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Chiral Maxwell demon in a quantum Hall system with a localized impurity
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We investigate the role of chirality on the performance of a Maxwell demon implemented in a quantum Hall
bar with a localized impurity. Within a stochastic thermodynamics description, we investigate the ability of
such a demon to drive a current against a bias. We show that the ability of the demon to perform is directly
related to its ability to extract information from the system. The key features of the proposed Maxwell demon
are the topological properties of the quantum Hall system. The asymmetry of the electronic interactions felt at
the localized state when the magnetic field is reversed joined to the fact that we consider energy-dependent (and
asymmetric) tunneling barriers that connect such state with the Hall edge modes allow the demon to properly
work.
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I. INTRODUCTION

Since Maxwell envisioned in a gedankenexperiment the
possibility of an entity, an intelligent agent (a demon to Lord
Kelvin) capable of separating warm and cold particles of a
gas without performing work apparently violating the second
law of thermodynamics, the idea attracted plenty of theoretical
attention [1]. The apparent paradox was addressed on a basis
in which information and entropy must be related [2]. Informa-
tion is then a physical magnitude and it fulfills physical laws
[3]. Erasing information implies energy dissipation [4–6] that
compensates the entropy reduction suffered by a system in the
presence of the demon and ensures the validity of the second
thermodynamic law. Such information-to-energy conversion
is regarded as the solution of the Maxwell demon paradox [3].
Nowadays, Maxwell’s demon is regarded as a feedback control
mechanism to convert information into energy. Even though
Maxwell’s idea was enunciated as a gedankenexperiment,
present technologies have made possible to build it at small
scales, for instance by using Brownian particles [7,8], single
electrons [9], and lasers pulses [10]. However, demons for
quantum systems [11] are hard to experimentally design and
work and thus show a scarcer experimental activity due to
technical difficulty of implementing a truly quantum demon
[7,12] despite the possibility of improved performance [13]. It
is worth mentioning that the great progress in the development
of stochastic thermodynamics has resulted in theoretical
proposals for stochastic Maxwell demons [14–20] and finally
in an experimental implementation of an autonomous Maxwell
demon using coupled quantum dots [21].

A key ingredient for the performance of stochastic Maxwell
demons is the breakdown of detailed balance conditions [16] as
direct consequence of a feedback mechanism. The breakdown
of such relations is usually achieved through an asymmetry
in the system, e.g., in the tunneling barriers of quantum dot
systems [16,17]. Breaking the local detailed balance (LDB)
condition creates an imbalance between forward and backward
processes from which the demon can profit.

An extra degree of freedom for the demon to work is found
in topological systems. Here, asymmetries, either kinetic (from
tunneling events) or electrostatic, appear naturally in quantum
Hall platforms due to the chirality of the edge states [22,23].

The out-of-equilibrium LDB is broken in quantum Hall (QH)
systems with localized impurities due to a nonsymmetric
electrostatic response of the system when the magnetic field is
reversed [24]. Precisely, we benefit from this feature to devise
a Maxwell demon feedback scheme in a QH device with an
impurity. We show how the chirality of the edge channels
favors the operation of a demon that pushes an electrical
current against a bias. In the demon protocol, the drag of the
electrical current opposite to the bias direction occurs by means
of information-to-energy conversion as we demonstrate. The
protocol requires two conditions to be satisfied: (i) electrostatic
interactions must be asymmetric when the magnetic field or
edge motion is reversed and (ii) tunneling events between the
edge modes and the localized level must be energy dependent.
Under these circumstances, the demon is able to convert
information into work to drag an electrical current that moves
contrary to the applied bias. Below, we describe the theoretical
framework for the chiral demon protocol.

II. THEORETICAL APPROACH

As mentioned, our device is a topological setup consisting
of a single quasilocalized state of energy εd and it can
only be singly occupied since we restrict ourselves to the
Coulomb-blockade regime with a sufficient strong Coulomb
energy. Such level is tunnel coupled to chiral edge states of
a QH system at filling factor ν = 1 (see Fig. 1). The applied
magnetic field defines the direction of transport (represented by

(a) (b)

FIG. 1. The device composed by two electronic reservoirs (left
and right), the QH bar with edge states represented with lines
with arrows (representing direction of transport), and the localized
impurity of energy level εd with tunnel couplings �1(2) and capacitive
couplings C1(2). In (a) (for B > 0) the upper (lower) edge state travels
from L(R) to R(L), instead in (b) (for B < 0) the upper (lower) edge
state travels from R(L) to L(R).
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arrows) in each of the chiral modes. Tunneling events between
chiral conducting states, i = 1,2, and the quasilocalized state
are modeled by the tunneling rates �

