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Lattice relaxation and energy band modulation in twisted bilayer graphene
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We theoretically study the lattice relaxation in the twisted bilayer graphene (TBG) and its effect on the
electronic band structure. We develop an effective continuum theory to describe the lattice relaxation in general
TBGs and obtain the optimized structure to minimize the total energy. At small rotation angles <2◦, in particular,
we find that the relaxed lattice drastically reduces the area of the AA stacking region and forms a triangular
domain structure with alternating AB and BA stacking regions. We then investigate the effect of the domain
formation on the electronic band structure. The most notable change from the nonrelaxed model is that an energy
gap of up to 20 meV opens at the superlattice subband edges on the electron and hole sides. We also find that
the lattice relaxation significantly enhances the Fermi velocity, which was strongly suppressed in the nonrelaxed
model.
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I. INTRODUCTION

Twisted bilayer graphene (TBG) is a two-dimensional
material where two graphene layers are relatively rotated by an
arbitrary angle. Such a rotational stacking structure has been
widely observed in epitaxially grown multilayer graphenes
[1–7] and also it can be fabricated by manually aligning
single layers using the transfer technique [8,9]. The electronic
properties of TBG have also been intensively studied in theory,
where it was shown that the energy spectrum sensitively
depends on its rotation angle θ [10–21]. In a small θ , in
particular, the interference between the incommensurate lattice
structures gives rise to a moiré pattern with a long spacial
period, and it significantly influences the low-energy spectrum.
For TBG less than a few degrees, in particular, the Dirac
cones of the two layers are strongly hybridized by the moiré
interlayer interaction, where the linear dispersion is distorted
into superlattice subbands [10–21]. The characteristic features
of superlattice band structure of TBG were actually observed
in recent experiments [22–24].

Most of the band calculations for TBG assumes that the
two graphene layers are rigid and simply stacked without
changing the original honeycomb lattices. In a real system,
however, the lattice structure spontaneously relaxes to achieve
an energetically favorable structure [25–29], and it should
influence the electronic spectrum. If we consider a TBG with
a small rotation angle as in Fig. 1, for instance, we notice
that the lattice structure locally resembles the regular stacking
such as AA, AB, BA, or saddle point (SP), depending on
the position. Here AA represents the perfect overlapping of
hexagons, while AB and BA are shifted configurations in
which the A(B) sublattice is right above B(A). Since the
interlayer binding energy is the lowest in AB and BA and
the highest in AA stacking [25,30,31], the TBG spontaneously
deforms so as to maximize the AB/BA areas while minimizing
the AA area. In fact, such an AB/BA domain structure was
experimentally observed in multilayer graphenes grown by
chemical vapor deposition [32–34]. In theory, the lattice
relaxation in TBG was computationally studied by the density
functional (DFT) calculation [26], molecular dynamics [27],
the structural optimization with DFT-based empirical potential

[29], and also by the hybrid continuum model combined with
DFT parametrization [28], while its implication of the domain
formation on the electronic band structure is still unclear.
Similar lattice relaxation was also found in another moiré
superlattice of graphene on hexagonal boron nitride [35–40],
where the sublattice inequality in hBN results in a hexagonal
domain pattern [41–44].

In this work, we present a theoretical study on the lattice
relaxation in TBG and its effect on the electronic band
structure. First, we develop a minimum phenomenological
model to describe the AB/BA domain formation in TBGs with
general angles. Using the elastic theory and a simple interlayer
adhesion potential, we express the total energy as a functional
of the lattice deformation u(r) and optimize it by solving
the Euler-Lagrange equation. In decreasing the rotation angle
θ , we actually find that u(r) increases and eventually forms
a sharp domain structure with AB and BA regions clearly
separated into a triangular pattern.

We then investigate the effect of the domain formation
on the electronic spectrum of TBG. The lattice distortion is
expected to affect the band structure by modifying the moiré
pattern, and also by adding the strain-induced vector potential
to graphene’s Dirac electron [45–47]. Here we calculate the
band structure of relaxed TBGs by the tight-binding model and
compared it with the nonrelaxed case. A significant difference
is observed in θ < 2◦, where the domain structure becomes
pronounced. The most notable effect is that an energy gap of
up to 20 meV appears at the superlattice subband edge between
the lowest and the second subband, while it was hardly found in
the nonrelaxed model. We also find that the lattice deformation
significantly enhances the Fermi velocity, which was strongly
suppressed in the nonrelaxed model [15,48]. The associated
lattice distortion induces the pseudomagnetic field more than
30 T, which alternates in space with the moiré superlattice
period.

The paper is organized as follows. In Sec. II we introduce
the lattice geometry of TBG and the description of the moiré
pattern. In Sec. III, we develop the effective continuum theory
for the lattice relaxation. First we consider the simpler one-
dimensional model as an intuitive example, and then we extend
the model to two-dimensional TBG. In Sec. IV, we calculate
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FIG. 1. Twisted bilayer graphene at rotation angle θ = 2.65◦. The
blue squares indicate the regions where the lattice structure locally
resembles a regular stacking arrangement such as AA, AB, BA, and
SP (see the text). Parallelogram is the moiré unit cell.

the electronic band structure of relaxed TBGs and discuss the
effect of the lattice deformation. A short conclusion is given
in Sec. V.

