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Zeeman and spin-orbit effects in the Andreev spectra of nanowire junctions
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We study the energy spectrum and the electromagnetic response of Andreev bound states in short Josephson
junctions made of semiconducting nanowires. We focus on the joint effect of Zeeman and spin-orbit coupling
on the Andreev level spectra. Our model incorporates the penetration of the magnetic field in the proximitized
wires, which substantially modifies the spectra. We pay special attention to the occurrence of fermion-parity
switches at increasing values of the field and to the magnetic field dependence of the absorption strength of
microwave-induced transitions. Our calculations can be used to extract quantitative information from microwave
and tunneling spectroscopy experiments, such as the recently reported measurements in Van Woerkom et al.
[Nat. Phys. (2017), doi:10.1038/nphys4150].
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I. INTRODUCTION

The Josephson current flowing across a weak link between
two superconductors is mediated by Andreev bound states
[1], subgap states localized at the position of the weak
link. Recent years have witnessed the direct observation of
Andreev bound states in different types of weak links [2–8],
via either tunneling or microwave spectroscopy, as well as
their coherent manipulation [9]. Aside from increasing our
understanding of mesoscopic superconductivity, these results
pave the way to the realization of novel types of qubits
[10–13] and superconducting circuits. Among these results,
of particular interest is the very recent microwave detection
of Andreev bound states in InAs/Al nanowires [14]. Such
hybrid semiconducting/superconducting systems are under
intense investigation [15–19] as platforms for Majorana
zero modes [20–23] and, eventually, topological quantum
computation [24,25]. In these devices, the study of Andreev
bound states may be a prelude for the study of Majoranas
in microwave circuits and the realization of topological
qubits.

In view of these exciting applications, the measurement
of the magnetic field dependence of the Andreev spectra
was among the most interesting aspects of the experiment
of Ref. [14]. InAs (or InSb) nanowires are characterized
by strong spin-orbit coupling and large g factors: both are
necessary ingredients to reach the topological phase with
Majorana bound states which is predicted to occur at high
magnetic field and low electron density [26,27]. Spectroscopic
studies of nanowire Josephson junctions, even if performed
in the topologically trivial phase, can bring quantitative
understanding about the interplay of Zeeman and spin-orbit
couplings needed for the topological applications. For these
purposes, an important merit of such experiments is their
high degree of tunability. For instance, in the experiment of
Ref. [14] three separate knobs could be tuned to study the
behavior of Andreev bound states: the phase difference φ

across the Josephson junction, the transparency of the junction
(controlled by a local gate underneath the weak link), and the
magnetic field B (which was applied parallel to the wire).
Thanks to this high tunability, the measurement of the Andreev
spectra can allow one to obtain a great wealth of information
about the properties of the device.

In order to understand existing experiments and design
future ones, it would be beneficial to have a detailed theory
of the Andreev bound states, describing their behavior as the
magnetic field and other system parameters are continuously
varied. This work aims at providing such theory, focusing on
the simple yet experimentally relevant situation of a short,
single-channel nanowire junction placed in a magnetic field
parallel to the wire (see Fig. 1). Our theory covers all the im-
portant regions of the phase diagram, as depicted in Fig. 2. We
pay particular attention to the behavior of the Andreev bound
states in the topologically trivial phase since such knowledge
may be important to assign experimental data to the correct
place of the phase diagram. Aside from the Andreev energy
spectrum, we also study in detail the magnetic field dependence
of the matrix elements which determine the absorption strength
of microwave-induced Andreev transitions.

The study of Andreev bound states in Josephson junctions
with broken time-reversal and/or spin-rotation symmetries is a
very rich topic of research, covered by a large and diverse
body of previous works [28–55]. In many of the existing
studies it is assumed that the time-reversal symmetry breaking
is only operative in the weak link, while the effect of the
magnetic field in the superconducting parts of the device is
disregarded. At the technical level, this means that the effect
of time-reversal symmetry breaking is incorporated in the
scattering matrix of the junction but not in the description
of the superconducting electrodes. In the present context,
however, it is crucial to include the effect of the magnetic field
on the proximity-induced pairing occurring in the nanowire
segments which are in direct contact with the superconductors.
Indeed, in experiments aimed at reaching the topological
phase, the purpose of the magnetic field is not to influence
the local properties of the weak link, but to change the
nature of the superconducting pairing induced in the nanowire
(whether or not the topological phase is actually reached).
The theory of Andreev bound states developed here, therefore,
removes the aforementioned assumption and incorporates the
effect of the magnetic field in the entire semiconducting
nanowire.

Let us summarize the main results presented in this work,
and at the same time outline the layout of the paper. In Sec. II,
we discuss the nanowire model and the different approxima-
tions used in this work. We then derive a determinant equation
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FIG. 1. The system studied in this work: a Josephson junction
with length L made out of a semiconducting nanowire with strong
spin-orbit coupling (typically InAs or InSb, yellow) in proximity to
a superconductor (typically Al, blue). The proximity effect induces
an effective s-wave pairing in the nanowire, with gap �0. We focus
on the case of a short Josephson junction with L � ξ , where ξ is the
induced coherence length. A parallel magnetic field B and a phase
bias φ are applied to the nanowire. The transparency of the junction
can be controlled via a local gate.

[Eq. (25)], which allows us to solve for the discrete part of the
spectrum, i.e., to determine the Andreev bound-state energies
and their wave functions. The bound-state equation (25) makes
use of the transfer matrix of the junction, unlike the commonly
adopted approach based on the scattering matrix [56,57], but
akin to previous examples appearing in the literature [58–61].

In a short single-channel junction, the subgap spectrum
consists of a doublet of Andreev bound states. In Sec. III,
we study the energies of this Andreev doublet by solving
the bound-state equation both analytically and numerically.1

The section begins with a review of basic concepts regarding
the excitation spectrum of Josephson junctions (Sec. III A)
and of known results about the Andreev bound states at zero
magnetic field (Sec. III B). We then discuss the important
features of magnetic field dependence of the Andreev bound-
state energies at both low and high electron density, and in
both the topological and trivial phases (Sec. III C and Fig. 6).
In particular, we present analytical results for the effective
g factor which determines the linear energy splitting of the
Andreev doublet in a small magnetic field [see Sec. III D
and specifically Eqs. (45)–(47)]. We show that the g factor
of the Andreev bound states can be strongly suppressed by
spin-orbit coupling and/or high electron density. The resulting
g factor can be much smaller than the g factor of the conduction
electrons in the normal state. Equations (45)–(47) also indicate
that a measurement of the Andreev bound-state g factor, for
instance by means of tunneling spectroscopy, can provide
information about the other relevant system parameters. In
Sec. III E, we discuss the appearance of Fermi level crossings
in the Andreev spectrum. The presence of Fermi level crossings
is significant because it signals a change of the ground-
state fermion parity of the junction. These “fermion-parity
switches” can be used as a signature of the topological phase.
Namely, if the nanowire is in the topological (trivial) phase,
the number of fermion-parity switches occurring as the phase
difference φ is advanced by 2π must be odd (even). In the
topological phase, this leads to the well-known 4π periodicity
of the phase dependence of the Andreev bound-state energies.
The occurrence of fermion-parity switches in the trivial phase
has so far attracted less attention: here we show that they can

1The numerical code accompanying this work is available online at
https://github.com/bernardvanheck/andreev_spectra

1
2gμBB

μtrivial

top.
μ = 0

μ mα2, gμBB,Δ0

k

E

FIG. 2. Sketch of the nanowire band structure (left) and phase
diagram (right). We study the Andreev bound-state spectrum by
linearizing the spectrum in the two limits μ � mα2,�0,gμBB (red
line) and mα2 � μ,�0,gμBB (green line). In the latter limit, the
chemical potential can be tuned to be inside the Zeeman gap, and the
system can enter the topological phase upon increasing the magnetic
field.

appear once the magnetic field crosses a threshold value Bsw,
which depends sensitively on the transparency of the junction
and on the strength of the spin-orbit coupling (see Fig. 8).

In Sec. IV we turn our attention to the Josephson current
carried by the Andreev bound states, introducing the current
operator and briefly discussing the magnetic field dependence
of the current-phase relation (Fig. 9). The matrix elements
of the current operator between the Andreev bound states
determine not only the equilibrium properties of the junction,
but also its response to a microwave field. The microwave
irradiation of the junction can induce two types of transitions
within the Andreev bound-state doublet: both are discussed
in Sec. V within the linear response regime, appropriate if
the applied microwave field is weak. In the first and most
notable type of transition, microwaves resonantly excite a
Cooper pair from the superconducting condensate to the
Andreev doublet. In the second type of transition, instead,
microwaves excite one quasiparticle from the first to the second
Andreev bound state. The two transitions are distinguished by
the parity of the number of quasiparticles involved and so,
for brevity, we will refer to them as the “even” and “odd”
transition, respectively. The even transition is present already
at zero magnetic field and, being very bright, is the most
easily observed in experiment. The odd transition requires
a quasiparticle to be present in the initial state of the junction,
either due to a nonequilibrium population or as a consequence
of a fermion-parity switch. At zero magnetic field, the odd
transition is not observable since in this case the microwave
field cannot induce a transition within the degenerate doublet
of Andreev levels. However, it may become visible in the
presence of both Zeeman and spin-orbit couplings. The
magnetic field dependence of the current matrix elements for
the even and odd transitions is studied in Secs. V A and V B,
respectively. The study reveals that the odd transition, while
characterized by a nonzero current matrix element, remains
much weaker than the even transition over a wide range of
system parameters, including for magnetic fields B > Bsw. An
important consequence of this fact is that, at low temperatures,
the absorption spectrum of the junction should exhibit a
sudden drop in visibility if the junction is driven through a
fermion-parity switch by varying the magnetic field or the
phase difference (see Fig. 12).
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II. MODEL AND ANDREEV BOUND-STATE EQUATION

Our investigation is based on the well-studied model of a
one-dimensional (1D) quantum wire with Rashba spin-orbit
coupling, a Zeeman field applied parallel to the wire, and a
proximity-induced s-wave pairing [26,27]. We consider the
Josephson junction geometry shown in Fig. 1. In the limit
L/ξ → 0, we can treat the junction as a pointlike defect
situated at a position x = 0. Furthermore, provided that the
length of the entire nanowire is much larger than ξ , we can
ignore complications arising from its finite size and treat it
as an infinite system in the x direction. The effective BCS
Hamiltonian of this system is (we set h̄ = 1)

H = 1

2

∫
dx ψ†(x)

[(
− ∂2

x

2m
− iα∂x σz − μ

)
τz

− 1

2
g μBB σx − �0 τx e−iφ sgn(x) τz/2 + V δ(x) τz

]
ψ(x).