0(1)
i that depend on

energy. Thus, tunneling rates are different depending on the
dot charge state, either empty (0) or filled (1). Electrons
in the quasilocalized state are capacitively coupled to those in
the edge channels via the capacitances Ci [22,23,25]. Due to
the chirality of the edge states, the coupling of the quasi-bound
state to the left and right reservoirs changes by reversing the
magnetic field that exchanges the direction of motion of such
modes (see Fig. 1). In this manner, for B > 0 [Fig. 1(a)]
the level is coupled to the left (L) reservoir through the
upper capacitance (C1) and to the right (R) reservoir through
the bottom capacitance (C2). Under these considerations,
the quasilocalized level has a chemical potential given by
μ+

d = εd + e
C1+C2

(C1VL + C2VR), being VL(R) the voltage
in reservoir L(R). Changing the field direction (B < 0)
[Fig. 1(b)] leads to a reverse motion for the conducting modes,
with a chemical potential μ−

d = εd + e
C1+C2

(C2VL + C1VR).
Note that the difference between both chemical potentials for
B < 0 and B > 0 becomes

μ−
d − μ+

d = eη(VR − VL), (1)

where η = C1−C2
C1+C2

. Such difference is null unless the setup is
under nonequilibrium conditions and the capacitances are not
symmetric, i.e., η �= 0. Then, electrostatic interactions are not
symmetric when B is reversed [25].

To describe transport through the interacting level, we
employ the master-equation framework taking advantage
of the fact that in the Coulomb-blockade regime transport
happens sequentially. We permit two charge states, namely |0〉
and |1〉, whose occupation probabilities are governed by the
master equations

ṗ0 = −(
WL

10 + WR
10

)
p0 + (

WL
01 + WR

01

)
p1,

ṗ1 = −(
WL

01 + WR
01

)
p1 + (

WL
10 + WR

10

)
p0. (2)

The transition rates between those two states are given by Wα
mn

where m is the final state of the dot, n is the initial state, and
α is the reservoir to/from which the electron comes. Due to
the demon protocol, described below and which needs to be
taken into account in the master equation, the transition rates
that fill the dot (Wα

10) are always given for a situation in which
B > 0 and those that empty the dot (Wα

01) occur for B < 0.
This is the basis for our Maxwell demon feedback scheme
to work properly since both transition rates are not related to
each other by a LDB condition [24] as we show below. These
previous transition rates, in the sequential tunneling regime,
are readily obtained from Fermi’s golden rule and read as

W
L(R)
10 = �0

1(2)f (μ+
d − μL(R)), (3)

W
L(R)
01 = �1

1(2)[1 − f (μ−
d − μL(R))], (4)

being f (μ+/−
d − μL(R)) = 1/(1 + exp β[μ+/−

d − μL(R)]) the
Fermi distribution function of the reservoir L(R) with elec-
trochemical potential μL(R) and β = 1/kBT , where T is the
common temperature of all reservoirs. As we remarked before,
these rates depend on the orientation of the magnetic field
through their dependence on the quasi-bound-state chemical
potential μ+/−

d . Due to the chirality of the system, the inversion

FIG. 2. Sketch of the performed action by the demon to push
electrons against a bias. The demon’s action is represented by yellow
lightning (steps 2 and 4).

of the magnetic field changes the quasi-bound-dot energy
at which transport is more favored and breaks the LDB as
WL

10

WL
01

∼ �0
1

�1
1
e−β(εd− e�V

2 ){1 − [1 − 2f (εd − e�V
2 )]βη e�V

2 }, being

�V = VL − VR the applied bias. We also observe that an
energy-dependent model for the tunneling rates �0

1 �= �1
1

breaks the LDB even if capacitances are equal. However, we
show here that the demon works properly and drags electricity
against the voltage bias, solely when both requirements are
met (i) asymmetric capacitances and (ii) energy-dependent
tunneling rates with asymmetric barriers. We take the tunneling
rate energy dependence to be within the WKB approximation.
Here, the energy dependence of the tunneling rates is expo-
nential, as shown experimentally [26]

�0(1)
α = �αekα (μ+/−

d −Eα ), (5)

where α = 1,2 denotes the barrier, kα models the energy
dependence, and Eα is the top energy of the barrier. We profit
from the fact that in this approximation barriers are asymmetric
whenever k1 �= k2.