II. GEOMETRY OF TWISTED BILAYER GRAPHENE

Let us consider a TBG lattice as illustrated in Fig. 1.
Here we specify the stacking geometry by starting from the
AA-stacking bilayer graphene and rotate layer 2 with angle
θ with respect to layer 1. In Fig. 1, we take θ = 2.65◦ as
an example. We define the primitive lattice vectors of layer
1 as a1 = a(1,0), a2 = a(1/2,

√
3/2), where a = 0.246 nm is

graphene’s lattice constant. The primitive lattice vectors of
layer 2 can be obtained by rotating those of layer 1 as ãi =
R(θ )ai (i = 1,2), where R(θ ) is rotation matrix. The reciprocal
lattice vectors of layer 1 are given by a∗

1 = 2π/a(1, − 1/
√

3)
and a∗

2 = 2π/a(0,2/
√

3), and those of layer 2 by ã∗
i = R(θ )a∗

i

(i = 1,2).
The Brillouin zones of layers 1 and 2 are shown in Fig. 2

by two large black, red dashed hexagons, respectively. In
TBG, they are folded into reduced Brillouin zones shown by
small blue hexagons. We label the corner points of the folded
Brillouin zone by K̄ and K̄ ′, the midpoint of each side by M̄ ,
and the zone center by �̄.

When the rotation angle is small, the mismatch of the lattice
periods of two rotated layers gives rise to the long-period
moiré beating pattern, of which the spatial period is estimated
as follows. In the rotation from the AA stacking, an atom
on layer 2 originally located at site r0 (right above the layer
1’s atom) is moved to the new position r = R(θ )r0. Then we
define the interlayer atomic shift δ(r) as the in-plane position
of an layer 2’s atom at r measured from its counterpart on

kx

ky

FIG. 2. Brillouin zones of layer 1 (black hexagon), layer 2 (red
dashed hexagon), and twisted bilayer graphene (blue hexagons) at
θ = 2.65◦.

layer 1, i.e.,

δ(r) = r − r0 = (1 − R−1)r. (1)

When δ(r) coincides with a lattice vector of layer 1, then the
position r (layer 2’s atom) is occupied also by an atom of layer
1, so that the local lattice structure at r takes AA arrangement as
in the origin. Therefore, the primitive lattice vector of the moiré
superlattice LM

i is obtained from the condition δ(LM
i ) = ai ,

which leads to

LM
i = (1 − R−1)−1ai (i = 1,2). (2)

The lattice constant LM = |LM
1 | = |LM

2 | is given by

LM = a

2 sin(θ/2)
. (3)

The corresponding moiré reciprocal lattice vectors satisfying
GM

i · LM
j = 2πδij are written as

GM
i = (1 − R) a∗

i = a∗
i − ã∗

i (i = 1,2), (4)

where we used R† = R−1.
In general TBGs, the lattice structure is not exactly periodic

in the atomic level, since the moiré interference pattern is not
generally commensurate with the lattice period. However, the
superlattice becomes rigorously periodic at some special θ ,
where vector ma1 + na2 meets vector na′

1 + ma′
2 with certain

integers m and n [11]. The exact superlattice period is then
given by

L = |ma1 + na2| = a
√

m2 + n2 + mn = |m − n|a
2 sin(θ/2)

, (5)

which is |m − n| times as big as the moiré period LM. The
rotation angle θ is equal to the angle between two lattice

075311-2



LATTICE RELAXATION AND ENERGY BAND MODULATION . . . PHYSICAL REVIEW B 96, 075311 (2017)

TABLE I. Index (m,n), the rotation angle θ , the size of the moiré
unit cell LM, and the dimensionless parameter η (see Sec. III) for
several TBGs considered in this paper.

(m,n) θ [◦] LM[nm] η

(12, 13) 2.65 5.33 0.258
(22, 23) 1.47 9.59 0.464
(27, 28) 1.20 11.72 0.567
(31, 32) 1.05 13.42 0.650
(33, 34) 0.987 14.27 0.691
(40, 41) 0.817 17.26 0.835
(60, 61) 0.547 25.78 1.248

vectors ma1 + na2 and na1 + ma2, and it is explicitly given
by

cos θ = 1

2

m2 + n2 + 4mn

m2 + n2 + mn
. (6)

In Table I, we present (m,n), the rotation angle θ , the size
of the moiré unit cell LM, and the dimensionless parameter
η (introduced in Sec. III) for several TBGs considered in this
paper.

