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We show that the parallel magnetic field-induced increase in the critical electron density for the Anderson
transition in a strongly interacting two-dimensional electron system is caused by the effects of exchange and
correlations. If the transition occurs when electron spins are only partially polarized, additional increase in the
magnetic field is necessary to achieve the full spin polarization in the insulating state due to the exchange effects.

DOI: 10.1103/PhysRevB.96.075307

The metal-insulator transition (MIT) in two-dimensional
(2D) electron systems, studied experimentally and theoreti-
cally in 1970s [1], was declared nonexistent after negative
logarithmic quantum corrections to the conductivity had been
found (for a review, see Ref. [2]). The reasoning was as
follows. In an infinite 2D system, upon decreasing temperature,
negative quantum logarithmic corrections to the conductivity
will eventually become comparable to the conductivity itself.
After this, conductivity will decrease exponentially. Therefore,
the system will inevitably become an insulator no matter how
high the initial value of the conductivity is. However, it has
later been shown both theoretically [3–6] and experimentally
[7,8] that this conclusion may be wrong in 2D systems with
strong electron-electron interactions.

Since there has been a certain amount of confusion and
controversy in the literature regarding the zero-temperature
MIT in infinite 2D systems (see, e.g., Ref. [9]), here we will
consider a disorder-driven Anderson MIT at finite (although
low) temperatures and in finite 2D systems. (As correctly
stated in Ref. [10], the question about the true MIT is “a
rather academic question as what has actually been measured
experimentally corresponds to rather high energy physics.”)
Attempts to describe the experimentally observed behavior
of the critical density for the MIT in silicon metal-oxide-
semiconductor field-effect transistors (MOSFETs) as a func-
tion of a parallel to the interface magnetic field B were made
by quite a few theoretical groups [10–15]. Nevertheless, the
satisfactory explanation of experimental results is still absent.
Monte Carlo calculations and finite size scaling techniques
[10,11] show that the spin polarization in strongly correlated
electron systems favors localization. Using the appraisal
Ioffe-Regel criterion to calculate the critical density in the
Born approximation with two fitting parameters, the authors
of Ref. [12] have achieved a satisfactory agreement with
the experiment, but correlation effects have not been taken
into account and their negligibility in the case of strong
electron-electron interactions has not been established. Doubts
in the applicability of the percolation scenario to the transition
in Si MOSFETs [13] are expressed in Ref. [12]. The increase
of the effective mass with decreasing electron density suggests
that the effect of interactions is the dominant driving force for

the experimentally observed MIT due to fermion condensation
[14] or the Wigner-Mott transition [15,16]. Indeed, theory
[15] is in excellent qualitative agreement with the experiment.
However, the critical electron densities measured in the
experiment are sample dependent even for similar samples
[17] pointing to the importance of the disorder. This forces us
to reconsider a disorder-driven Anderson MIT.

In this paper, we compare the experimental data on electron
transport in a strongly correlated 2D electron system in (100)
silicon MOSFETs with maximum mobility of ∼3×104 cm2/

V s subjected to a parallel magnetic field with the results
of the calculations described below. We also compare the
data for the critical density of the MIT as a function of
the magnetic field with the dependence of the complete
spin polarization field Bp on electron density, ns. We show
that within the theory of disorder-driven Anderson MIT, the
localization of unpolarized electrons in zero magnetic field
occurs at a lower electron density, nc, than that of fully
spin-polarized ones at density, nc1, which is caused by the
exchange and correlation effects. To check the relevance of
the theory independently, we calculate the resistance ratio of
the spin polarized and spin unpolarized electron systems in the
metallic regime near the MIT. Using the impurity density, Ni,
as the only adjustable parameter, we describe the experimental
results for both the resistance and nc1/nc ratios. Although the
data similar to those used in this paper have been obtained
by many experimental groups (see, e.g., Refs. [18–20]), for
a detailed comparison, data obtained on the same sample
are needed; therefore, we only use our own data in the
analysis.