(1)

In this Hamiltonian, the field operator ψ(x) is the usual four-
component Nambu spinor ψ = (ψ↑, ψ↓, ψ

†
↓, − ψ

†
↑)T . The two

sets of Pauli matrices σx,y,z and τx,y,z act in spin and Nambu
space, respectively. Furthermore, m is the effective mass, α

is the strength of the Rashba spin-orbit coupling, B is the
applied magnetic field, g is the effective g factor, μB is the
Bohr magneton, �0 is the proximity-induced pairing gap, and
φ is the gauge-invariant phase difference across the Josephson
junction, and μ is the chemical potential measured from the
middle of the Zeeman gap at k = 0 (see Fig. 2). Finally,
the phenomenological parameter V is the strength of a
pointlike scatterer which models a potential barrier; later on
V will be related to measurable properties of the junction.
In practice, the scattering term V δ(x) enters purely in the
boundary condition for ψ(x) at the position of the junction:

ψ(0+) = ψ(0−), (2a)

∂xψ(0+) − ∂xψ(0−) = 2 mV ψ(0−). (2b)

Being a purely one-dimensional effective model, the Hamil-
tonian in Eq. (1) does not incorporate all the complexity of real
devices. For instance, the orbital effect of the magnetic field is
not included in our analysis: this is well justified if the cross
section A of the nanowire is small, so that at a given field
B the flux piercing the cross section is much smaller than
a flux quantum (BA � h/e).2 The pairing strength �0, the
spin-orbit strength α, and the g factor g appearing in Eq. (1)
should be viewed as phenomenological parameters. The value
of �0, in particular, strongly depends on the transparency of
the semiconductor-superconductor interface.

2Nanowires currently studied in experiments have a nominal area
of about (100 nm)2, but the lowest subbands wave functions are most
likely extended over a much smaller area ∼1000 nm2 due to gate
confinement and band bending. Thus, they are only sensitive to a
portion of the total applied flux. One may estimate that the orbital
effect of the magnetic field can not be dominant for B � 1 T, while
the experiment reported in Ref. [14] covered a field range smaller
than 500 mT.

By virtue of simplicity, the Hamiltonian (1) has become
a paradigmatic model in the study of Majorana physics in
hybrid semiconducting-superconducting system [23]. As is
well known, it exhibits two distinct topological phases (see
Fig. 2). At high chemical potential and/or low magnetic
fields, the system is in a trivial superconducting phase with a
conventional 2π periodicity of the ground-state energy with
respect to the phase difference φ. At low chemical potential,
and provided that the condition 1

2gμBB > (μ2 + �2
0)1/2 is

satisfied, the system is instead in a topological superconducting
phase. In the geometry of Eq. (1), the hallmark of the
topological phase is the 4π periodicity of the ground-state
energy (for a fixed global fermion parity) with respect to
φ, which is associated with the presence of two coupled
Majorana zero modes at the junction. The two phases
are separated by a critical line Bc(μ) = 2(μ2 + �2

0)1/2/

(gμB) at which the energy gap in the nanowire vanishes,
marking a topological phase transition. Note that this criterion
is appropriate if the transparency of the semiconductor-
superconductor interface is low, so that the coupling between
the two materials is weak: in the opposite limit of strong
coupling, the critical field Bc may depend only weakly on μ

[55]. A more complicated phase diagram in the (μ,B) plane
emerges in nanowires with multiple transport channels [62],
but we do not consider this situation in this paper.

For both regions of the phase diagram, we are interested
in the Andreev level spectrum. That is, we want to find the
discrete spectrum of subgap states with energy E < �(B),
which are localized at the junction via the mechanism of
Andreev reflection at the two superconducting interfaces. The
energy �(B) is the spectral gap of the continuous part of the
spectrum [at zero field, �(0) ≡ �0]. In what follows, we will
often omit the field argument �(B) ≡ �. In the short-junction
limit, one expects the number of subgap states to be less than
or equal to the number of pairs of left/right propagating modes
at the Fermi level in the normal state of the nanowire. Thus, the
discrete spectrum of the Hamiltonian in Eq. (1) should consist
of at most either one or two Andreev levels, depending on
whether the system is in the topological or in the trivial phase.

An established way to compute the Andreev level spectrum
is the scattering approach [45,55–57,63]. In this approach,
the usual wave-function matching problem for bound states is
cast in terms of a scattering matrix SN (E) which characterizes
the junction, and a second scattering matrix SA(E) which
describes the Andreev reflection from the superconducting
leads. The two matrices can be combined into a determinant
equation for the bound-state energies det[1 − SA(E)SN (E)] =
0. This approach is particularly advantageous if the following
conditions are satisfied. First, the effect of a magnetic field can
be neglected in the superconducting leads, so that the gap and
the matrix structure of SA are independent of magnetic field.
Second, the normal reflection at the superconducting interface
can be neglected; this is the so-called Andreev approximation
[64]: it requires �0 � EF (where EF is the Fermi energy mea-
sured from the bottom of the conduction band) and amounts
to linearizing the electron dispersion in the normal state.
Third, the junction is short, so that the energy dependence of
SN (E) can be neglected as long as E < �0. When combined,
the first and second conditions guarantee that SA(E) is a
simple sparse matrix whose energy dependence enters only as
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a prefactor SA(E) ∝ exp[i arccos(E/�0)]. This circumstance
greatly simplifies the solution of the problem, as exemplified
by the fact that the determinant equation can be transformed
into a finite-dimensional linear eigenvalue problem for E [45].

However, as mentioned in the Introduction, for our purposes
it is crucial to include the effect of magnetic field in the entire
system, rather than in the junction alone. The motivation for
doing so is twofold. To begin with, many recent experiments
focused on InAs nanowires with epitaxial Al: in this geometry,
a parallel field penetrates uniformly the thin aluminum shell.
Furthermore, the study of the evolution of the Andreev levels
in the different regions of the phase diagram, and in particular
across the topological transition, requires that we solve for
the Andreev energies taking into account the magnetic field
dependence of the spectral gap of the continuous spectrum.
Unfortunately, once a magnetic field is included, the Andreev
reflection amplitude is not unique anymore but may depend on
the initial and final spin and/or orbital states. As a consequence,
the calculation of SA(E) becomes nontrivial and strongly
dependent on the particular Hamiltonian describing the leads.
To overcome this complication, we take a slightly different
route and derive an equivalent bound-state equation for the
Andreev spectrum which generalizes to the more complicated
cases in a transparent fashion.

The first step in the derivation is the linearization of
the model in Eq. (1), which we perform in two different
limits allowing us to cover all relevant regimes of the phase
diagram (see Fig. 2). The first limit is that of the high density,
μ � mα2,�0,gμBB. For such high values of the chemical
potential, the nanowire will not enter the topological phase
in a realistic range of magnetic fields, thus, we will use this
limit to model a topologically trivial nanowire. The second
limit is that of low density, when the Fermi level is inside
the Zeeman gap. This is the “helical” regime of the Rashba
nanowire: in the normal state, the low-energy theory contains
only a pair of counterpropagating modes at finite wave vectors,
as well as a gapped pair of modes close to k = 0. The line
μ = 0 in the phase diagram coincides with the optimal point
at which the critical field is minimal, Bc = �0 (see Fig. 2),
so this limit will allow us to study the Andreev spectrum in
the topological phase and around the phase transition. In both
limits we will require the Andreev approximation to hold. The
Andreev approximation is automatically satisfied in the high
density regime, when �0 � μ. In the low density regime,
the chemical potential is low and the Fermi energy is set by
the spin-orbit energy EF ∼ mα2. Thus, in this limit we must
assume the spin-orbit energy to be the dominating energy scale:
mα2 � �0,gμBB,μ.

In the two following subsections, we carry out the lineariza-
tion procedure in these two limits, which will then allow us to
derive the bound-state equation that we seek.

A. Linearization for μ � �0,gμB,mα2

In the limit of a high chemical potential, we may linearize
the normal-state dispersion around the Fermi wave vectors
±kF = ±(2mμ)1/2. That is, we write the field ψ(x) as a linear
superposition of left- and right-moving components

ψ(x) = e−ikF x ψL(x) + eikF x ψR(x). (3)

k

kF−kF k0

(a)

0

gμBB

kso−kso

(b)

2[α2k2
F + ( 1

2gμBB)2]1/2

↑↑↑↑↑↑↑↑

↑↑↑↑
FIG. 3. Sketch of the dispersion in the normal state after lineariza-

tion. (a) Dispersion for μ � gμBB,mα2. The black (blue) arrows
denote the spin direction for each branch of the spectrum at zero
(finite) magnetic field B. (b) Dispersion for μ = 0. Here, kso = 2mα.
The magnetic field gaps out the crossing at k = 0, which is between
states with opposite spins.

Since we are interested in the energy spectrum in a range of
energies of order � around the Fermi level, we can assume that
ψL(x) and ψR(x) vary over length scales much larger than k−1

F .
We may therefore use Eq. (3) in the Hamiltonian (1), organize
the resulting expression as an expansion in powers of k−1

F ,
and only keep the largest terms. The last step also includes
neglecting quickly oscillating terms ∝e±ikF x . The result of
this procedure can be concisely presented by introducing an
eight-component field vector � = (ψR,ψL)T . In terms of the
slowly varying field �(x), the low-energy Hamiltonian of the
nanowire is

H ≈ 1

2

∫
dx �†(x)

[
−ivF τz sz ∂x + αkF τz sz σz

− 1

2
g μBB σx − �0 τx e−iφ sgn(x) τz/2

]
�(x) (4)

with vF = kF /m. Here, we have introduced a new set of Pauli
matrices sx,y,z which act in the space of left and right movers.
Let us now describe the low-energy modes described in this
linearized Hamiltonian.

As illustrated in Fig. 3(a), around each Fermi point there
are two branches in the spectrum of the normal state. The
two branches are separated in energy by an amount 2[α2k2

F +
( 1

2gμBB)2]1/2 due to the combined effect of spin-orbit and
Zeeman coupling. At finite B, the spin of each propagating
mode is rotated with respect to its orientation at B = 0 [see
arrows in Fig. 3(a)]. The rotation angle is

θ = arccos
αkF[

α2k2
F + (

1
2gμBB

)2]1/2 (5)

and the rotation plane is defined by the Rashba and Zeeman
fields. The spin rotation is clockwise (counterclockwise) for
left (right) movers and it can be incorporated in the definition
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of the field � via a unitary transformation S (see for instance
Ref. [52]):

�S(x) = S �(x), S = exp [−i (θ/2) τzszσy]. (6)

This rotated basis diagonalizes the homogeneous Hamiltonian
of the wire in the normal state. When we express the
Hamiltonian in terms of the rotated field �S , we find

H ≈ 1

2

∫
dx �

†
S(x) [−ivF τzsz ∂x + αkF sec θ τz sz σz

− �0 (cos θ τx + sin θ τyszσy) e−iφ sgn(x) τz/2] �S(x).
(7)

This form of the Hamiltonian reveals how the tilting of the
modes’ spin affects the pairing. At B = 0, the s-wave pairing
does not mix the inner and outer branches of the spectrum
since it requires the spins of the two paired electrons to be
antiparallel. At finite field, however, a pairing coupling with
strength �0 sin θ ≈ �0 (gμBB)/(αkF ) emerges between the
inner and outer branches, due to the fact that the spin tilts in
opposite directions for left and right movers.

To complete the linearization procedure, we must provide
the boundary conditions for the field � which are due to the
scattering term V δ(x) τz in the original model of Eq. (1). The
boundary conditions for � can be derived by using Eq. (3) in
Eqs. (2) and neglecting terms ∝∂xψL,R with respect to terms
∝kF . The resulting boundary conditions can be arranged in
the following form:

�(0+) = T �(0−), (8)

with

T = 1 − i(V/vF ) sz + (V/vF ) sy. (9)

The matrix T is, in fact, the transfer matrix associated with the
pointlike scatterer V δ(x) in the original model, computed at
the Fermi level. The term ∝sy is a backscattering term,
while the term ∝sz corresponds to forward scattering. The
transmission probability τ through the junction in the normal
state is related to the dimensionless parameter V/vF :

τ = 1

1 + (V/vF )2
. (10)

The transfer matrix obeys a “pseudounitarity” property

T † = sz T −1 sz, (11)

which is the equivalent of the most universally known unitarity
of the scattering matrix.