III. OPTIMIZED LATTICE STRUCTURE

A. 1D atomic chain

To describe the lattice relaxation in the continuum theory,
we start with a one-dimensional (1D) model [25] as a simple
and intuitive example. The extension to TBG is straightfor-
ward, as we will see in the next section. Here we consider a
1D moiré superlattice as shown in Fig. 3(a), which is composed
of two atomic chains 1 and 2 having slightly different lattice
periods, a = LM/N and a′ = LM/(N − 1), respectively, with
a large integer N . The common period of the whole system is
given by LM. Inside a supercell, there are N sites and N − 1
sites in chains 1 and 2, respectively. This model can be viewed
as an interacting two-chain version of the Frenkel-Kontorova
model.

In TBG, the atoms in different layers can be associated by
rotation. Likewise, the atoms of chains 1 and 2 are associated
by expansion. We can then define the interchain atomic shift
δ(x) as the relative position of the site on chain 2 located at x

measured from the position of its counterpart on chain 1, or

δ(x) = x − N − 1

N
x = a

LM
x. (7)

This corresponds to Eq. (1) in TBG. Obviously we have
δ(nLM) = na for integer n, i.e., the atoms on different chains
are vertically aligned at x = nLM.

Now we introduce the attractive interaction between the
atoms of chains 1 and 2, while allowing the atoms to move
only parallel to the chain. We expect that the atoms move
their positions to reduce the interchain binding energy UB . As
a result, the system tends to increase the vertically aligned
region, and then a domain structure should be formed as
schematically illustrated in Fig. 3(b). At the same time,
however, such deformation increases the elastic energy UE ,
so the optimized state can be obtained by minimizing the total
energy U = UE + UB .
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FIG. 3. (a) One-dimensional moiré superlattice model. (b)
Schematic picture of the relaxed structure, where the atoms are locked
to the vertically aligned positions, leaving a domain boundary in the
middle. (c) Interlayer binding energy per length as a function of the
relative translation δ for commensurate double chains.

Now we define u1(x) and u2(x) as a displacement of atomic
positions on layers 1 and 2, respectively, measured from the
nonrelaxed state. The interchain atomic shift in the presence
of deformation is then

δ(x) = δ0(x) + u2(x) − u1(x), (8)

where δ0(x) = (a/LM)x is that in the absence of deformation,
Eq. (7). Following the standard elastic theory, we assume that
the elastic energy is expressed as

UE =
∫

1

2
κ

[(
∂u1

∂x

)2

+
(

∂u2

∂x

)2]
dx, (9)

where κ is an elastic constant to characterize the stiffness of
the lattice.

If a is very close to a′, the moiré superperiod LM is much
greater than the lattice constant a, and then the local lattice
structure resembles commensurate chains with the identical
lattice period a, which are relatively shifted by some specific
δ [Fig. 3(c)]. Let define V [δ] as the interchain binding energy
per unit length of the commensurate chains. Here we assume
an attractive interaction described by the sinusoidal function
for V [δ],

V [δ] = −2V0 cos a∗δ, (10)

where V0 > 0 and a∗ = 2π/a. Obviously V [δ] is periodic
with period a, because the sliding by the lattice spacing a is
equivalent to no sliding. It takes a minimum at the vertically
aligned arrangement, δ = na (n: integer), and maximum at
the half shift δ = (n + 1/2)a. In the incommensurate chains
in which a and a′ are slightly different, the interchain
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atomic shift δ is not a constant but slowly varies as a
function of x. Therefore, the interchain binding energy of the
incommensurate chains as a whole is written as

UB =
∫

V [δ(x)]dx. (11)

By using Eqs. (7), (8), and (10), we have V [δ(x)] =
−2V0 cos[GMx + a∗(u1 − u2)], where GM = 2π/LM is the
reciprocal vector for the moiré superlattice, and we used the
relation a∗δ0(x) = GMx.

The total energy U = UB + UE is a functional of u1(x)
and u2(x). Here we define the coordinates u± = u1 ± u2

and rewrite U as a functional of u±. The optimized state
to minimize the total energy is obtained by solving the
Euler-Lagrange equations,

κ
∂2u+
∂x2

= 0, (12)

κ
∂2u−
∂x2

− 4a∗V0 sin(GMx + a∗u−) = 0. (13)

In the following, we assume that the lattice deformation
keeps the original superlattice period, i.e., u±(x) is periodic in
x with period LM. Then u+(x) = const. is the only solution of
the first equation. To solve the second, we apply the Fourier
transformation,

u−(x) =
∑

n

une
inGMx, (14)

sin (GMx + a∗u−(x)) =
∑

n

fne
inGMx. (15)

Equation (13) is then reduced to

un = − 4a∗V0

κ(nGM)2
fn. (16)

Equations (14)–(16) are a set of self-consistent equations to be
solved.