To experimentally determine the position of the critical
density for the Anderson transition, we have used two methods.
(i) In the insulating state, the conductivity measured at
currents approaching zero has an activated character. The
transition point corresponds to the electron density at which the
activation energy � = 0. (ii) Current-voltage characteristics
in the insulating state are strongly nonlinear. This nonlinearity
vanishes at the transition point. (Similar criteria were used
in Ref. [21] to determine the phase diagram of the reentrant
insulating phase in Si MOSFETs in perpendicular magnetic
fields.) Both methods yield identical results [22].
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FIG. 1. Experimentally determined critical densities for the An-
derson transition (diamonds) [23]. The solid line corresponds to the
onset of the full spin polarization [24].

The experimental data are shown for two samples from
Ref. [23] in Fig. 1 and Ref. [22] in Fig. 2 where the critical
densities for the Anderson transition in parallel magnetic fields
are compared to the position of the onset of the full spin
polarization. Both samples have the same maximum electron
mobility, but the quality of the sample shown in Fig. 2 is higher
(presumably due to a better homogeneity), which results in
somewhat smaller critical electron densities for the Anderson
transition.

As seen from the figures, there are three distinct electron
densities on the x axis: nc0 obtained by extrapolating the
magnetic field of the complete spin polarization to zero
[24], nc corresponding to the Anderson transition in zero
magnetic field, and nc1 corresponding to the onset of saturation
of the transition point with the magnetic field. Since the
magnetic field parallel to the interface only aligns electron
spins (diamagnetic effects in Si MOSFETs used in this work
are small [25,26]), density nc1 corresponds to the MIT in a

FIG. 2. Experimentally determined boundary for Anderson lo-
calization (diamonds) [22] and for the onset of the full spin
polarization (squares) [24]. Circles denote the field of the complete
spin polarization in the insulator, taken from Ref. [38]. Dot-dashed
line is the result of calculations using Eq. (8) with β = 0.06.

fully spin polarized electron system. All three characteristic
electron densities lie in the regime of strong electron-electron
interactions. Note that the strength of the Coulomb interactions
is usually characterized by the parameter rs = (πns)−1/2/a∗,
where a∗ is the effective Bohr radius; strongly correlated
regime is achieved when rs � 1.

We will not discuss the clean limit in the highest quality
samples in which nc practically coincides with nc0, suggesting
that the zero-field MIT in such samples is driven by interactions
[7,8]. The Anderson MIT to be considered here occurs in more
disordered samples in which nc exceeds nc0, pointing to the
importance of the disorder.

To calculate critical electron densities nc and nc1, we will
assume that the localization of electrons in Si MOSFETs is
the result of the electron scattering on the random potential
with the density of impurities equal to Ni. As shown in
numerous papers starting with Ref. [27], the localization of
strongly interacting electrons is the result of the multiple
electron scattering affected by screening in the presence of
the exchange-correlation effects. We will suppose that the
impurities are distributed in the 2D layer with zero thickness
and neglect the quantum corrections due to finite temperature
of experiments [28]. The 2D electron system is presumed
to be homogeneous, in contrast to Ref. [29]. The distance
between the gate and the 2D electron system is supposed to be
large, d � n

−1/2
c , so that the screening by gate is negligible.

The authors of Refs. [27,30–33] used their results without
restrictions, although formally one should expect them to be
valid only at rs � 1. Below we show that our calculations yield
a satisfactory agreement with the experiment even at rs ∼ 10.

In the vicinity of the metal-insulator transition, the conduc-
tivity can be written [30,31]

σ = σ0(1 − A), (1)

where σ0 is the conductivity calculated in the Born approxi-
mation and A is given by Ref. [32]

A = 1

4πn2
s

∫ ∞

0
dqq

〈|U (q)|2〉X0(q)2

{1 + V (q)[1−G(q)]X0(q)}2
. (2)

Here X0(q) is the Lindhard function (see, e.g., Ref. [1]),
〈|U (q)|2〉 = Ni(2πe2/εq)2, V (q) = 2πe2/εq, ε = 7.7 is the
average dielectric constant, and G(q) is the Hubbard correc-
tion. The critical electron density nc corresponds to

A(nc) = 1. (3)

Since in the immediate vicinity of nc, the Fermi wave vector
is not a good quantum number, the critical density determined
by Eq. (3) corresponds to the value obtained by extrapolation
of the conductivity to zero from the metallic region.