For the rotated field �S , we must use a rotated transfer
matrix TS = ST S†:

TS = 1 − i(V/vF ) sz + (V/vF ) cos θ sy

− (V/vF ) sin θ τzszσy. (12)

We see that, similar to the pairing, the backscattering terms are
changed when projected to the basis of momentum eigenstates
of the nanowire. At zero field, only a single backscattering
channel is open for each mode because scattering preserves
spin. At a finite field B, two backscattering terms appear, due
to the fact that the spin of each left-moving mode has nonzero
projection on the spin of both right-moving modes.

B. Linearization for mα2 � �0,gμB B,μ

When the chemical potential is low, the linearization
procedure must take into account that the position of the
Fermi points strongly depends on the spin orientation since
the Fermi points are shifted by the Rashba spin-orbit coupling.
Specifically, the Fermi points for modes with spin down (up)
are situated at k = 2mα (k = 0) for right movers and at k = 0
(k = −2mα) for left movers; see Fig. 3(b). The linearization of
the model therefore begins by writing the field in the following
form [65]:

ψ(x) = e−imαx (1+σz) ψL(x) + eimαx (1−σz) ψR(x). (13)

Note the presence of the spin-dependent factors in the
exponentials, which take into account the dependence of the
Fermi points on spin. From here, we proceed as in the previous
subsection: assuming that the left- and right-moving fields
ψL(x) and ψR(x) vary over length scales much larger than
(mα)−1, we replace Eq. (13) in Eq. (1) with μ = 0, and neglect
all quickly oscillating terms ∝e±2imαx . Note that, in doing this,
it is essential to assume that the spin-orbit energy dominates
over the other energy scales. In other words, the spin-orbit
length (mα)−1 takes the role of the Fermi wavelength as the
microscopic length scale of the model.

As a result, we obtain the following linearized Hamiltonian
of freely propagating modes:

H ≈ 1

2

∫
dx�†(x)

[
−iατzsz ∂x − 1

4
gμBB(sxσx − syσy)

− μτz − �0 τx e−iφ sgn(x) τz/2

]
�(x). (14)

Here, as in Eq. (4), � = (ψR,ψL)T and the set of Pauli matrices
sx,y,z acts in the grading of left and right movers.

When written in terms of the components of the vector �,
the Zeeman term in Eq. (14) is proportional to ψ

†
R↑ψL↓. It is a

mass term which gaps out the two counterpropagating modes
with opposite spin crossing at k = 0 (see Fig. 3). Note that,
once this Zeeman gap is formed at the Fermi level, the presence
of a scattering impurity may lead to Fano resonances [47].
The Fano resonances are due to the formation, in the normal
state, of quasibound states with a characteristic decay length
α/gμBB. The quasibound states originate from the inverted
part of the parabolic spectrum close to k = 0, and in principle
they can lead to a strong dependence of the transmission of the
junction in the normal state on energy [47,52]. We may neglect
complications associated with their presence by assuming that
the junction is short enough so that L � α/gμBB. With this
assumption, boundary conditions for � can also be derived as
in the previous subsection. We obtain the same transfer matrix
T of Eq. (9), except with the velocity vF replaced by α; the
transmission probability is now τ = 1/(1 + V 2/α2).

C. Bogoliubov–de Gennes equations and bound-state
determinant condition

At this point, in either of the two limits μ � �0 and μ = 0,
our task is reduced to the solution of a system of Bogoliubov–
de Gennes (BdG) equations

[−ivτzsz∂x + ON − �0τxe
−iφsgn(x)τz/2]� = E� (15)
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for an eight-component Nambu wave function
�(x),3 to be solved with the boundary condition
�(0+) = T �(0−). The pseudounitarity of the transfer
matrix T [Eq. (11)] guarantees that the kinetic energy in
the BdG equations remains a Hermitian operator when
removing the point x = 0 from its domain. In Eq. (15),
ON = αkF τzszσz − 1

2gμBσx for μ � �0,gμBB,mα2 while
ON = − 1

2gμBB 1
2 (sxσx − syσy) − μτz for mα2 � �0,

gμBB,μ. The velocity v is a placeholder for vF in the former
case, and for α in the latter.

As is well known [66], the BdG equations are inherently
equipped with a particle-hole symmetry represented by an
antiunitary operator P . The particle-hole symmetry dictates
that for each solution � of Eq. (15) at energy E there must
be an orthogonal solution P� at energy −E. In our case,
P = τysxσy K, with K the complex-conjugation operator. The
presence of particle-hole symmetry, and the corresponding
doubling of the spectrum, is a consequence of the unphysical
doubling of the Hilbert space coming from the introduction
of Nambu indices; more fundamentally, it is a consequence of
the mean-field approximation which allowed us to express the
Hamiltonian (1) as a quadratic form of ψ and ψ† [28].

Once the complete spectrum {±En} of the BdG equations is
known, the field operator �(x) can be written in the eigenmode
expansion

�(x) =
∑

n

�n �n(x) + �†
n [P�n(x)]. (16)

Here, �n and �
†
n are Bogoliubov annihilation and creation

operators, obeying fermionic anticommutation relations. They
diagonalize the Hamiltonian

H =
∑

n

En

(
�†

n�n − 1

2

)
. (17)

Our goal is to find the bound-state solutions of Eq. (15),
which have |E| < �. In order to do so, we first bring the
BdG equations to be more convenient by a change of variable

�(x) = eiφsgn(x)τz/4 �̃(x). (18)

The role of this transformation is to make the spatial depen-
dence of the superconducting phase more easily tractable. The
wave function �̃(x) satisfies a modified boundary condition at
the origin:

�̃(0+) = e−iφτz/2 T �̃(0−). (19)

Next, we define the Green’s function G(x,E) by

[E − HBdG(∂x)] G(x,E) = ivτzszδ(x), (20)

where the operator HBdG(∂x) is the linearized BdG Hamilto-
nian of the translationally invariant superconducting wire

HBdG(∂x) = −ivτzsz∂x + ON − �0 τx. (21)

Note that by definition G(0+,E) − G(0−,E) = 1. Now, using
the boundary condition (19), we may write

�̃(x) = G(x,E) M �̃(0−), (22)

3Note that we use the letter � for the BdG wave functions, and �

for the corresponding second-quantized fields.

with

M = (e−iφτz/2 T − 1). (23)

Equation (22) holds for any x �= 0; the wave function is
discontinuous at x = 0. The Green’s function can be computed
as

G(x,E) = −
∫ ∞

−∞

vdq

2πi

eiqx

E − HBdG(q)
τzsz, (24)

with HBdG(q) the Fourier transform of Eq. (21). When |E| <

�(B), the poles in the integrand of G(x,E) lie away from
the real axis and Eq. (24) can be computed via a contour
integral closing on the upper (lower) half of the complex plane
for x > 0 (x < 0). Requiring that a nontrivial solution �̃(0−)
exists, we obtain from Eq. (22) the following determinant
equation for the bound-state spectrum:

det [1 − G(0−,E) M] = 0. (25)

This bound-state equation for the Andreev levels is cast in
terms of a transfer matrix T and a Green’s function G(0−,E)
for the superconducting leads, rather than in terms of scat-
tering matrices. As a consequence of the short-junction limit
considered in this work, the energy dependence of Eq. (25)
is entirely contained in G(0−,E), while T is independent of
energy. Furthermore, as mentioned at the end of Sec. II B,
the matrix T contained in Eq. (25) is the same in both lin-
earization limits when expressed in terms of the transmission
probability τ :

T = 1 − i

√
1 − τ

τ
sz +

√
1 − τ

τ
sy. (26)

Thus, the differences in the subgap spectrum between the two
regimes all arise from G(x,E). In the following, we compute
G(x,E) for the two regimes of interest. In doing so, we also
derive the magnetic field dependence �(B) of the continuum
gap.

D. Green’s functions and magnetic field dependence
of the induced gap

1. Green’s function for μ � mα2,gμB B,�0

In order to obtain G(x,E), we must first invert the 8 × 8
matrix

E − HBdG(q) = E − vF qτzsz − αkF τzszσz

+ 1

2
gμBBσx + �0τx. (27)

This task is simplified by the fact that E − HBdG(q) is a real
matrix and thus its inverse must also be real. The result is

1

E − HBdG(q)
= A0 + A1 vF q + A2 (vF q)2 − τzsz (vF q)3

v4
F

(
q2 − q2

0

)(
q2 − q2

1

) .

(28)
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Here, A0,A1,A2 are 8 × 8 matrices which do not depend on q. Their detailed expressions are

A0 = −(E + αkF τzszσz)
[
�2

0 − E2 + (αkF )2 + (
1
2gμBB

)2] + 1
2gμBB

[
(αkF )2 + (

1
2gμBB

)2 − �2
0 − E2

]
σx

+�0
[
�2

0 − E2 + (αkF )2 − (
1
2gμBB

)2]
τx + gμBB �0 (E τxσx − αkF τyszσy), (29a)

A1 = [
(αkF )2 + (

1
2gμBB

)2 + E2 − �2
0

]
τzsz + 2E

(
αkF σz − 1

2gμBB τzszσx

) − 2�0 αkF τx σz, (29b)

A2 = αkF τzszσz − 1
2gμBB σx + �0τx − E. (29c)

There are four simple poles ±q0,±q1 appearing on the right side of Eq. (28), given by

v2
F q2

0,1 = E2 − �2
0 + (αkF )2 + (

1
2gμBB

)2 ± 2i

√
(αkF )2

(
�2

0 − E2
) − (

1
2gμBB

)2
E2. (30)

In order to complete the calculation of the Green’s function, we must insert Eq. (28) in Eq. (24) and perform the integral over
q. Let us choose q0 and q1 to be the two poles with negative imaginary part. Then, using the residue theorem and some simple
algebra, we obtain the following expression for the Green’s function:

G(x,E) = 1

2

1

v2
F

(
q2

0 − q2
1

) ∑
n=0,1

(−1)n
e−iqn|x|

vF qn

[A0 − sgn(x) A1 vF qn + A2(vF qn)2 + sgn(x) τzsz (vF qn)3] τzsz. (31)

From Eq. (30) we can easily extract the magnetic field dependence of the continuum gap. The gap �(B) is determined by the
smallest value of E such that the poles q0,1 have zero imaginary part. A few lines of algebra give the following answer:

�(B) =

⎧⎪⎨
⎪⎩

�0 αkF[
(αkF )2+

(
1
2 gμBB

)2]1/2 if
√

1
2gμBB

(
�0 − 1

2gμBB
)

< αkF or 1
2gμBB > �0,

[
(αkF )2 + (

�0 − 1
2gμBB

)2]1/2
if

√
1
2gμBB

(
�0 − 1

2gμBB
)

> αkF .

(32)

The behavior of �(B) is discussed in detail in Fig. 4. Here, we only note that �(B) is a smooth function of B, and never
reaches zero provided that spin orbit is present (so that α �= 0). These results are true if we assume no suppression of the gap in
the parent superconductor which induces the proximity effect in the nanowire. In the case of InAs nanowires with epitaxial Al,
this is justified by the smallness of Al g factor and shell thickness.