By scaling the displacement ui(x) by a, Eq. (16) can be
written in a dimensionless form,

un

a
= − 2η2

πn2
fn, (17)

where η is a dimensionless parameter defined by

η =
√

V0

κ

LM

a
. (18)

Roughly speaking, the parameter η characterizes how many
harmonics are relevant in the displacement u−(x). Since fn is
of the order of 1, the condition that un is comparable to a is
given by 2η2/(πn2) � 1, or

n �
√

2

π
η. (19)

When η is small such that (2/π )1/2η � 1, only the first
harmonic term is relevant so u−(x) is well approximated by a
single sinusoidal function. This situation occurs in a stiff lattice
(large κ), weak interchain interaction (small V0), or small
moiré period (small LM). When η is large, on the contrary,
the large number of harmonics is significant so that u−(x)
becomes a sharp function with respect to the moiré period LM.
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FIG. 4. (a) Interlayer atomic shift δ(x) and (b) local binding
energy V [δ(x)] plotted against the position x in one-dimensional
moiré superlattice with η = 0, 0.3, 1, and 3.

This condition corresponds to soft lattice, strong interaction,
and large moiré period.

The self-consistent equations, Eqs. (14)–(16), can be solved
by numerical iteration with higher harmonics appropriately
truncated. In Fig. 4(a), we plot the interlayer atomic shift δ(x)
for the optimized state at some different η’s. The line of η = 0
represents the nonrelaxed case δ0(x) = ax/L, and the relative
shift from this line represents the displacement u−(x). The
actual displacement on each chain is given by u1 = −u−/2
and u2 = u−/2. At η = 0.3, u− is small compared to the
atomic spacing a, and it contains only low-frequency Fourier
components. In increasing η, the u− becomes larger and
at the same time higher harmonics become more relevant.
In η = 3, we clearly see a steplike structure consisting of
two plateau regions of δ = 0 and a, which are nothing but
domains where the atoms are locked to the vertically aligned
positions. Figure 4(b) presents the corresponding plot for the
local binding energy V [δ(x)]. We see that the original cosine
function at η = 0 is gradually deformed so as to expand the
plateau regions. In η = 3, the system achieves the minimum
energy almost everywhere, except for a thin domain boundary
in the middle.

Actually, the sharp domain boundary observed in large
η is well approximated by an analytical soliton solution. If
we concentrate on a small region near the domain boundary
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centered at x = LM/2, Eq. (13) is reduced to

κ
∂2u−
∂x

′2 + 4a∗V0 sin(a∗u−) = 0, (20)

where x ′ = x − LM/2, and the term GMx is approximated
by GM(LM/2) = π , assuming the domain boundary is much
narrower compared to LM. This has an exact solution [25]

u−(x ′) = 2a

π
arctan

[
exp

(
4π

√
V0

κ

x ′

a

)]
− a

2
, (21)

which is found to nicely agree with the numerically obtained
u− near the boundary. Therefore, the typical width of the
domain boundary is characterized by

wd ≈ a

4

√
κ

V0
. (22)

Using Eqs. (18) and (22), we have

wd

LM
= 1

4η
, (23)

so the parameter η characterizes the ratio of the domain wall
width to the moiré unit cell.

B. Twisted bilayer graphene

The above formulation for a 1D moiré superlattice can
be extend to the TBG system in a straightforward manner.
Let us consider a TBG with a long-period moiré pattern as
illustrated in Fig. 1, and introduce the lattice deformation
which is specified by the displacement vector u(l)(r) for layer
l = 1,2. The interlayer atomic shift under the deformation is
then given by

δ(r) = δ0(r) + u(2)(r) − u(1)(r), (24)

where δ0(r) is one without lattice deformation, which is defined
by Eq. (1). Here we neglect the out-of plane component
of the displacement vectors and concentrate on the in-plane
motion in order to describe the domain formation within the
simplest framework. The expected effect of the out-of-plane
corrugation will be discussed later. The elastic energy is
expressed by [43,45]

UE =
2∑

l=1

∫
1

2

{
(λ + μ)

(
u(l)

xx + u(l)
yy

)2

+μ
[(

u(l)
xx − u(l)

yy

)2 + 4
(
u(l)

xy

)2]}
d2r, (25)

where SM = (
√

3/2)L2
M is the area of the moiré unit cell, λ ≈

3.5 eV/Å
2

and μ ≈ 7.8 eV/Å
2

are typical values graphene’s
Lamé factor [42], and u

(l)
ij = (∂iu

(l)
j + ∂ju

(l)
i )/2 is the strain

tensor.
When the moiré superperiod LM is much greater than the

lattice constant a, the local lattice structure can be viewed as
nonrotated bilayer graphene relatively shifted by δ depending
on the position (Fig. 5). We define as V [δ] the interlayer
binding energy per area of nonrotated bilayer graphene. In
the simplest approximation, it can be written as a cosine

AA

ABAB

BA

0 0.5 15.0-1-

0

0.5
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-0.5

1
layer 2

layer 1

6420-2
AABA

V/V0

[a]

[a
]

FIG. 5. Interlayer binding energy V [δ] of TBG as a function of
local atomic shift δ(r).

function δ as

V [δ] =
3∑

j=1

2V0 cos[a∗
j · δ], (26)

where a∗
3 = −a∗

1 − a∗
2. The function takes the maximum value

6V0 at AA stacking (δ = 0) and the minimum value −3V0

at AB and BA stacking. The difference between the binding
energies of AA and AB/BA structure is 9V0 per area, and this
amounts to 
ε = 9V0SG/4 per atom, where SG is the area
of the graphene’s unit cell. In the following calculation, we
use 
ε = 0.0189 (eV/atom) as a typical value [25,30]. The
potential profile of V [δ] is presented in Fig. 5.

