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Single-photon superradiant decay of cyclotron resonance in a p-type single-crystal semiconductor
film with cubic structure
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We study a single-photon super-radiance under the conditions of cyclotron resonance in a perfect single-crystal
p-type semiconductor film with cubic structure. We show that the rate of super-radiant emission scales with the
film area, which allows one to specify the size of the film at which the probability of a single-photon super-radiance
becomes much greater than the probabilities of other scattering channels. The power of super-radiant emission
depends only on three fundamental constants: the electron charge qe, the speed of light c, the electron mass me,
and on the electric- to magnetic-field ratio.
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I. INTRODUCTION

The use of cyclotron resonance for the study of semiconduc-
tors began in the middle of the last century [1–5]. Since then,
the cyclotron resonance has become a powerful tool for study-
ing the structure of semiconductors, allowing investigation of
their band structure, mechanisms of charge-carrier scattering,
the influence of phonon-electron and phonon-hole interaction
on their effective masses, and more (see review papers [6–8]
and the references therein). In recent years, the development
of submicron technologies paved the way for new methods
of preparing low-dimensional semiconductor structures where
quantum-size effects play a decisive role [9]. This makes
possible the use of cyclotron resonance for the study of
collective effects such as Dicke super-radiance, which has
recently been observed experimentally in ultra-high-mobility
two-dimensional (2D) electron gas in GaAs [10,11], and for
electronic excitations in the InGaAs quantum well [12].

The effect of super-radiation, which has been well known
for a long time (see review paper [13] and references therein),
was discovered by Dicke [14], who showed that the system of
N identical two level excited atoms undergoes a spontaneous
coherent transition to the ground state. This is accompanied
by the emission of N photons, the intensity of which scales as
N2, and the decay rate of which is Nγ , where γ is the decay
rate of an isolated atom. As was noticed in [14], super-radiant
transition becomes possible if the system size L is much less
than the photon wavelength λ (L � λ).

Another kind of super-radiance (so-called single-photon
super-radiance) can occur when a single-photon Dicke state
is formed: N identical two level atoms are in a symmetrical
superposition of states with one excited atom and N − 1 atoms
in the ground state [15–21]. In this case, the decay rate of a
single photon is also equal to Nγ . As was shown in [16,20], a
single-photon super-radiance can occur even if system size L

is much greater than the photon wavelength λ. In this case, the
photon decay rate also scales as N and the photon’s emission
results in a narrow radiation pattern.

Our paper is devoted to the study of a single-photon
super-radiance under conditions of cyclotron resonance in a
single-crystal semiconductor film with a cubic structure. It
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is assumed that the temperature is sufficiently low, so that
there are no holes at the excited Landau level (n = 1), and the
surface density of the holes at the lower Landau level (n = 0)
is equal to qeB/2πh̄. Such a density of 2D holes results in the
integer quantum Hall effect [22], where the Hall resistance of a
semiconductor structure with 2D electron gas is quantized and
depends only on fundamental constants—the electron charge
and the Planck constant.

In general, a super-radiant transition in solids is difficult to
observe, due to inherently fast decay channels for carriers. In
semiconductors the main scattering channel for the electron
and holes is the phonon channel. The time scale of the phonon
relaxation of carriers in semiconductors is typically of the
order of 10−13 s [23].

We show in the paper that, under the conditions of cyclotron
resonance, the rate of the emission of one photon from a single-
photon Dicke state is much greater than the probability of other
hole scattering mechanisms, and hence, in this case, a single-
photon super-radiance is the main relaxation mechanism. For
example, for the static magnetic field B = 10 T [24] and film
size L > 0.2 cm, the rate of a single-photon super-radiance
in Ge film is more than 1014 s−1. This value is an order of
magnitude greater than the rate of hole scattering on phonons
in a semiconductor (1013 s−1) [23]. Therefore, under these
conditions, the emission of phonons can be neglected, and
the relaxation time is determined only by the mechanism of a
single-photon super-radiance.

We also investigate the conduction and power of super-
radiant emission of the two-dimensional hole gas and show
that in this case the overall universal power generated in the
film depends only on three fundamental constants qe,c,me

and on the ratio of intensities of the electric and magnetic
fields.