We are interested in the transitions in both unpolarized and
spin-polarized electron systems. A standard expression for the
Hubbard correction is

G(q) = 1

gsgv

q(
q2 + k2

F

)1/2 , (4)

where gs and gv are spin and valley degeneracy, correspond-
ingly, and kF is the Fermi wave vector.
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FIG. 3. Critical densities for the Anderson transition in a fully
spin-polarized (solid line), spin- unpolarized (dashed line), and fully
spin- and valley-polarized (dash-dotted line) electron systems as
functions of the density of impurities. Thin solid line corresponds
to nc ∝ N 0.75

i .

Equation (2) can be rewritten in a more convenient form

A = Ni

4πn2
s

∫ ∞

0
dqq

(qs/q)2

{1 + [1 − G(q)]qs/q}2
, (5)

where qs = qs0 for q � 2kF and qs = qs0{1 − [1 −
(2kF/q)2]1/2} for q > 2kF. Here qs0 = gsgvm

∗e2/εh̄2 is
the inverse screening radius and m∗ is the effective mass.

The integral in Eq. (5) can be easily evaluated in the limit
qs0 � 2kF. The main contribution comes from q < q0; 2kF 	
q0 < 2qs(1 − G(q0)):

q3
0 
 4qs0k

2
F(1 − G(∞)). (6)

Replacing the upper limit in Eq. (5) with q0, one gets

A 
 Ni

2πn
4/3
s [1 − G(∞)]4/3

[
2πqs0

gsgv

]2/3

. (7)

Although equation (7) can hardly be applied to the
experimentally studied Si MOSFETs, it is useful. First, it
shows that the difference in critical electron densities in
spin-polarized and spin-unpolarized systems is due only to
the exchange-correlation effects that are described in our case
by Hubbard corrections, and second, the critical density in a
spin- polarized system turns out to be higher (approximately
by a factor of 1.5) than that in a spin-unpolarized system.

As follows from Eqs. (3) and (5), in the opposite limiting
case qs0 	 kF (i.e., when rs 	 1), one arrives at the opposite
conclusion: nc > nc1 and nc < Ni.

We have numerically solved Eqs. (4) and (5) in the limit
qs0 � 2kF. The results for nc(Ni) and nc1(Ni) are shown
in Fig. 3. As seen in the figure, in quite a wide range of
parameters, both critical densities are proportional to each
other with the coefficient of proportionality of approximately
1.33. Their dependence on the impurity density obeys a power
law: nc ∝ nc1 ∝ N0.75

i , which is in agreement with Eq. (7). As
has been mentioned in Ref. [33], each impurity localizes more
than one electron.

According to the data shown in Fig. 1, nc is approximately
equal to 9×1010 cm−2, which yields the density of impurities

FIG. 4. The ratio of the resistances of spin-polarized and spin-
unpolarized electrons at T = 30 mK as a function of electron density.
Circles correspond to the experimental data of Ref. [24] and the
solid line is the result of calculations without additional fitting
parameters. The inset shows the experimental curves at electron
densities 1.2×1011 cm−2 (upper curve) and 1.68×1011 cm−2.

≈3.6×1010 cm−2 and nc1 ≈ 1.2×1011 cm−2, both values
agreeing reasonably well with the experiment. Moreover,
the obtained density of impurities is in remarkably good
agreement with that obtained independently from the results
of Refs. [23,34].

Calculations using the data shown in Fig. 2 where nc ≈
8×1010 cm−2 yield Ni ≈ 3.1×1010 cm−2 and the expected nc1

equal to ≈1.07×1011 cm−2 that is in good agreement with the
experimental value nc1 ≈ 1.17×1011 cm−2.

It is easy to calculate the critical density nc2 for the MIT in
a fully spin- and valley-polarized electron system (Fig. 3).
However, comparison with the experiment is impossible
because the available experimental data [35] correspond to
the insulating state.