2. Green’s function for mα2 � gμB,�0,μ

At low chemical potentials, we must repeat the same calculation but starting from the BdG Hamiltonian contained in Eq. (14).
We must first invert the matrix

E − HBdG(q) = E − αq τzsz + 1
4gμBB (sxσx − syσy) + μτz + �0 τx. (33)

In this case, we may simplify the calculation by noting the presence of the unitary symmetry [E − HBdG(q),szσz] = 0. This
symmetry is a consequence of the fact that the inner (k ≈ 0, szσz = 1) and outer (k ≈ ±2mα, szσz = −1) branches of the linearized
spectrum are decoupled in the homogeneous wire (although they are coupled by scattering at the junction). Furthermore, the
outer branches are not coupled to the magnetic field in the linearized Hamiltonian of Eq. (14), and so for these modes sz and σz

are also separately conserved operators. These facts allow use to separate the inverse of Eq. (33) as a sum of two parts:

1

E − HBdG(q)
= 1 − szσz

2

[
1 + sz

2

(μ − αq)τzsz + �0τx − E

�2
0 − E2 + (μ − αq)2

+ 1 − sz

2

(μ + αq)τzsz + �0τx − E

�2
0 − E2 + (μ + αq)2

]

+ 1 + szσz

2

B0 + B1 αq + B2 (αq)2 − τzsz (αq)3

α4
(
q2 − q2

0

)(
q2 − q2

1

) . (34)

This time, the poles q0,q1 appearing in Eq. (34) are given by

α2q0,1 = E2 + μ2 − (
1
2gμBB

)2 − �2
0 ± 2i

√
μ2

(
�2

0 − E2
) − �2

0

(
1
2gμBB

)2
, (35)

while the matrices B0,B1,B2 are

B0 = E
[
E2 − �2

0 − (
1
2gμBB

)2] − 1
2gμBB

[
�2

0 + E2 − (
1
2gμBB

)2]
sxσx + �0

[
�2

0 − E2 − (
1
2gμBB

)2]
τx

+ gμBB �0 E τxsxσx, (36a)

B1 = [
E2 − �2

0 − (
1
2gμBB

)2]
τzsz − gμBB�0τysxσy, (36b)

B2 = −E + 1
2gμBB sxσx + �0τx. (36c)
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From these expressions, we may compute the Green’s function in this regime:

G(x,E) = 1 − szσz

2

i e−iμxsz/αe−
√

�2
0−E2|x|/α

2
√

�2
0 − E2

[
�0τx − E − isgn(x) τz sz

√
�2

0 − E2
]
τz sz

+ 1 + szσz

2

1

2α2
(
q2

0 − q2
1

) ∑
n=0,1

(−1)n
e−iqn|x|

αqn

[B0 − sgn(x)B1αqn + B2(αqn)2 + sgn(x)τzsz(αqn)3] τz sz. (37)

We can again extract the magnetic field dependence of the proximity-induced gap looking at the energy dependence of the poles
in Eq. (35). In general, the minimal gap is dictated by the competition between that of the inner and outer modes. The spectral
gap for the inner modes, which we denote �(k=0)(B), is given by

�(k=0)(B)

⎧⎪⎨
⎪⎩

�2
0

√
1 − (

1
2gμBB

)2
/μ2 if 1

2gμBB < μ2
/√

μ2 + �2
0,∣∣√�2

0 + μ2 − 1
2gμBB

∣∣ if 1
2gμBB > μ2

/√
μ2 + �2

0.

(38)

The gap of the outer modes is not influenced by the magnetic
field to the leading order in the ratio B2/mα2, thus, in our
effective model it is equal to �0 at all fields. The spectral gap
is thus given by

�(B) = min{�(k=0)(B), �0}. (39)

0 1 2
1
2gμBB/Δ0

0

0.5

1

Δ
(B

)/
Δ

0 0

0.5

αkF/Δ0 = 1

μ � mα2, gμBB, Δ0

0 1 2
1
2gμBB/Δ0

0

1

μ/Δ0 = 2

mα2 � μ, gμBB, Δ0

FIG. 4. Left panel: magnetic field dependence of the proximity-
induced gap �(B) in the high chemical potential regime, computed
from Eq. (32) for different values of the spin-orbit strength, measured
by increasing ratios αkF /�0. When α = 0, the gap closes for strong
enough Zeeman energies, and proximity-induced superconductivity
is destroyed. As long as some s-wave pairing is induced in the wire,
any finite value of spin-orbit strength will prevent such transition to
a gapless state to take place because the spin-orbit coupling prevents
a complete alignment of the electron spins with the magnetic field.
The spin-orbit coupling also changes the small field behavior of �(B)
from linear [�(B) − �0 ∝ B] to quadratic [�(B) − �0 ∝ B2]. For
weak spin-orbit coupling strengths, there is still an intermediate range
of magnetic fields for which �(B) decreases linearly with field. Right
panel: magnetic field dependence of the proximity-induced gap �(B)
in the low chemical potential regime, computed from Eq. (38) for
different values of μ. The gap closes at the critical field Bc(μ) =
2
√

�2
0 + μ2/gμB .

At a fixed value of μ, after a slow initial decrease the
proximity-induced gap decreases linearly with field and, as
already mentioned, closes at B = Bc(μ), at which point the
topological transition takes place (see Fig. 4). Increasing B

further, the gap �(B) reopens, growing linearly in field until
the gap at k = 0 becomes larger than that at finite momentum.
The gap at finite momentum is equal to �0, while it is well
known that this gap has in fact a weak field dependence: it is
quadratically suppressed with increasing B if corrections of
the order (gμBB/mα2)2, not included in our approximation,
are taken into account. This limitation is inconsequential for
our purposes since we are mainly interested in the Andreev
spectrum in the range of magnetic fields for which the relevant
gap is the one at k = 0.

III. PROPERTIES OF THE ANDREEV SPECTRUM

In this section we discuss in detail the magnetic field and
phase dependence of the Andreev bound-state energies. We
begin with a review of the basic notions underpinning the un-
derstanding of the excitation spectrum of a Josephson junction.

A. Andreev levels, excitation spectrum,
and fermion-parity switches

Solving the determinant equation derived in the previous
section [Eq. (25)] allows us to determine the subgap spectrum
of the BdG equations (15). Since we are dealing with a purely
1D model in the short-junction limit, we expect that the subgap
spectrum consists of (at most) two distinct Andreev levels. That
is, taking into account the doubling of the spectrum enforced
by the particle-hole symmetry, the subgap spectrum of the
BdG equations consists of (at most) four solutions {±E1,

± E2}. Without loss of generality, we fix a hierarchy 0 �
|E1| � |E2| � �(B).

Once the Andreev levels are determined, the many-body
Hamiltonian can be expanded as

H = E1
(
�
†
1�1 − 1

2

) + E2
(
�
†
2�2 − 1

2

) + · · · , (40)

where the ellipsis represents the omission of states coming
from the continuous part of the spectrum, with energies higher
than �(B). Neglecting the presence of these states, we can
limit ourselves to considering just four many-body eigenstates:
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0

E1

−E1

−E2

E2

B

Andreev levels

E

state energy

Γ†
1|V = |1

Γ†
2|V = |2

Γ†
1Γ

†
2|V = |P

|V − 1
2 (E1 + E2)
1
2 (E1 − E2)

1
2 (E2 − E1)

1
2 (E1 + E2)

B

ωeven

ωodd

|1

|V

|P

|2

many-body spectrum

FIG. 5. Top: energies of the four lowest-lying many-body eigen-
states of the junction. The eigenenergies are determined by Eq. (40).
Bottom: diagrams illustrating the relation between the Andreev levels
{±E1,±E2} (eigenvalues of the BdG equations, left panel) and the
many-body spectrum (right panel). The two diagrams also illustrate
the occurrence of a fermion- parity switch. We consider a scenario in
which, as a parameter of the system is varied, E1 crosses the Fermi
level (green arrow in left panel). In the figure, the tuning parameter
is represented by the magnetic field close to its switching value
B = Bsw + δB (see discussion in Sec. III C). In the corresponding
many-body spectrum, the change of sign of E1 manifests itself as a
change in the many-body ground state (green arrow in right panel).
The ground-state transition is between two states of different fermion
parity (assuming the Andreev levels are nondegenerate). In the right
panel, the two black arrows mark transition frequencies between
states of equal fermion parity, ωeven = E1 + E2 and ωodd = E2 − E1.

the vacuum state |V 〉, which is annihilated by both �1 and �2;
two single-particle states |1〉 = �

†
1|V 〉 and |2〉 = �

†
2|V 〉; and

finally the state with a pair of quasiparticles |P 〉 = �
†
1�

†
2|V 〉.

The fermion parity of the junction, which is a global symmetry
of the Hamiltonian, is even in the states |V 〉 and |P 〉, and odd
in the states |1〉 and |2〉. Up to a common constant, the energies
of these four many-body eigenstates are simply related to the
Andreev levels E1 and E2 via Eq. (40) (see the table in Fig. 5).

Note that, so far, we have not specified the sign of the
energies E1 and E2 appearing in Eq. (40). In fact, this choice
is arbitrary: as can be seen in Fig. 5, the many-body spectrum
is invariant under a change of sign of E1 and E2. This is,
again, a consequence of the particle-hole symmetry of the
model. Conventionally, one chooses E1 and E2 to be positive

in Eq. (40). In this case, the ground state of the system is
identified with the even-parity state |V 〉. The states |1〉, |2〉,
and |P 〉 are excited states with excitation energies E1, E2, and
E1 + E2 respectively.

Although the initial choice of the sign of E1 and E2

in Eq. (40) is conventional and does not have measurable
consequences, a change in the sign of E1 is physical, and
it has measurable and important consequences. Such a change
in sign can occur as some of the parameters of the system are
varied, typically the magnetic field B or the phase φ. To fix the
ideas, let us assume that E1 is initially positive and that it can
be tuned through the point E1 = 0 by changing a parameter,
a so-called Fermi level crossing (see green arrow on the left
panel of Fig. 5). When E1 = 0, the states |V 〉 and |1〉 are
degenerate in energy: the energy cost to add a quasiparticle
to the junction vanishes (see green arrow on the right panel
of Fig. 5). Furthermore, when E1 becomes negative, the
odd-parity state |1〉 becomes the ground state of the junction.
This ground-state transition driven by a Fermi level crossing
is commonly referred to as a fermion-parity switch.

Fermion-parity switches can be generically expected in
Josephson junctions with broken time-reversal symmetry [42],
and can drastically affect the thermodynamic and transport
properties of the junction. The Yu-Shiba-Rusinov states as-
sociated with magnetic impurities in s-wave superconductors
[67–70] provide an early example of this type of phenomenon.
A fermion-parity switch is also at the basis of the 4π -periodic
Josephson effect associated with Majoranas [30,38,71]. In
this case, the peculiarity is that there is an odd number of
fermion-parity switches in a 2π phase interval, a signature of
the presence of a fermion-parity anomaly in the low-energy
theory of the junction (only an even number of fermion-parity
switches in a 2π phase interval is allowed in a topologically
trivial phase). Later in this section, we will investigate the
occurrence of fermion-parity switches in the model under
study, both in the trivial and topological phases. Before doing
so, we provide an overview of the features of the Andreev
spectrum of the model, starting from the well-known case in
which B = 0.

B. Solution at zero magnetic field

At zero magnetic field, an analytic solution leads to a
well-known universal result for the Andreev levels [56,72,73].
The Andreev levels form a degenerate doublet E1 = E2 ≡ EA

with

EA = �0 [1 − τ sin2(φ/2)]1/2. (41)

This result is valid independently on the values of chemical
potential μ and spin-orbit coupling α, provided that the
Andreev approximation is applicable.