III. DEMON PROTOCOL

As explained before, LDB is broken, either because of
the energy dependence of the barriers or due to the distinct
orientation of the magnetic field. Under these circumstances,
we devise a working process for the demon (see Fig. 2) and
investigate if it would be able to drive a current against a
voltage bias (VL > VR), i.e., to drive a current from right to
left. The process is as follows:

Step 1. Starting with B > 0 and an empty dot, the process is
triggered when an electron enters the dot from the right contact
(probability ∝�0

2). Due to the orientation of the magnetic field,
the energy of the electron in the dot is μ+

d .
Step 2. The demon detects that the dot is singly occupied

and accordingly it changes the direction of the magnetic field
to B < 0, this raises the level energy for the localized state up
to μ−

d .
Step 3. Since now the energy of the electron inside the

localized state has augmented it becomes easier to tunnel
out through the upper barrier (probability ∝�1

1) and as a
consequence the dot is emptied. This leads to transport of
one electron from the right to the left reservoir even though
VL > VR .
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Step 4. To finish, the demon detects the change in the
localized state occupation and restores the initial magnetic
field to B > 0.

Note that the demon pushes electrons against a bias; this
operation is optimal as long as the localized state level energy is
increased as much as possible, therefore helping charges climb
against the applied bias. The energy difference after reversing
the magnetic field is encountered in Eq. (1). Then, we need to
take η < 0, i.e., C2 > C1, given that VL > VR . Therefore, the
feedback scheme is more effective whenever η is close to −1
or at the very nonlinear regime (large VL − VR).

Although tunneling processes in Steps 1 and 3 are against
the bias and thus less likely, this inconvenience can be over-
come by cleverly engineering the tunneling rates [see below
and Eq. (7)]. To implement theoretically the demon in our
transport description, all these steps need to be incorporated in
the master-equation description [Eq. (2)]. Then, the feedback
scheme is taken into account by taking the transition rates at
the correct magnetic field orientations.

IV. RESULTS

In order to characterize transport and to see whether the
demon is able to drive a current against the applied bias or
not, we calculate the currents using the probabilities from
Eq. (2): IL = e(−WL

10p0 + WL
01p1). By this definition, currents

are positive when particles go into a reservoir and negative
otherwise, and fulfill the particle conservation relation IL +
IR = 0. Then, solving Eq. (2) in the steady-state regime, the
probabilities are easily obtained, yielding

IL = e
(
WL

01W
R
10 − WL

10W
R
01

)

WR
01 + WL

01 + WR
10 + WL

10

. (6)

We see from this expression that the first term accounts for
particles entering the dot from the right and exiting through
the left (positive contribution) and the second term accounts for
particles entering the dot from the left and leaving through the
right (negative contribution). In order to improve performance
of the Maxwell demon, we want the first term to be bigger than
the second one since we want a current flowing from right to
left.

From the expressions of the transition rates and the current
[Eqs. (3) and (6), respectively], we see that to favor the first
term of the current we need to enhance �1

1�
0
2 with respect to

�0
1�

1
2. From the expressions of the tunneling rates, we obtain

their ratio:

�1
1�

0
2

�0
1�

1
2

= e(k1−k2)(μ−
d −μ+

d ). (7)

It is observed then that we are able to favor the numerator by
taking k1 > k2, given that μ−

d − μ+
d � 0.

In Fig. 3 we represent the charge current in reservoir
L. Current is negative as long as it flows with the bias
according to our sign criterion. In Fig. 3(a), we observe that
symmetric barriers lead to a current that always follows the bias
independently of feedback strength η. However, in Fig. 3(b)
when the tunneling barriers are different and for a sufficiently
high-η value the current starts to flow opposite to the bias,
becoming positive. This notable fact is thanks to the action of
the demon. Importantly, the action of the demon, i.e., its ability

FIG. 3. Current to (positive) or from (negative) the left reservoir
IL for different values of η as a function of �V = VL − VR . The
current is negative when it flows in the bias voltage direction. The
parameters have been chosen so that k1 = k2 in (a) and k1 = 3k2 in
(b). We have taken �1 = �2 = �, k1 = 0.1/h�, and kBT = 10h�.

to change the energy level inside the dot μ−
d − μ+

d ∝ η�V ,
then by increasing the applied voltage the current flowing
against the bias enhances as well. The bias which in principle
is an obstacle that needs to be overcome becomes rather a help
because the action of the demon augments with it.