In TBG, δ is not a constant but slowly varying as a function
of the 2D position. Then the interlayer binding energy of TBG
as a whole is written as

UB =
∫

V [δ(r)]d2r. (27)

V [δ] is periodic in δ with the lattice period of graphene. By
using Eqs. (24) and (26), we have

V [δ(r)] =
3∑

j=1

2V0 cos
[
GM

j · r + a∗
j (u(2) − u(1))

]
, (28)

where GM
3 = −GM

1 − GM
2 and we used the relation a∗

j ·
δ0(r) = GM

j · r.
In Eq. (27), UB depends only on the local relative translation

δ(r), while the local rotation is neglected. This approximation
is based on the fact that the local structure within an area of
a few a (graphene lattice constant) resembles the nonrotated
bilayer with translation δ. If we further consider the local
rotation θ , each atomic position in the area is shifted by rθ ,
where r is the radius of the rotation which has the scale of a few
a. On the other hand, the translation δ itself is of the order of
a, so that rθ is much smaller than δ when θ is small. As we see
later, the local rotation angle in the low-angle TBGs considered
in this work turns out to be no more than a few degrees, so that
the local rotation effect can be safely neglected in UB .
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The relaxed state can be obtained by minimizing the total
energy U = UE + UB as a functional of u(l)(r). We define
u± = u(2) ± u(1) and rewrite U as a functional of u±. In the
following we consider only u−, as we are interested in the
relative displacement between atoms on two layers. The Euler-
Lagrange equations for u− read

1

2
(λ + μ)

(
∂2u−

x

∂x2
+ ∂2u−

y

∂x∂y

)
+ 1

2
μ

(
∂2u−

x

∂x2
+ ∂2u−

x

∂y2

)

+
3∑

j=1

2V0 sin
[
GM

j · r + a∗
j · u−]

gx
j = 0, (29)

1

2
(λ + μ)

(
∂2u−

y

∂y2
+ ∂2u−

x

∂x∂y

)
+ 1

2
μ

(
∂2u−

y

∂x2
+ ∂2u−

y

∂y2

)

+
3∑

j=1

2V0 sin
[
GM

j · r + a∗
j · u−]

g
y

j = 0, (30)

We define the Fourier components u−
q and f

j
q (j = 1,2,3)

as

u−(r) =
∑

q

u−
q eiq·r, (31)

sin
[
GM

j · r + a∗
j · u−(r)

] =
∑

q

f j
q eiq·r, (32)

where q = m1GM
1 + m2GM

2 are vectors of the reciprocal
superlattice. The Euler-Lagrange equations (29) and (30) are
rewritten in a matrix form as

u−
q =

3∑
j=1

4V0f
j
q K̂−1

q a∗
j ,

K̂q =
(

(λ + 2μ)q2
x + μq2

y (λ + μ)qxqy

(λ + μ)qxqy (λ + 2μ)q2
y + μq2

x

)
. (33)

Equations (31)– (33) are a set of self-consistent equations.
Following Eq. (18) in the 1D model, the number of the relevant
harmonics in u−

q is roughly characterized by a dimensionless
parameter

η =
√

V0

λ + μ

LM

a
. (34)

In TBG, we have two elastic constants λ and μ, and it is
ambiguous which should replace the position of κ in Eq. (18)
for the 1D model. Here we adopt the simple sum λ + μ in
Eq. (34). Figure 6 plots η as a function of the rotation angle θ .
The approximation with the lowest harmonics (i.e., six q points
of ±GM

1 , ± GM
2 , ± GM

3 ) is valid when η � 1, or θ >∼ 2◦.
The contribution of high-frequency harmonics is not negligible
when η is of the order of 1.

We numerically solve the self-consistent equation for
several TBGs by numerical iterations with a sufficiently
large cutoff in q space. Some details in the calculation and
obtained u−

q for several TBGs are presented in the Appendix.
Figure 7 presents an example of the calculated result for lattice
relaxation in θ = 1.05◦, where the central panel plots the
displacement vector u−(r) as a function of position, and the
right three panels show the local atomic structure near AA,

0 541 2 3
0

0.5

1

1.5

2

Rotation angle θ (deg)

η

FIG. 6. Dimensionless parameter η as a function of rotation
angle θ .

AB, and SP points before and after the relaxation. The actual
displacement on each layer is given by u(1) = −u−/2 and
u(2) = u−/2. We actually observe that the u− rotates around
the center of the AA region, where the local rotation angle
between two layers is increased from 1.05◦ to 1.63◦. As a
result, the AA region is significantly shrunk while the AB
region is expanded.