While the solution (41) is already well known, it is
instructive to reproduce this result from Eq. (25). At B = 0,
the Green’s function G(0−,E), which can be deduced from
Eqs. (31) or (37), takes a particularly simple form

G(0−,E) = i

2

�0√
�2

0 − E2
[τx − eiβ(E)τzsz ] τzsz, (42)
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with β(E) = arccos(E/�). There are three meaningful facts
about the above expression. First, it is valid for both limits
μ � mα2,�0 and mα2 � μ,�0, so we already see that the
solutions of the determinant equation (25) will be common
to the two cases. Second, in both limits, the right-hand
side of Eq. (42) is independent of the spin-orbit coupling
strength α. This is a consequence of the fact that spin-orbit
coupling can be removed from the Hamiltonian via a local
gauge transformation, and so the Green’s function evaluated
at a single point can be made independent of α. Thus,
the independence of EA on α can also be explained as a
consequence of the short-junction limit. Third, the right-hand
side of Eq. (42) is proportional to the unit matrix in the spin
grading, which leads to the anticipated double degeneracy of
the solutions. Plugging the Green’s function from Eq. (42) and
the transfer matrix from Eq. (26) into the determinant equation
(25), we obtain the solution (41).

It is also possible to write the bound-state wave functions
explicitly. In order to do this, the first step is to solve the
system of linear equations G(0−,EA) M �̃(0−) = �̃(0−) to
find the wave functions at the position x = 0−. Then, using
the knowledge of G(x,EA) at arbitrary x, one can reconstruct
the entire wave function using Eq. (22). Carrying out this
procedure, one finds two solutions �1(x) and �2(x), which
are written out in detail in Appendix A. In our model, spin
along the z direction is a good quantum number at B = 0,
and �1(x) and �2(x) are identical except for the fact that they
carry opposite spin. As anticipated in the previous paragraph,
the spin-orbit interaction is not effective in separating the two
Andreev levels with opposite spins in energy. This would be
true even in a model where the spin-orbit interaction takes
a more general form and breaks the spin rotation symmetry
completely. The degeneracy can not be explained by invoking
Kramers’ theorem either: the Kramers partner of �1(x,φ) is
�2(x,−φ), so that the two wave functions form a true Kramers
doublet only at the time-reversal-invariant points φ = 0,π .
Rather, the degeneracy of the Andreev levels is a consequence
of the short-junction limit. It is removed by spin-orbit coupling
if corrections of order (L/ξ ) are taken into account [11,35], or
even in the short-junction limit in the case of a multiterminal
junction [45].

C. Magnetic field dependence of the spectrum:
Qualitative features

When a finite magnetic field is present, in general we find
that the Andreev level spectrum cannot be found analytically.
Thus, away from simple limits, we resort to a numerical
search of the roots of the determinant (25). In total, once
one of the two linearization limits is taken, there are four
parameters which determine the spectrum: the magnetic field
B, the phase φ, the transparency of the junction τ , and either
the spin-orbit coupling α (when μ � �0,mα2, 1

2gμBB) or
the chemical potential μ (when mα2 � �0,μ, 1

2gμBB). We
focus in particular on the field and phase dependence of E1

and E2, since these are the two parameters which are varied
systematically in experiment.

Let us first discuss the simple situation in which spin-orbit
coupling is absent: α = 0. In this case, spin is a good quantum
number and the Zeeman interaction is separable from the

rest of the Hamiltonian. One simply obtains a linear Zeeman
splitting E1 = EA − 1

2gμBB and E2 = EA + 1
2gμBB, with

the same g factor as that of the continuum states (see inset in
the right panel of Fig. 6). Note that by increasing the magnetic
field one reaches a field value Bsw(φ) = 2EA(φ)/gμB at which
E1 changes sign: a Fermi level crossing occurs. Because EA(φ)
has a minimum at φ = π , this is the value of the phase at
which the Fermi level crossing occurs first upon increasing the
magnetic field. After this point, i.e., for B > Bsw(π ), a pair
of fermion-parity switches is nucleated symmetrically around
φ = π (see for instance the top right panel of Fig. 6). This
behavior is consistent with the fact that, in a topologically
trivial phase, the number of fermion-parity switches in a
2π phase interval must be even. While E1 decreases with
field, the other Andreev level E2 increases and merges with
the continuum of states with opposite spins at a field value
Bcross = 2(�0 − EA)/gμB . This crossing of the Andreev level
with the continuum is protected by spin conservation.

The magnetic field dependence of Andreev level spectrum
is qualitatively different in the presence of spin-orbit coupling.
The typical behavior of the Andreev spectra at fixed τ, φ, and α

is shown in Fig. 6 in both linearization limits. Before entering
into the quantitative details of the features of the Andreev
levels, let us discuss the important qualitative features.

We begin by discussing the case μ � mα2,�0,gμBB,
illustrated in the left panel of Fig. 6. For small magnetic
fields, the two Andreev levels E1 and E2 split linearly.
The lowest-lying level E1 maintains its approximately linear
behavior in B up to the occurrence of a Fermi level crossing.
Similarly to the zero spin-orbit coupling case discussed earlier,
Fermi level crossings first appear at φ = π upon increasing the
magnetic field and are then nucleated in pairs around this point.
The field Bsw(π ) at which the Fermi level crossing first occurs
depends on α and τ : this dependence is investigated in detail
later. The energy E2 of the second Andreev level increases with
B, but bends down at B � Bcross, when E2 becomes close in
energy to the continuum gap �(B), which is decreasing in field.
This is due to the fact that, in the presence of both Zeeman and
spin-orbit couplings, there are no symmetries in the model
which protect the crossing of the Andreev level with the
continuum. This avoided crossing between the Andreev level
and the continuum leads to a nonmonotonic dependence of E2

on B. Such a nonmonotonic dependence is the cause of the
suppression in B of the transition frequency ωeven = E1 + E2

between the two junction states with even parity, a fact which
we used to explain the observed absorption spectra of an
InAs/Al Josephson junction in Ref. [14] (see also Sec. V).

In the low chemical potential regime, shown in the middle
panel of Fig. 6, the two Andreev levels also split linearly for
small magnetic fields. However, their behavior at large fields is
drastically different from that at high chemical potential, due
to the different behavior of the gap �(B). The two Andreev
levels merge in rapid sequence with the continuum of states,
whose gap is linearly decreasing, right before the topological
transition at B = Bc. In the topological phase at B > Bc, we
find that the subgap spectrum consists of a single pair of An-
dreev levels ±E1. We may see the energy E1 as the result of the
coupling between two Majorana zero modes located at the two
interfaces of the junction. This notion is accurate in particular
for τ � 1, when the two interfaces are weakly coupled.
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FIG. 6. Left panel: magnetic field dependence of the Andreev levels E1 (red) and E2 (blue) for μ � �0,mα2,gμBB at a fixed value of
the phase φ = π . Other parameters: τ = 0.75, αkF /� = 0.5. The solid black line is the gap �(B) of the continuum (gray area). The thin
black lines represent the transition frequencies ωeven and ωodd which determine the microwave absorption spectrum (the factor 1

2 is included
for convenience). Note the presence of a fermion-parity switch (green arrow) at which E1 = 0 and ωeven = ωodd. For comparison, the inset
shows the equivalent spectrum obtained in the absence of spin-orbit coupling, α = 0. Middle panel: magnetic field dependence on the Andreev
levels in the low chemical potential regime, with parameters μ = 0, φ = 3π/4, and τ = 0.75. As in the left panel, the solid black line is the
gap � of the continuum, which vanishes at the topological transition. The single Andreev level appearing in the topological phase after the
gap closing originates from the hybridization of two Majorana zero modes at the junction. Right panels: phase dependence of the Andreev
levels at the value of the B marked by the vertical dashed lines in the left and middle panels, for both trivial and topological phases (upper
and lower panels, respectively). The bottom panel shows the phase dependence of the Andreev level in the topological phase for two different
values of the transmission probability τ . The green arrow marks the point of a single Fermi level crossing at φ = π , which is at the origin of
the 4π -periodic Josephson effect marking the topological nature of the high-field phase. By contrast, in the trivial phase Fermi level crossing
always come in pairs in a 2π interval (see the upper panel).

The phase dependence of E1 in the topological phase is
shown in the bottom right panel of Fig. 6 for two different
values of the junction transparency τ . In both cases, and for
any B > Bc, the energy spectrum displays a single Fermi level
crossing at φ = π . (This behavior should be contrasted with
that of the topologically trivial phase, where, as discussed
earlier, Fermi level crossings appear in pairs, see top right
panel of Fig. 6). The pinning of the position of the Fermi level
crossing at φ = π for B > Bc is due to a symmetry of our
particular model. Under the combined operation S = σxR,
where R is the operator of spatial inversion x �→ −x, the
Hamiltonian in Eq. (1) is mapped to itself up to the change
φ �→ −φ [39]. This dictates that the Andreev spectrum must
be symmetric around φ = 0, i.e., that E1(φ) = E1(−φ). If,
additionally, we recall that the entire spectrum must be 2π

periodic in φ, the only allowed point where E1 can vanish is
indeed φ = π (this consideration holds in the case that only
a single Fermi level crossing is present in a 2π period.) A
Josephson junction with more transport channels or a denser
Andreev spectrum may exhibit a higher number of Fermi level
crossings [74], and in a model where there are no constraints
coming from spatial inversion, the position of the Fermi level
crossing may be in general different from π .

In the rest of this section, we investigate in more detail the
different qualitative features of the Andreev level spectrum
described so far.

D. Behavior at small field: Zeeman splitting
of the Andreev levels

We have seen that in both linearization limits the Andreev
levels split starting from infinitesimally small magnetic fields.

The linear-in-B splitting can be captured by standard de-
generate perturbation theory applied to the zero-field wave
functions presented in Appendix A. This procedure is valid
as long as | 1

2gμBB| � �0 − EA, so that the discrete Andreev
levels are distant from the continuum part of the spectrum.
Thus, the results presented in this section are most relevant
for 1 − τ � 1 and |φ − π | � π , i.e., when the energy EA is
much lower than the gap �0.

It is useful to cast the result of the perturbation calculation
in terms of an effective g factor which is the linear coefficient
of the expansion of E1 and E2 around B = 0:

E1 = EA − 1
2 gA μB B + · · · , (43)

E2 = EA + 1
2 gA μB B + · · · . (44)

We find that the Andreev level g factor gA is different from
the “bare” value g, which determines the size of the Zeeman
gap at k = 0 in the homogeneous wire, and that gA can depend
strongly on the system parameters.

At perfect transmission, τ = 1, the zero-field Andreev
bound-state wave functions are eigenstates of the velocity
operator sz [see Eq. (A3)]. Therefore, only the part of
the Zeeman coupling which mixes copropagating modes is
effective in splitting the Andreev levels (see Appendix B for a
discussion). In this case, it is possible to derive an expression
for gA which is valid at any value of the ratio μ/mα2, provided
that max(μ,mα2) � �0:

gA

g
= �2

0 sin2(φ/2)

�2
0 sin2(φ/2) + mα2 (2μ + mα2)

(τ = 1). (45)
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The equation above can be derived by using a linearization
procedure which interpolates between the two limits μ � mα2

and mα2 � μ used in Secs. II A and II B, respectively;
the derivation is contained in Appendix B. When mα2 = 0,
Eq. (45) yields gA = g independently on the value of all other
parameters. At any finite value of mα2 the Andreev bound-state
g factor gA is reduced with respect to the bare value g. The
suppression is the strongest when mα2 � μ,�0, in which case
Eq. (45) yields gA � g. A finite spin-orbit coupling also makes
gA dependent on the phase difference φ, with a maximum at
φ = π .