In spite of the satisfactory agreement with the experiment,
one should treat the results of the above calculations with some
reservations. They will undoubtedly change if one uses other
(more accurate) values of G(q). For example, Eq. (2a) from
Ref. [33] yields the number of impurities twice as low as the
one found in our calculations [36].

There is yet another way to check the adequacy of our
approach. One can compare the calculated and experimentally
found ratios of the resistances in a spin-polarized and spin-
unpolarized electron systems. This comparison is especially
useful because the effective mass (which is itself strongly
density-dependent) cancels out. At ns � nc (i.e., far away from
the transition), this ratio is equal to approximately 4 according
to both the experiment [7] and theory [37]. However, as the
density is reduced, this ratio significantly grows, as shown
in Fig. 4. Using the density of impurities obtained above, one
can calculate the ratio of the resistances in a spin-polarized and
spin-unpolarized systems without using additional adjustable
parameters. As seen in the figure, calculations yield not only
qualitative but also reasonable quantitative agreement with
the experiment. Note that the ratio of resistances depends on
temperature, but in the range of electron densities spanned
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in the figure, this temperature dependence is weak at T <

300 mK [22,38] and can be neglected.
Summarizing the above, one can conclude that the exper-

imental fact — a spin-polarized electron system localizes at
electron densities higher than a spin-unpolarized one — is
a consequence of the exchange-correlation effects. This is in
agreement with the conclusions of Ref. [11] where the increase
of the number of valleys in a strongly correlated electron
system was shown to induce delocalization.

One can expect that the boundary between metal and
insulator on an (ns,B) plane should correspond to the line
ns = nc1 when B � Bp(ns) and to the line B = Bp(ns) when
ns < nc1. As seen in Figs. 1 and 2, such a behavior is
indeed observed in a wide range of parameters except for
the immediate vicinity of nc and nc1.

The Anderson transition at densities nc < ns < nc1 is of
special interest because the localization in this regime comes
about in a partially spin-polarized electron system, as can be
seen in Fig. 2 where the experimental data [38] corresponding
to the complete spin polarization in the insulator are shown.
In a certain range of densities between approximately 0.85
and 1.05×1011 cm−2, upon the increase of the magnetic field,
initially the metal-insulator transition occurs, and only then
the full spin polarization is achieved. A similar behavior can
also be seen in the data of Refs. [18,39].

The exchange interactions between delocalized electrons
and interactions between localized electrons are known to
yield corrections of the opposite sign to the energy of the
ground state. Therefore, in the insulator, a subsequent full
spin polarization leads to an increase in the energy by
(ns/2)(1 − P )βe2√ns/ε (here P is the degree of the spin
polarization and β is determined by the product of the number
of the nearest neighbors and the exchange integral). Full spin
polarization will be reached in a magnetic field B

p
ins at which

the loss in the exchange energy is compensated by the gain in
the Zeeman energy, (ns/2)(1 − P )gμBB

p
ins. Thus, one obtains

Bp
ins = βe2√ns

εgμB
. (8)

In Fig. 2 we show the result of calculations of B
p
ins using Eq. (8)

with a reasonable value of β = 0.06, which fits the data [38]
on the complete spin polarization in the insulator.

In conclusion, behavior of 2D electrons in Si MOSFETs
is governed by the competition between interactions and
disorder. In the region of metallic conductivity the electron in-
teractions are crucial, leading to such experimentally observed
phenomena as the anomalous increase of the effective mass.
As the electron density is decreased, the influence of disorder
becomes more important and leads to the Anderson transition
except for the least disordered samples where Wigner crys-
tallization possibly occurs [40]. Spin polarization strengthens
the disorder effects, which is manifested by the increase in the
critical density for the MIT. We have shown that this increase
is the result of the exchange and correlation effects. When the
metal-insulator transition occurs in a partially spin-polarized
electron system, an additional increase in the magnetic field
is necessary to achieve the full spin polarization due to the
exchange interactions between localized electrons. Determina-
tion of the boundary between metal and insulator on the (ns,B)
plane in a partially spin polarized system requires further work.
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