Figure 8 summarizes the results for TBGs from θ = 2.65◦
down to 0.547◦. Here the panels in (a) show the absolute value
of the displacement vector u−(r) as a function of position.
The distribution of u−(r) on the two-dimensional place looks
similar among all the cases, where it takes the maximum on
a ringlike region near the AA spot. On the other hand, its
magnitude strongly depends on θ , where the |u−| is much
smaller than the atomic scale a in η � 1, while it eventually
becomes comparable when η is of the order of 1. Figure 8(b)
presents the corresponding plots for the local binding energy
V [δ(r)]. When u−(r) is much smaller than a, as in θ = 2.65◦,
the potential profile is approximately given by V [δ0(r)], which
is essentially a sum of three plain waves. In decreasing θ ,
the spots of the AA regions shrink and AB and BA regions
eventually dominate. The result looks especially dramatic in
small angles less than 1◦, where the relaxed lattices clearly
exhibit a triangular domain pattern of AB and BA regions.
Similar to Eq. (22) for the 1D model, the characteristic width
of the domain boundary is given by

wd ≈ a

4

√
λ + μ

V0
≈ 5.2 nm. (35)

Indeed, it roughly agrees with the typical scale of the
AB/BA domain wall in Fig. 8(b). It is also consistent with
the experimental observation of the shear boundary, which
estimates the averaged width about 6 nm [34].
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Displacement vector u−(r)

Non-relaxed

Relaxed

Non-relaxed

Relaxed

Near AA-point Near AB-point

LM

Non-relaxed

Relaxed

Near SP-point

FIG. 7. Outermost panel: Distribution of the displacement vector u−(r) in the TBG of θ = 1.05◦. Right side panels: Local atomic structure
near AA (AB or SP) stacked point before and after the relaxation. The small dashed circles in the center panel indicate the areas where the
local structure is sampled.

The present calculation assumed that the relaxed lattice has
the same periodicity as in the original TBG before relaxation.
However, relaxing this condition may realize a larger supercell
structure by distortion of the domain shape, while we expect
that the basic properties, such as the formation and AB/BA
domains and the width of the domain wall, are well captured
in the current model. The stability of the relaxed state is also
linked to phonon modes in this system and it is an important
future problem.

IV. BAND STRUCTURE

To calculate the energy band structures in the presence
of the lattice strain, we use the tight-binding method. The
Hamiltonian is written as

H = −
∑
i,j

t(Ri − Rj )|Ri〉〈Rj | + H.c., (36)

where Ri is the atomic coordinate, |Ri〉 is the wave function at
site i, and t(Ri − Rj ) is the transfer integral between atoms i

and j . We adopt the Slater-Koster–type formula for the transfer
integral [49],

−t(d) = Vppπ (d)

[
1 −

(
d · ez

d

)2]
+ Vppσ (d)

(
d · ez

d

)2

,

(37)

Vppπ (d) = V 0
ppπ exp

(
−d − a0

r0

)
, (38)

Vppσ (d) = V 0
ppσ exp

(
−d − d0

r0

)
, (39)

where d = Ri − Rj is the distance between two atoms, and
ez is the unit vector on the z axis. V 0

ppπ ≈ −2.7 eV is the
transfer integral between nearest-neighbor atoms of mono-
layer graphene which are located at distance a0 = a/

√
3 ≈

0.142 nm. V 0
ppσ ≈ 0.48 eV is the transfer integral between

two nearest vertically aligned atoms. d0 ≈ 0.334 nm is the
interlayer spacing. The decay length r0 of transfer integral is
chosen at 0.184a so that the next-nearest intralayer coupling
becomes 0.1V 0

ppπ [12,50]. At d >
√

3a, the transfer integral
is very small and negligible.

Using the optimized structure obtained in the last section,
we specify the lattice position of each single atom in the relaxed
TBG, construct the tight-binding Hamiltonian, and calculate
the energy bands. Figure 9 compares the electronic band
structure of relaxed (black solid lines) and nonrelaxed (red
dashed lines) TBGs at several rotation angles. The horizontal
axes are labeled by the symmetric points of the Brillouin zone
for the moiré superlattice (Fig. 2), and it scales in proportion
to 2π/LM. At θ = 2.65◦, we only see a minor difference in
accordance with the small change in the lattice structure in
Fig. 8(a). A significant deviation is observed below 2◦. The
most notable change from the nonrelaxed case is that a band
gap opens between the lowest subband near the Dirac point
and the first excited subband both in the electron side and the
hole side. Figure 10(a) shows the size of gap versus rotation
angle θ . The gap is observed in TBGs of 1◦ � θ � 1.5◦, and
the maximum energy width is about 18 meV.