The considerations in the previous paragraph, based on
Eq. (45), remain qualitatively valid also for τ < 1. In the
presence of scattering, the Andreev bound-state wave func-
tions are superpositions of states with opposite velocity. In
this case, the magnetic field mixes the counterpropagating
components (originating from modes close to k = 0) as well
as the copropagating ones (originating from modes at finite
k) (see the discussion in Appendix B). We may write the
Andreev level g factor as a sum of two terms, gA = g⇒ +
g�, corresponding to these two different contributions. The
copropagating contribution is given by

g⇒
g

= �2
0 − E2

A

�2
0 − E2

A + mα2 (2μ + mα2)
, (46)

of which Eq. (45) is a special case. Equation (46) is the
dominant contribution to the g factor when μ � mα2,�0,
in which case |g⇒| � |g�| and gA ≈ g⇒ for any value of the
transmission τ .

The counterpropagating contribution g� becomes relevant
in the opposite regime mα2 � μ,�0. Indeed, in this regime,
the dominant mixing introduced by a small magnetic field is
the one between the counterpropagating modes at k = 0, which
both participate in the formation of the Andreev bound states
provided that τ < 1. In the limit μ/mα2 → 0 and �0/mα2 →
0, the one treated in Sec. II B, we find

g�
g

= τ
√

1 − τ

2

μ�0|sin(φ/2)|
�2

0 − E2
A + μ2

− 1 − τ

2

�2
0 − E2

A

�2
0 − E2

A + μ2
,

(47)

which is illustrated in Fig. 7. Equation (47) is the leading
contribution to the total g factor gA = g⇒ + g� at low
chemical potential, except for the vicinities of τ = 1 and μ =
μ0, with μ0 = �0

√
1 − τ | sin φ/2|. In these narrow regions

of the parameter space, Eq. (47) is vanishing and thus the g

factor is determined by the copropagating contribution g⇒,
in spite of its smallness. Furthermore, note that g⇒ and
g� have competing signs when 0 < μ < μ0, and so in this
region higher-order corrections in the parameter μ/mα2 may
be crucial to determine the g factor (including its overall
sign). However, as discussed in Appendix B, the correction
to Eq. (47) due to a finite ratio μ/mα2 cannot be easily
computed within a linearized spectrum approximation since
such a calculation necessarily involves the electronic state
close to the bottom of the parabolic bands of Fig. 2. Finally,
we note that Eqs. (46) and (47) agree in predicting a ∼1/μ

suppression of gA when μ � �0.
The value of gA is not directly accessible in microwave

absorption spectroscopy since the microwave transition

0 1 2 3
μ/Δ0

0

0.1

|g
�
|/

g

τ = 0.8

τ = 0.9

τ = 0.95

FIG. 7. Contribution g� to the Andreev level g factor gA coming
from the coupling between counterpropagating modes, normalized to
the bare g factor g of Eq. (1). The curves are obtained from Eq. (47)
with φ = π for different values of τ . The zeros of g� happen at
μ0 = �0

√
1 − τ | sin(φ/2)|. Away from these points, g� provides

the leading contribution to the Andreev g factor gA at μ,�0 � mα2.
Note that, as explained in the main text, gA may be much smaller than
the bare g factor g of Eq. (1).

frequency ωeven = E1 + E2 is insensitive to the linear splitting
in B. However, it is observable in tunneling spectroscopy,
which can access E1 and E2 individually. The analysis
contained in the above paragraphs suggests that a systematic
investigation of gA may be valuable to obtain information
about the electron density and the strength of the spin-orbit
coupling in the nanowire. This investigation can be carried
out at very small values of the field and may be helpful in
predicting or understanding the high-field behavior of the
system.

E. Occurrence and position of Fermi level crossings

Earlier in the text, we have seen that, in the high chemical
potential regime μ � mα2,gμBB,�0, Fermi level crossings
may occur at a field B = Bsw (see the left panel of Fig. 6). In
Fig. 8 we study in more detail the dependence of Bsw, computed
at φ = π , on spin-orbit coupling strength and transmission.

There are two notable trends. First, the switching field Bsw

decreases upon increasing the transmission τ at fixed spin-orbit
strength. This is due to the fact that the larger τ is, the closer
to zero is EA, and thus a smaller field is required to induce the
Fermi level crossing. Second, when increasing the spin-orbit
strength at fixed transmission, the field Bsw increases. This
is due to the suppression of the Andreev level g factor gA

with increasing spin-orbit strength or chemical potential [see
Eq. (46)], which leads to a slower decrease of E1 with B.
Our numerical results suggest that there is a value (αkF )max

above which the Fermi level crossings are absent: that is, the
curves in Fig. 8 have an asymptote at finite αkF at which
Bsw diverges. Qualitatively, a strong spin-orbit coupling may
prevent the Fermi level crossing to occur because of the level
repulsion between the Andreev level E1 and the negative image
of the rest of the spectrum. Judging from the numerical data
shown in Fig. 8, (αkF )max depends on the transmission τ , and
it grows with increasing τ → 1. We attribute this behavior to
the fact that, in the limit τ → 1, EA(π ) → 0: thus, a Fermi
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FIG. 8. Dependence of the magnetic field Bsw, at which a Fermi
level crossing occurs, on the spin-orbit strength, for different values
of the transmission coefficient τ and at fixed phase φ = π , for the
high chemical potential regime μ � �0.

level crossing appears already at an infinitesimally small field,
and it becomes prohibitive to remove it. Finally, we notice that
numerical calculations do not reveal the presence of Fermi
level crossings in the opposite regime mα2 � μ,gμBB,�0.
We attribute this behavior to the fact that, in this regime, gA �
g. Therefore, the decrease in energy of the Andreev bound
states is much slower than that of the continuum states (see for
instance the middle panel of Fig. 6), preventing the occurrence
of a Fermi level crossing at a field B < Bc.

In a tunneling spectroscopy experiment, the closing of the
excitation gap of the junction at a Fermi level crossing in the
regime μ � �0 may be naively mistaken for a bulk topological
transition. Indeed, a typical magnetic field scale for a fermion-
parity switch is Bsw ∼ 500 mT [14], not dissimilar from that
of the critical field Bc [17]. The strong dependence of Bsw on
τ (as well as φ), however, should allow to discriminate easily
between the two cases.

IV. CURRENT OPERATOR AND THE
EQUILIBRIUM CURRENT

In this section, we evaluate the temperature and magnetic
field dependence of the equilibrium current. It is known that,
in a short Josephson junction not subject to magnetic field,
the current is carried almost entirely by the Andreev bound
states [56,73,75,76]. This conclusion remains true also in
the presence of magnetic field (with or without spin-orbit
coupling), as we will now argue following the discussion from
Ref. [76]. On one hand, the energies of the Andreev bound
states vary by an amount ∼� upon varying the phase φ, and
thus they provide a finite contribution to the current in the limit
L/ξ → 0. On the other hand, the contribution of the continu-
ous spectrum to the current density comes from states within
the energy range � < E < ETh. Here, ETh is the Thouless
energy, i.e., the energy scale associated with the flight time
of quasiparticles across the junction; in a short quasiballistic
junction, the Thouless energy is large, ETh/� ∼ ξ/L � 1.
The spectral density of the current delivered by states with
energy ∼E scales as �2/(EThE) for energies in the interval

ETh � E � �. It yields a total contribution ∝(Ł/ξ ) ln(ξ/L)
to the current, which vanishes in the limit L/ξ → 0 [76]. This
argument remains valid even in the presence of a magnetic
field or spin-orbit coupling. Therefore, in the following
we neglect the contribution of the extended states to the
current.

We start by finding the current operator j (x) for the
junction, and then evaluate the contribution of the many-body
eigenstates |V 〉, |1〉, |2〉, and |P 〉 (see Fig. 5). The current
operator can be derived from a continuity equation for the
electric charge density ρ, which for the original model of
Eq. (1) is given by the operator

ρ(x) = e

2
ψ†(x)τzψ(x). (48)

The continuity equation for ρ can be computed using the
equation of motion of the field ψ(x) under the Hamiltonian of
Eq. (1). It can be cast in the form

∂t ρ(x) + ∂x j (x) = s(x), (49)

with j (x) the quasiparticle current operator, which includes a
contribution from the spin-orbit coupling

j (x) = e

2mi
ψ†(x) ∂xψ(x) + e

2
α ψ†(x) σz ψ(x), (50)

and s(x) a charge source (or drain) term due to the presence of
the superconducting condensate [77]

s(x) = e�0 ψ†(x) τye
−iφ sgn(x)τz/2 ψ(x). (51)

At the position of the junction, x = 0, the source term vanishes
since there is no proximity-induced pairing �0. Thus, at the
junction the equilibrium current can be computed by studying
only the quasiparticle contribution coming from j (x). In the
superconducting leads, the quasiparticle current is converted
into current carried by the condensate over a length ∼ξ .
Correspondingly, the contribution of the j (x) term to the
equilibrium current decays away from x = 0. The decay is
compensated by the source term [77] to ensure the current
conservation along the wire.

Using Eqs. (3) and (13) we find the current operator
projected to low energies [recall that � = (ψR,ψL)T encodes
the left- and right-moving envelope fields]

j (x) = ev

2
�†(x)sz�(x), (52)

where v = vF in the limit of high chemical potential, and
v = α for mα2 � μ,gμBB,�0. Using the pseudounitarity of
the transfer matrix (11), together with the boundary condition
for � at the origin [Eq. (8)], one can check that the linearized
current operator in Eq. (52) is continuous across the junction,
i.e., j (0−) = j (0+). We will thus evaluate the current at x = 0−
from now on and omit the position argument.

The current operator can be expanded in the eigenbasis of
the linearized Hamiltonian by using Eq. (16):

j =
∑

n

(
�†

n�n − 1

2

)
jn,n

+ 1

2

∑
n�=m

(�†
n�m jn,m + �†

n�
†
m jn,Pm + H.c.). (53)
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Here, we have introduced the matrix elements of the current
operator between BdG eigenstates

jn,m = ev �†
nsz�m, (54)

jn,Pm = ev �†
nszP�m. (55)

The diagonal matrix elements jn,n in Eq. (53) give the
dissipationless supercurrent. Including, as already discussed,
only the contribution from Andreev bound states to the sum in
Eq. (53), we find

〈j 〉 = (
n1 − 1

2

)
j1,1 + (

n2 − 1
2

)
j2,2, (56)

with 〈·〉 being the quantum expectation value and nn = 〈�†
n�n〉

the occupation factors for the different quasiparticle states. At
thermal equilibrium with temperature T , 〈�†

n�n〉eq = f (En),
where f (E) = [1 + exp(E/kBT )]−1 is the Fermi-Dirac distri-
bution. At B = 0, the diagonal matrix elements have a simple
analytic expression which can be computed using the wave
function in Eq. (A3) in Appendix A:

j1,1 = j2,2 = e

2

�2
0τ sin φ

EA(φ)
(B = 0). (57)

The result is independent of μ and α, as long as the
Andreev approximation is valid (see Sec. III B). Plugging the
expression above into Eq. (56) immediately leads to the known
expression for the Josephson current in a single-channel weak
link

〈j 〉eq = e

2h̄

�2
0

EA(φ)
τ sin φ tanh

[
EA(φ)

2kBT

]
. (58)

In this zero-field case, the fact that j1,1 = j2,2 has the
consequence that the Josephson current vanishes if the state
of junction is one of the two odd-parity states. Namely, from
Eq. (56) we see that 〈j 〉 = 0 if j1,1 = j2,2 and n1 + n2 = 1.
This is the so-called “poisoned” state of the junction [4,78],
in which one excess quasiparticle can completely block the
passage of current. Note that, if the junction has more than
one pair of Andreev bound states, a single excess quasiparticle
will not block the current completely, as there will be more
contributions to the total equilibrium current.