To fully characterize the demon and since it is not ideal,
the energy flow from the system to the demon and the demon
entropy information flow are evaluated. The energy current
is related to the energy change that the demon causes on
the electrochemical potential of the localized impurity. We
calculate this current by measuring the number of electrons
going in and out of the dot times their respective energies,
yielding

JD = (μ+
d − μ−

d )

(
WL

10 + WR
10

)(
WL

01 + WR
01

)

WL
10 + WR

10 + WL
01 + WR

01

. (8)

Hence, we see that this energy current is proportional to the
energy difference of the electrochemical potentials caused by
the demon times the activity current which measures how
many particles go in and out of the impurity. Our findings for
the energy current carried by the demon are shown in Fig. 4.
The energy injected by the demon increases with η and with
the applied voltage, as expected. Comparing the results for
symmetric barriers [Fig. 4(a)] and asymmetric ones [Fig. 4(b)]
we show that the current energy does not change significantly.
This indicates that the energy injected by the demon although
present and necessary is not the key factor in pushing the

FIG. 4. Energy current (JD) injected by the demon for different
values of η. The parameters have been chosen so that k1 = k2 in (a)
and k1 = 3k2 in (b). The rest of the parameters are the same as in
Fig. 3.
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FIG. 5. Information current (IF ) of the demon for different values
of η. The parameters have been chosen so that k1 = k2 in (a) and
k1 = 3k2 in (b). The rest of the parameters are the same as in Fig. 3.

current against the bias. Let us now move on to the information
entropy.

The final step in the characterization of the demon is the
key quantity of an ideal Maxwell demon, i.e., the information
that it can extract from the system in order to perform [16].
We start from the system information [14] given by Shannon’s
entropy S = −kB

∑
m pm ln pm, where pm are the occupation

probabilities given by Eq. (2). Then, the entropy balance Ṡ =
Ṡe + Ṡi can be written as an entropy production Ṡi and an
entropy flow Ṡe that satisfy Ṡi = −Ṡe.

The entropy flow in the system can be separated in the
standard form of the entropy flow given by the exchanged heat
in each reservoir (ν) over the temperature and an extra term
accounting for the entropy flow to the demon ṠD:

Ṡe =
∑

ν=L,R

J(ν)

T
+ ṠD. (9)

The term ṠD consists of two parts: the entropy flow caused
by the energy flux JD and an information flow IF that powers
the demon. This second term labeled IF is the information
flow extracted by the demon in its application of the feedback
protocol:

IF = ṠD − JD

T
. (10)

This information current is the main characteristic
of the Maxwell demon since it measures the information that
the demon extracts from the system in order to be able to
apply the necessary feedback scheme. Especially in the case
of an ideal Maxwell demon (JD = 0), it is the only measurable
quantity associated to the Maxwell demon [16].

Figure 5 represents the information current for the demon.
In Fig. 5(a) we observe that the information current is always
negative meaning that information is flowing from the demon
to the system. This corroborates that the demon is acting
wrongly, being unable to extract information from the system.
However, when barriers depend differently on energy [see

Fig. 5(b)] the demon starts to be able to extract information
from the system. Noticeably, we observe that the cases in which
the demon drags an electrical current against the bias system
coincide with the cases in which the demon is able to extract
information from the system (compare Figs. 3 and 5). This is
the definitive indicator that the extraction of information is the
key to our demon’s operation.

V. CONCLUSIONS

We have studied the effect of a nonideal Maxwell demon
feedback on transport through a localized state in a quantum
Hall system. We proposed a working principle for a Maxwell
demon based on the chirality of the edge states. We showed that
it is applicable under the following conditions: (i) asymmetry
of the capacitive interactions as the magnetic field is reversed,
under nonequilibrium conditions, and (ii) energy dependence
of the tunneling probabilities through the barriers. We show
with a precise feedback protocol how a demon is able to
push electrical current against the applied bias voltage by
extracting information from the system. We demonstrate that
this is effectively the case: the demon works satisfactorily
whenever it is able to extract information from the system.
Our scheme opens an important avenue for the design of
Maxwell demons that benefit from the topological properties
of quantum matter in interacting systems since any means
of switching the chirality would be well described by our
theoretical description and would serve the same purpose as
the reversal of the magnetic field.

It is to be noted that although the reversal of such high
magnetic fields is hard to implement in the desired time scale
of few nanoseconds with the experimental techniques available
nowadays, this reversal is only meant as a reversal of the
chirality of the edge states of the quantum Hall system. This
reversal could be achieved, for example, using a fixed magnetic
field of a few Tesla in one direction and then triggering a
pulsed high magnetic field on the opposite direction to achieve
the reversal of the magnetic field. These pulsed magnetic
fields are triggered over typical time scales of microseconds
[27] which is a reasonable operation time for the demon.
Another possibility would be to move the sample between
two well-localized fixed magnetic fields configured in opposite
directions, achieving an effective reversal of the magnetic field.
In both of these processes, the QD state could be preserved by
lowering its energy and restoring it afterwards.
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