The lattice strain also strongly modifies the band velocity.
Figure 10(b) plots the band velocity at the Dirac point as a
function of θ for relaxed and nonrelaxed cases. In both cases,
the central band at the Dirac point is gradually flattened in
decreasing θ , and the Fermi velocity vanishes at a certain
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FIG. 8. Two-dimensional maps for (a) absolute value of the displacement vector u−(r), (b) the local binding energy V [δ(r)], and (c)
strain-induced pseudomagnetic field Beff (r), calculated for TBGs with various rotation angles.

angle [15,48]. We find that the band flattening is a little
slower in the relaxed case, i.e., at the same angle, the
bandwidth is larger in the relaxed TBG than in its nonrelaxed
counterpart, so that the critical angle for the vanishing
velocity is shifted to the lower rotation angle in the relaxed
TBG.

The lattice relaxation affects the electronic structure in
two different ways, by a change of interlayer Hamiltonian
associated with the modified moiré pattern, and also by
a change of the intralayer Hamiltonian through distortion
of the lattice. The latter is known to be described by the
pseudomagnetic field in the effective mass Dirac Hamiltonian
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Band velocity at K point as a function of θ for relaxed (black solid)
and nonrelaxed (red dashed) TBGs.

[45–47]. The vector potential for the pseudomagnetic field on
layer l(=1,2) is given by [45–47]

A(l)
x = 3

4

βγ0

ev

[
u(l)

xx − u(l)
yy

]
, (40)

A(l)
y = 3

4

βγ0

ev

[−2u(l)
xy

]
, (41)

where γ0 = t(a0) is the nearest-neighbor transfer energy of
intrinsic graphene, v = (

√
3/2)aγ0 is the band velocity of the

Dirac cone, and

β = −d ln t(d)

d ln d

∣∣∣∣
d=a0

. (42)

In the present model Eq. (37), we have β = a0/r0 ≈ 3.14. The
pseudomagnetic field is given by B

(l)
eff = [∇ × A(l)]z.

Figure 8(c) shows the distribution of the pseudomagnetic
field on layer 1 for several TBGs. The field direction is
opposite between layers 1 and 2, because u(1) = −u(2). We
observe a triangular pattern with positive and negative field
domains, which are centered at the AB and BA stacking

regions, respectively. The field amplitude is huge, but it does
not necessarily result in a strong effect on the electronic
structure, since it is rapidly oscillating in space with nanometer
scale. The pseudomagnetic field enters in the Hamiltonian
as a form of evA with the pseudovector potential A. When
the field spatially modulates with the wavelength LM, the
associated matrix element opens a band gap at the energy
E ≈ h̄v/LM measured from the Dirac point. Therefore the
effect of the pseudofield significantly affects the band structure
when evA >≈ h̄v/LM, while otherwise it is just perturbative.
Now the scale of evA is roughly estimated as

evA ≈ βγ0uij ≈ 2βγ0
u

a
sin

θ

2
, (43)

where the strain tensor uij is estimated about u/LM =
2(u/a) sin(θ/2), considering the displacement field u is mod-
ulating with the moiré wavelength ∼1/LM. The typical scale
of u/a can be read from Fig. 8(a). For θ = 2.65◦, for example,
u/a ≈ 0.03 gives evA ≈ 10 meV, and it is much smaller than
h̄v/LM ≈ 180 meV. So the effect of evA is perturbative, and
this is consistent with a small change in the band structure
observed in Fig. 9(a). For θ = 1.05◦, on the other hand,
evA ≈ 30 meV is comparable with h̄v/LM ≈ 50 meV, so
the pseudofield plays a significant role in the modification of
the low-energy bands.

The present model takes account of only the in-plane com-
ponents of the lattice distortion, as it is aimed to describe the
domain formation within the simplest theoretical framework.
Inclusion of the out-of-plane motion is known to give rise to
a corrugation in the perpendicular direction [26–29], where
the interlayer spacing modulates by 10%. In a small-angle
TBG less than 2◦, in particular, the detailed computational
study showed that the interlayer spacing is largest only near
the AA spot, while it is almost flat otherwise [27,28]. The
corrugation is small even at the AB/BA domain boundary,
presumably because it is a shear boundary with no tensile
strain, and also the optimized interlayer spacing does not
strongly depend on the stacking structure around there. A
rough estimation of the corrugation effect on the electronic
structure is possible by using the effective continuum model.
In the low-angle TBG with no lattice distortion, the interlayer
interaction is expressed by a specific matrix form which only
depends on a single amplitude parameter t̃(K) [51,52]. Here
t̃(q) is the Fourier transform of t(Ri − Rj ) in Eq. (36), and
K = 4π/(3a) is the wave vector of the K point. We can
incorporate the out-of-plane distortion into the effective model
by including the position dependence of the interlayer distance
in t(Ri − Rj ), and it results in a change of the amplitude
parameter t̃(K). Therefore the effect of the corrugation is
incorporated as renormalization of the interlayer coupling
strength. By assuming the modulation in the interlayer spacing
predicted in previous works (∼10%) [26–29], the change of
t̃(K) is estimated about the order of 10%, so we expect the
band structure would not be changed beyond that scale. The
detailed band calculation, fully including both in-plane and
out-of-plane distortion, is left for future work.