The typical behavior of the equilibrium current-phase
relation at finite magnetic field is illustrated in Fig. 9. At
small fields, the behavior is not qualitatively different from that
of Eq. (58). At low temperatures, the current-phase relation
exhibits the skewed-sine shape typical of weak links, with
the skewness being suppressed with increasing temperatures
(see upper panel in Fig. 9). The behavior is more interesting
at higher fields, such that fermion-parity switches occur as
a function of the phase φ, as in the Andreev spectrum in
the upper right panel of Fig. 6. In this case, at T = 0 the
current exhibits a discontinuity in correspondence with each
fermion-parity switch (see bottom panel in Fig. 9). At finite
temperatures there is no discontinuity, but a remnant of the
fermion-parity switches remains in the behavior of the current
phase relation close to φ = π . Finally, we mention that, as
expected, the current model does not exhibit the anomalous
Josephson effect (i.e., a finite supercurrent at φ = 0). Indeed,
for single-channel nanowire Josephson junction, it is known
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FIG. 9. Current-phase relation of the nanowire Josephson junc-
tion at equilibrium at different temperatures. The current is measured
in units of j0 = e�0/h̄. The equilibrium current is computed in the
regime μ � �0,gμBB,mα2 for two different values of magnetic
field B (upper and lower panels) and with all other parameters as
in the left panel Fig. 6: αkF /�0 = 0.5,τ = 0.75. The two values of
magnetic field are chosen to be on the left and on the right of the
fermion-parity switch in the left panel of Fig. 6. The bottom panel
thus reveals the effect of fermion-parity switches (marked again by
green arrows) on the equilibrium current. At T = 0, fermion-parity
switches are signaled by a discontinuity in the equilibrium current,
which is rounded off at finite temperatures. At finite temperature, the
current is suppressed in the region of odd ground state parity between
the two parity switches.

that the latter requires a component of the magnetic field to be
aligned with the spin-orbit field [52].

V. MICROWAVE ABSORPTION

In this section we study the microwave absorption spectrum
of a short Josephson junction [54,79–82] (for the opposite case
of a long junction, see also Refs. [50,83,84]). The microwave
field is modeled as a monochromatic ac voltage drop V (t) =
V0 cos(ωt) across the junction and is minimally coupled to the
electronic field ψ . This leads to the addition of the following
time-dependent term to the Hamiltonian of Eq. (1):

δH (t) = j (V0/ω) sin(ωt), (59)

where j is the current operator evaluated at the junction.
We assume that the perturbation δH is small, eV0/ω � 1.
The form of the perturbation δH (t) remains valid also after

075404-14



ZEEMAN AND SPIN-ORBIT EFFECTS IN THE ANDREEV . . . PHYSICAL REVIEW B 96, 075404 (2017)

the spectrum linearization since, as we have discussed in
the previous section, the current matrix elements at the
position of the junction remain well defined and continuous,
j (0−) = j (0+) ≡ j . Using standard linear response theory, the
expectation value of the current at time t is determined by the
response function χ (t) = −i θ (t) 〈[j (t),j (0)]〉eq:

〈j (t)〉 = 〈j 〉eq + V0

ω

∫ ∞

−∞
χ (t − t ′) sin(ωt ′) dt ′. (60)

In the frequency domain, the response function χ (ω) deter-
mines the admittance of the junction Y (ω) = iχ (ω)/ω. In turn,
the real part of the admittance gives the absorption power W

of the microwave radiation W = 1
2 V 2

0 ReY (ω) with ω > 0.
Using Eq. (53) to compute the response function, we find

Re Y (ω) = π

ω

∑
En�Em

|jn,Pm|2δ[ω − (Em + En)]

× [1 − f (Em) − f (En)] + π

ω

∑
En�Em

|jn,m|2

× δ[ω − (En − Em)][f (Em) − f (En)] + · · · .

(61)

The first line in Eq. (61) corresponds to transitions where
two quasiparticles are created by breaking a Cooper pair and
occupy two energy levels with energies En and Em. The second
line corresponds to transitions where a single quasiparticle
with energy En is excited into a higher state with energy Em.
We will refer to these two types of transitions, respectively,
as the “even” or “odd” ones since they are distinguished
by the parity of the number of quasiparticles involved.
Note that only transitions in which initial and final states have
the same fermion parity are allowed. Transitions between the
discrete states, which are accounted for in Eq. (61), produce
sharp maxima in the frequency dependence of the absorption
coefficient. The omitted terms in the admittance, indicated by
dots in Eq. (61), involve unbound quasiparticle states and result
in an absorption continuum.

We shall consider low frequencies ω < 2�, focusing on
the transitions between the Andreev bound states. Indeed, at
these low frequencies the excitation of Andreev states are the
only possible resonant processes (unless the system is close
to the critical point separating topological and trivial phases,
a case treated in Ref. [85]). Transitions between possible
above-gap nonequilibrium quasiparticles are very weak and
do not result in a sharp absorption line, so we will ignore
them. In the case under consideration of a single-channel
short junction, with only two Andreev states with energies
E1 and E2, there is only one relevant term in each sum
in Eq. (61). These terms correspond to the two allowed
transitions depicted in the bottom right panel of Fig. 5: the
pair excitation |V 〉 → |P 〉 with frequency ωeven = E1 + E2

and the single-particle excitation |1〉 → |2〉 with frequency
ωodd = E2 − E1. As mentioned in the Introduction, we call
these “even” and “odd” transitions, respectively. The matrix
elements j2,P1(0−) and j2,1(0−) determine the strengths of
these transitions; their dependence on the system parameters
is discussed next in detail, first for the even transition and then
for the odd one.

A. Visibility of the even transition |V〉 → |P〉
We start by discussing the case B = 0. Again by using

the wave functions in Eq. (A3) of Appendix A, we find the
analytical expression for the relevant current matrix element

|j2,P1|2 = e2(1 − τ ) τ 2 sin4(φ/2)
(
�4

0

/
E2

A

)
. (62)

Equation (62) was previously derived in Ref. [80] using a
tunneling Hamiltonian formalism, which is in agreement with
our current method based on the transfer matrix. Just like
the B = 0 Andreev energy EA, it is independent on the
chemical potential μ and the spin-orbit coupling α and it
generalizes to the case of multiple transport channels with
different transparencies. Note that |j2,P1|2 vanishes for τ = 1:
the absence of scattering at the junction prevents the excitation
of the Andreev bound states since in this case the current is a
diagonal operator in the eigenbasis of Eq. (53). In the presence
of scattering, the Andreev bound states are superpositions of
different current eigenstates and microwave-induced transi-
tions become possible [60]. Equation (62) has a maximum
at φ = π , corresponding to the point of greater visibility of
the absorption spectral line. The visibility vanishes for small
phases. This behavior is in agreement with experiment both
in case of nanowire Josephson junctions [14] as well as other
types of weak links [5,82].

The dependence of j2,P1 on magnetic field can be deter-
mined by finding the wave functions of the Andreev bound
states numerically via Eq. (22). We find that a finite magnetic
field suppresses the magnitude of the current matrix element,
while maintaining its phase dependence qualitatively similar
to that described by Eq. (62) (see upper panel of Fig. 10).
The decrease of j2,P1 with increasing magnetic field is slow in
both regimes mα2 � μ0,�0 (see the inset of the bottom panel
in Fig. 10) and μ � �0,mα2 (see Fig. 12). We attribute this
decrease to the suppression of the proximity-induced gap �(B)
with B (see Fig. 4), which makes the Andreev bound states
less tightly confined to the junction and thereby decreases the
effective coupling to microwaves, j2,P1 ∼ �(B). Finally, at
finite fields, the current matrix elements also acquire a weak
dependence on the chemical potential, as illustrated in the
bottom panel of Fig. 10.

B. Visibility of the odd transition |1〉 → |2〉
Without magnetic field, B = 0, the current matrix element

associated with the odd transition (which has anyway zero
frequency) vanishes: j2,1 = 0. This is due to the fact that
the zero-field Andreev bound states have opposite spin [see
Eqs. (A1) and (A2)], while the perturbation Hamiltonian
(59) preserves spin. As the magnetic field is increased from
zero, the odd transition may become visible depending on
the spin-orbit coupling strength. If spin orbit is absent (or
negligible), the two Andreev bound states would develop
an opposite spin polarization in the presence of a Zeeman
field: therefore, again due to the spin selection rule, the odd
transition would remain forbidden. In the presence of both
spin-orbit coupling and magnetic field, however, this spin
selection rule is no longer applicable: the two Andreev bound
states would have a nonzero spin overlap and one may in
general expect a nonvanishing matrix element. Indeed, we
determine numerically that j2,1 �= 0 at finite B in the presence
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FIG. 10. Top panel: dependence of the square of the current
matrix element |j2,P1|2, which determines the visibility of the even
transition |V 〉 → |P 〉, on the phase φ for different magnetic fields
B, in the regime μ � �0,mα2. Other parameters are the same as
Fig. 9: αkF /�0 = 0.5,τ = 0.75. As in Fig. 9, the current is in units
of j0 = e�0/h̄. The B = 0 curve (black dashed line) is given by
Eq. (62), the rest of the curves are determined numerically. Bottom
panel: dependence of the same current matrix element |j2,P1|2 on
chemical potential μ (main figure) and magnetic field B (inset)
for the case mα2 � �0,μ and for φ = π , τ = 0.75. The chemical
potential dependence is given for different values of the magnetic
field (see labels close to each curve). The current matrix elements are
normalized by their zero-field value [Eq. (62)], which is independent
of μ.

of spin-orbit coupling. Importantly, even in this case we find
that |j2,1|/|j2,P1| � 0.1 (see the bottom right panel of Fig. 11).
Hence, despite not being forbidden, the dim odd transition may
be still much more difficult to observe with respect to the bright
even transition. We now discuss the dependence of j2,1 on the
system parameters.

