

j

tj c
†
j cj+1 + H.c., (E1)

with tj = A + B cos (2πj/3 − α). There are three distinct
values of the hoppings tj = t1,t2,t3. Hence, the unit cell (of
size a) has three nonequivalent sites. The crystal has inversion
symmetry for α = 0,π/3,2π/3,π,4π/3,5π/3, when two of
the hoppings are equal. The Bloch Hamiltonian is

H3B =

⎡
⎢⎣

0 t1e
ika/3 t3e

−ika/3

t1e
−ika/3 0 t2e

ika/3

t3e
ika/3 t2e

−ika/3 0

⎤
⎥⎦. (E2)

The eigenvalues and eigenvectors, H3Bun = Enun, are

En = 2tr cos

(
1

3
arccos

(
t3
g cos (ka)/t3

r

) − 2πn

3

)
, (E3)

where (n = 1,2,3) and we defined the root mean square and
geometric average tr =

√
(t2

1 + t2
2 + t2

3 )/3 and tg = (t1t2t3)1/3

respectively, and

un = eiϕn

Nn

⎡
⎢⎣

E2
n − t2

2

t2t3e
2ika/3 + Ent1e

−ika/3

t2t1e
−2ika/3 + Ent3e

ika/3

⎤
⎥⎦, (E4)

where ϕn is chosen to enforce the periodic gauge. The nor-
malization is Nn = [(E2

n − t2
2 )2 + (t2

2 − E2
n)(t2

3 − E2
n) + (t2

1 −
E2

n)(t2
2 − E2

n)]1/2. Using these wave functions, the Berry

connections are calculated analytically as

Ann = a

2N2
n

(
E2

n + 2t2
2

)(
t2
1 − t2

3

)

− i

N2
n

[
3En(∂kEn)

(
E2

n − t2
r

) + 2aEnt
3
g sin (ka)

]
(E5)

Anm = a

3NnNm

(
EnEm + 2t2

2

)(
t2
1 − t2

3

)

+ i2at3
g

(
E2

n + E2
m + EnEm − 3t2

2

)
sin (ka)

3NnNm(En − Em)
. (E6)

Note that the Berry connections are periodic in k space with
period G = 2π/a. One can check that the optical zeros of
A12 are α = 0,2π/3,4π/3, where A12(ka = π,α) vanishes
and hence the phase of φ12 is not well defined. In Figs. 3(a)
and 3(b) we show the windings of the interband connection
A12 and the gauge-invariant vorticity of the optical zeros in the
field R12 described in the main text.

Polarization. The polarization is given by the integral over
the Berry connection as

Pn(α) = 1

2π

∫
dkAnn(k,α). (E7)

In Fig. 3(a) we show the individual band polarizations as a
function of α. Note that the sum P1 + P2 + P3 = ±1 (mod e),
as expected. Also, the total charge pumped of band n per cycle
is

cn(α) =
∫ α

0
dλ

∫
dk

2π
�n

k,λ

=
∫ α

0
dλ

∫
dk

2π
i[〈∂kun|∂λun〉 − 〈∂λun|∂kun〉]. (E8)

One can check the charge pumped across the unit cell is
c1(2π ) = −2e and c2,3(2π ) = +e.
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