V. CONCLUSION

We have developed an effective theory to calculate the
spontaneous relaxation in TBG and studied the atomic and
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electronic structures. In rotation angle larger than 2◦, the
lattice is hardly deformed and so the effect on the electronic
structure is minimal, while in smaller rotation angles below
2◦, the lattice is significantly modified to form a AB/BA
triangular domain structure. The electronic band structure is
then strongly modified where a band gap of up to 20 meV opens
above and below the lowest band. The lattice deformation
also significantly relaxes the band flattening observed in the
nonrelaxed case, and it lowers the critical angle at which the
Fermi velocity vanishes.

Actually a recent experiment observed an insulating gap
of about 50 meV at the superlattice subband edges in TBG
with θ ≈ 1.8◦ [23]. This seems qualitatively consistent with
the present result, although 1.8◦ is out of the gap-opening
range in our model calculation, and also 50 meV is a bit too
large compared to the typical gap width obtained here. As we

see in the present work, however, the lattice relaxation and the
electronic structure sensitively depend on the parameter η, and
it might be possible that the real system could have a greater
interlayer interaction, allowing a greater gap and a wider range
in the rotation angle for gap opening. It is also conceivable
that the gap could be enhanced when the Fermi energy is
right at the superlattice gap position, while the doping effect
is not considered in the present study. We leave the further
quantitative arguments for a future problem.
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APPENDIX: NUMERICAL RESULT OF u−
q

The interlayer distortion u−(r) is Fourier transformed as
Eq. (31) with discrete wave numbers q = m1GM

1 + m2GM
2 .

The number of relevant harmonics q is determined by the
dimensionless parameter η, where the larger η indicates
that higher harmonics need to be included. In this paper,
we consider harmonics within radius |q| � 3GM for θ > 1◦
and |q| � 4GM for θ < 1◦ where GM = |GM

1 | = |GM
2 |. This

results in 36 and 60 q points, respectively (Fig. 11). When
assuming that the relaxed states preserve the sixfold rotational
symmetry, these harmonics are not totally independent but are
related by

u−
R60◦ q = R60◦u−

q , (A1)

where R60◦ is a rotation matrix by 60◦. The number of
independent q points when θ > 1◦ and θ < 1◦ is then 6 and
10, respectively, which is indicated by triangles in Fig. 11.

In Table II, we present the numerically obtained Fourier
components u−

q = (ux−
q ,u

y−
q ) for the several rotation angles θ

considered in the paper.

TABLE II. Fourier components u−
q = (ux−

q ,uy−
q ) (in units of a) at wave points q = m1GM

1 + m2GM
2 for the several rotation angles.

(m1,m2) 2.65◦ 1.47◦ 1.20◦ 1.05◦

(1,0) (−0.009000,0.005132) (−0.02432,0.01404) (−0.03187,0.01840) (−0.03720,0.02148)
(2,0) (−0.0001725,0.00009961) (−0.001429,0.0008251) (−0.002620,0.001513) (−0.003773,0.002178)
(2,1) (−0.0002126,0) (−0.0014907,0) (−0.002461,0) (−0.003240,0)
(3,0) (−4.506 × 10−6,2.601 × 10−6) (−0.0001123,0.00006483) (−0.0002835,0.0001637) (−0.0004952,0.0002859)
(3,1) (−6.753 × 10−6,3.067 × 10−6) (−0.0001382,0.00006650) (−0.0003127,0.0001529) (−0.0005003,0.0002456)
(3,2) (−6.753 × 10−6, − 3.067 × 10−6) (−0.0001382, − 0.00006650) (−0.0003127, − 0.0001529) (−0.0005003, − 0.0002456)

(m1,m2) 0.99◦ 0.817◦ 0.547◦

(1,0) (−0.03961,0.02287) (−0.04673,0.02698) (−0.05922,0.03419)
(2,0) (−0.004405,0.002543) (−0.006739,0.003891) (−0.01351,0.007798)
(2,1) (−0.003619,0) (−0.004695,0) (−0.005696,0)
(3,0) (−0.0006304,0.0003639) (−0.001210,0.0006987) (−0.003570,0.002061)
(3,1) (−0.0006178,0.0002969) (−0.001027,0.0004798) (−0.002013,0.0007895)
(3,2) (−0.0006178, − 0.0002969) (−0.001027, − 0.0004798) (−0.002013, − 0.0007895)
(4,0) (−0.0001033,0.00005964) (−0.0002472,0.0001427) (−0.001044,0.0006027)
(4,1) (−0.0001211,0.00007445) (−0.0002535,0.0001549) (−0.0007323,0.0004275)
(4,2) (−0.0001156,0) (−0.0002341,0) (−0.0006625,0)
(4,3) (−0.0001211, − 0.00007445) (−0.0002535, − 0.0001549) (−0.0007323, − 0.0004275)
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