As in the case of the even transition, the current matrix
element |j2,1| has a maximum when φ = π and vanishes for
small phase differences; in what follows, we focus on the peak
value. The dependence of |j2,1| on chemical potential is shown
in the top panel of Fig. 11 for different values of B. The current
matrix element is nonzero at μ = 0, it grows slowly, and it
reaches a maximum at a small value of μ/�0 before decreasing
again. After this point, we find that |j2,1| ∝ (�0/μ)2 when
μ/�0 � 1, as shown in the bottom left panel of Fig. 11. These
considerations are valid when mα2 � �0,μ. The suppression
of |j2,1| for μ � �0 in this regime matches the numerical
results that we obtain for μ � mα2, where we find that the
matrix element is zero (within numerical precision) at any
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FIG. 11. Top panel: dependence of the magnitude of the current
matrix element |j2,1|, which determines the visibility of the odd
transition |1〉 → |2〉, on the chemical potential μ for different
magnetic fields B, in the regime mα2 � �0,μ. Other parameters:
φ = π,τ = 0.75. As in previous figures, j0 = e�0/h̄. In the inset,
the data for each curve is rescaled by B2, to show the reasonable
agreement with the |j2,1| ∝ B2 behavior, particularly when μ �
�0. The few missing numerical data points at μ/�0 ≈ 0.5 are
in correspondence with the narrow chemical potential interval in
which the Andreev level g factor in Eq. (47) vanishes in the limit
μ/mα2,�0/mα2 → 0. In this case, the energy levels cannot be
resolved numerically. Bottom panels: on the left, we show the
dependence of continuation of |j2,1| on μ at large values μ/�0 for
1
2 gμBB/�0 = 0.2, in log-log scale. The dashed red line has slope −2,
demonstrating |j2,1| ∝ (�0/μ)2 for μ/�0 � 1. On the right, we show
the magnetic field dependence of the ratio |j2,1|/|j2,P1| for different
values of μ, illustrating that the odd transition is much less visible
than the even transition.

value of the spin-orbit coupling. Finally, the numerical data
indicate that the current matrix elements grow quadratically in
B at small fields: |j2,1| ∝ B2 (see the inset in the top panel in
Fig. 11).

The smallness of the current matrix element j2,1 has
important consequences for the Andreev spectroscopy of the
junction at low temperatures, in case the junction undergoes a
fermion-parity switch. For instance, suppose that the magnetic
field is sweeped from a value B < Bsw to a value B > Bsw,
as in the left panel of Fig. 6. This change of magnetic field
will be accompanied by a dramatic decrease in the visibility
of the absorption line corresponding to the even transition at
frequency ωeven. Indeed, for B > Bsw the ground state of the
junction is the odd-parity state |1〉, and at low temperatures
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FIG. 12. Current matrix elements versus magnetic field in the
regime μ � mα2,gμBB,�0, computed for the same parameter
values as the left panel of Fig. 6. The matrix elements |j2,P1|2 (solid
line) and |j2,1|2 (dashed line) determine the visibility of the even and
odd transition lines in the absorption spectrum of the junction. The
magnetic field dependence of the corresponding frequencies ωeven and
ωodd, already shown in Fig. 6, is reproduced in the inset. A fermion
parity occurs at the value of the magnetic field B = Bsw marked by
the green arrow, where ωeven = ωodd. The thick red shadow follows
the frequency (inset) and visibility (main panel) of the absorption
line which would be measured at low temperatures, i.e., assuming
that the microwave absorption always excites the junction from its
ground state. The visibility of the absorption line, in this case, drops
drastically to zero in correspondence with the kink in the transition
frequency at B = Bsw.

kBT � E1 the occupation probability of the even-parity state
|V 〉 is negligible. The low occupation probability of the state
|V 〉 and the smallness of the matrix element j2,1 combine to
yield a dramatic dimming of the absorption line taking place
at B = Bsw (see Fig. 12).

VI. CONCLUSIONS

In this work, we have investigated several consequences
of the competition between Zeeman and spin-orbit couplings
on the Andreev bound states in semiconducting nanowire
Josephson junctions. Overall, as one may have expected,
spin-orbit coupling tends to reduce the effect of the Zeeman
coupling on the Andreev bound states. We have seen several
examples of this general trend. First, as discussed in Sec. III D,
spin-orbit coupling tends to suppress the g factor gA of the
Andreev bound states, potentially resulting in very small
energy splittings of the Andreev doublet for small magnetic
fields. The measurement of gA, in tunneling or supercurrent
spectroscopy experiments, may allow one to estimate the
strength of the spin-orbit coupling. Second, spin-orbit coupling
also suppresses the occurrence of fermion-parity switches in
the topologically trivial phase of the nanowire (see Sec. III E
and Fig. 8). As discussed at the end of Sec. V, fermion-
parity switches should be easily detectable since they are
accompanied by a drastic dimming of the absorption spectrum.
The knowledge of the switching field Bsw at which fermion-
parity switches take place can also be used to infer the strength

of the spin-orbit coupling. Finally, spin-orbit coupling prevents
the occurrence of level crossings between the Andreev bound
states and the continuum. Combined with the suppression of
the proximity-induced energy gap in a magnetic field, this leads
to a nonmonotonic dependence of the Andreev bound-state
energies on B (see the left panel of Fig. 6). The bending of
the Andreev level E2 due to the repulsion from the continuum
causes a slow decrease of the even transition frequency in
magnetic field, ωeven(0) − ωeven(B) ∝ B2 for small B.

Our theoretical results are in good agreement with several
aspects of the existing experimental data which motivated the
development of the work presented here [14]. In particular,
we elucidated that the quadratic suppression of ωeven with
increasing magnetic field can be understood in terms of the
interplay of Zeeman and spin-orbit coupling. The occurrence
of fermion-parity switches is also compatible with the obser-
vation that the even transition visibility vanished at a field
larger than 300 mT. This threshold can be well understood
within our theory assuming reasonable values of g and α

[14]. At the experimental level, it would be very valuable
to study directly the single-particle energy spectrum via either
tunneling or supercurrent spectroscopy. This would allow a
measurement of the Andreev bound-state g factor gA as well
as a precise determination of the switching field Bsw, both of
which can be directly compared to our theory.

Our results are all based on the one-dimensional nanowire
model of Eq. (1) treated within the Andreev approximation,
i.e., by linearizing the normal-state dispersion. This approxi-
mation amounts to neglecting the normal reflection amplitude
in favor of the Andreev reflection amplitude when considering
the two interfaces of the S-N-S junction. It requires that either
the chemical potential μ or the spin-orbit energy mα2 are
much larger than the induced superconducting gap �0. As
an extension of this work, it may be valuable to relax the
Andreev approximation. In particular, it would be interesting
to study the Andreev spectrum of the model in the regime
μ � mα2,�0 and mα2 ∼ �0, which may be relevant for the
Majorana applications of the semiconducting nanowires. This
may give more accurate predictions for the Andreev g factor gA

and the current matrix elements in the regime of low chemical
potential.

It will also be important to extend this work beyond the
model of Eq. (1), in order to capture more accurately the
complexity of real devices. Nanowire junctions may naturally
host more than one transport channel, and physical effects not
included in this work, such as the orbital effect of the magnetic
field, may have an important influence on the Andreev bound-
state properties. In particular, the orbital effect of the magnetic
field provides an additional contribution to the reduction of
ωeven. Although this contribution could be heuristically ruled
out to be the dominant one in the current nanowire experiments,
it would be important to have quantitative theoretical estimates.

Finally, the magnetic field dependence of the absorption
spectrum in the presence of multiple transport channels stands
out as a particularly interesting avenue for future research, both
theoretically and experimentally. In such a situation, a new type
of low-frequency transitions may become visible, in which a
Cooper pair is excited to a pair of Andreev levels belonging
to different transport channels. In the topological phase, we
expect that these interchannel transitions can carry a signature
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of the Majorana bound states in the form of a kink in the phase
dependence of the absorption spectrum, similar to the effect
predicated in long Josephson junctions [50]. Notably, this type
of measurement is not limited by stringent requirements on
fermion-parity relaxation times, as opposed to other signatures
of topological Josephson junctions.
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APPENDIX A: BOUND-STATE WAVE FUNCTIONS
AT ZERO FIELD

Following the procedure outlined in the main text, we find
the two following bound-state wave functions �1(x) and �2(x)
at B = 0. They are a tensor product of a position-dependent
part and a position-independent spinor in spin grading:

�1(x) = eiφsgn(x)τz/4 �A(x) ⊗ χ↑, (A1)

�2(x) = eiφsgn(x)τz/4 �A(x) ⊗ χ↓. (A2)

Here, χ↑ = (1,0)T and χ↓ = (0,1)T are the eigenspinors of σz,
and �A(x) is a space-dependent vector in Nambu and left/right
gradings:

�A(x) = 1

2 ξ
1/2
A

1

[EA (EA − �0
√

τ cos φ/2)]1/2
e−iαkF x/vF e−|x|/ξA

⎡
⎢⎢⎢⎢⎣

−sgn(x)ieiγ θ(−x)eiβ θ(x) (EA − �0
√

τ cos φ/2)

eiβ θ(−x)eiγ θ(x) �0
√

1 − τ

−sgn(x)ieiγ θ(−x)eiβ θ(−x) (EA − �0
√

τ cos φ/2)

eiβ θ(x)eiγ θ(x) �0
√

1 − τ

⎤
⎥⎥⎥⎥⎦ (A3)

with

EA = �0[1 − τ sin2(φ/2)]1/2, β = arccos(EA/�),

γ = arccos(
√

τ ), ξ−1
A = 1

vF

√
�2

0 − E2
A. (A4)

The expression above is valid for μ � �0,mα2 and in the
phase interval φ ∈ [0,2π ]. The wave functions for negative
phase can be determined by applying the time-reversal sym-
metry operator isxσyK. In the opposite regime mα2 � μ,�0,
the wave functions are identical except that the oscillating
term e−iαkF /vF is replaced by e−iμx/αsz and that α replaces vF

in the expression for the coherence length ξA of the bound
state. The wave functions above are properly normalized
to unity: to see this, it is convenient to use the relation
�2

0 (1 − τ ) = (EA − �0
√

τ cos φ/2) (EA + �0
√

τ cos φ/2).

APPENDIX B: DERIVATION OF THE DIFFERENT
CONTRIBUTIONS TO THE g FACTOR

In the main text (Secs. II A and II B), we linearized the
spectrum in two limits of either large μ or large mα2. In this
Appendix, we show that both limits can be obtained from a
single linearization which is valid on a strip of width μ + mα2

around the Fermi level. This linearization is achieved by a
projection

ψ(x) = e−imx (
√

α2+v2
F +ασz) ψL(x) + eimx (

√
α2+v2

F −ασz) ψR(x),

(B1)

where the fields ψL,R are slowly varying. For example, the
kinetic term in the Hamiltonian density becomes

ψ(x)†
(

− ∂2
x

2m
− iα∂x σz − μ

)
τzψ(x)

= −i

√
α2 + v2

F �†(x)szτz∂x�(x) + oscillating terms. (B2)

We used here μ = 1
2mv2

F . When we project the Zeeman term
− 1

2gμBBψ†σxψ to low energies using Eq. (B1), we obtain
two terms

− 1
2gμBBψ†σxψ = �†(O⇒ + O�)�, (B3)

where

O⇒ = − 1
2gμBBe2imαxσzσx,

O� = − 1
2gμBBe−2imx(sz

√
α2+v2

F −σzα)sxσx. (B4)

The first term couples copropagating states only and it is
important when spin-orbit strength is not too large, mα2 � �0.
It leads to Eq. (46) of the main text, which can be derived
by evaluating the matrix elements of O⇒ by using the wave
functions from Eq. (A3).

The second term, O�, mixes counterpropagating states and
therefore it only contributes to the g factor in the presence of
scattering at the junction. Furthermore, it is important only
for states near k = 0 and when μ � mα2, in which case
the oscillating exponent vanishes. States belonging to the
outer branches at finite momentum have opposite sz and σz

eigenvalues, and in this case the O� term oscillates fast and
is negligible. In the limit μ/mα2 → 0, we thus obtain

O� = − 1
4gμBB(sxσx − syσy). (B5)

After calculating the matrix elements of O� with the wave
functions from Appendix A, we find Eq. (47) of the main text.
Note that correction of order μ/mα2 to the matrix elements
of O� cannot be reliably computed within the linearized
Hamiltonian.
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