The paper is organized as follows. In Sec. II we describe the
cyclotron resonance spectrum of holes in a three-dimensional
(3D) single crystal of Ge or Si in a strong homogeneous
magnetic field and calculate the rate of spontaneous photon
emission for a hole transition between Landau levels n = 1
and 0. In Sec. III we calculate the rate of a single-photon
super-radiance and show that the system wave function is
a symmetric superposition of single hole state products. In
Sec. IV we calculate a surface current. The power of super-
radiant emission and its radiation patterns are found in Sec. V.
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II. THE CYCLOTRON ENERGIES OF THE HOLES

We assume the film surface is oriented in the x-y plane,
so that the z axis is directed along the [001] crystal axis.
In order to study the cyclotron resonance it is necessary to
know the energy spectrum of the holes. We take this spectrum
as similar to that in a 3D single crystal. As is known, the
wave function of the hole is a bispinor [3]. Accordingly, in
3D Si or Ge single crystals located in a strong homogeneous
magnetic field B applied along the [001] axis, there are
four energy levels for the first two Landau levels n = 0,1.
In the framework of perturbation theory these energies were
calculated in [25] up to the second order of magnitude under
conditions h̄2k2

z /2me � h̄ωc; μ = 0.5(γ3 − γ2) < 1, where
ωc = qeB/me is the cyclotron frequency, to be

Eα,n = E(0)
α,n + E(1)

α,n + E(2)
α,n (1)

where the first subscript numbers the bispinor (α = 1,2), and
the second subscript numbers the Landau levels (n = 0,1).

For the subsequent study it is important that the energy
spectrum of the holes in Ge and Si (1) is not equidistant
relative to the quantum number n [3] and the energy Eα,n

is independent on the quantum number kx [25]. Expression (1)
can be used for the calculation of hole energies in a film under
the condition [25]

π2h̄2

2mα,n

(n′)2

d2
� h̄ωc (2)

where mα,n is the effective mass of a hole in 3D single crystal
[25], d is the film thickness, and n′ is the number of de Broglie
half waves across the film.

Condition (2) holds to a good accuracy for a magnetic
field B = 10 T, film thickness d = 2.0 × 103Å, and n′ = 1. It
allows one to take zero approximation in Eq. (1), E(0)

α,n for the
calculation of the energy spectrum [25]:

E
(0)
1,0 = 1

2 h̄ωc(γ2 − γ1 + k), (3a)

E
(0)
1,1 = 1

2 h̄ωc[3(γ2 − γ1) + k], (3b)

E
(0)
2,0 = − 1

2 h̄ωc(γ2 + γ1 − 3k), (4a)

E
(0)
2,1 = − 3

2 h̄ωc(γ2 + γ1 − k) (4b)

where γ1,γ2,γ3 are the Lattinger parameters. In Ge γ1 =
13.2,γ2 = 4.4,γ3 = 5.4 [3], k = −3.41 [26]; in Si γ1 =
4.22,γ2 = 0.5,γ3 = 1.38 [26].

The eigenvectors for energies (3a), (3b), (4a), and (4b) take
on the form 〈

ψ (0)
α,n

∣∣ = (0,(2 − α)u∗
n,0,(α − 1)u∗

n) (5)

where un is the spatial part of the wave function:

un(kx,x,y) = Cn

√
1

Lxd
eikxxe− ξ2

2 Hn(ξ) (6)

where ξ =
√

meωc

h̄
(y − R2

e kx), Cn = 1√
2nn!

√
πRe

, Re =
√

h̄
qeB

is

a cyclotron radius, Hn(ξ ) are the Hermite polynomials, Lx is
the film length along the x axis, and kx = 2π

Lx
nx , nx = 0, ±

1, ± 2, . . ..

The resonance transition is possible only between different
Landau levels n which belong to the same bispinor. From
expressions (3a), (3b), (4a), and (4b) we obtain the frequencies
of the corresponding transitions:

h̄ωα = E
(0)
α,0 − E

(0)
α,1 = h̄ωcCα, α = 1,2 (7)

where Cα = (γ1 + (−1)αγ2).
In general, our approach is valid when Re � a0, where

a0 is the lattice constant (for Ge a0 = 5.6Å). From Re = a0

we estimate the maximal value of the magnetic field to be
B0 = 2.1 × 103 T. Therefore, our scheme for the calculation
of the holes’ spectrum is justified for B � B0. On the other
hand, the expressions (3a), (3b), (4a), and (4b) provide a
good approximation if |E(0)

α,n/	| < 1, where 	 is the spin-orbit
splitting (for Ge 	 = 0.29 eV). The calculations for Ge show
that for magnetic fields B = (1 ÷ 10) T the ratio |E(0)

α,n/	|
does not exceed 0.12.

A. The rate of spontaneous photon emission under hole
transition between n = 1 and 0 Landau levels

In the dipole approximation, the rate 
α for the hole
transition between states |ψ (0)

α,1〉 and |ψ (0)
α,0〉 with the emission

of a photon can be obtained from the conventional expression


α = ω3
α

3πε0h̄c3

∣∣〈ψ (0)
α,1

∣∣qeŷ
∣∣ψ (0)

α,0

〉∣∣2
(8)

where 〈ψ (0)
α,1|qeŷ|ψ (0)

α,0〉 = qeRe
1√
2
δkx,k′

x
, and ε0 is the electric

constant.
Finally for 
α we obtain


α = C3
α

6πε0(2π )3

q2
e

Reh̄

(
λC

Re

)3

(9)

where λC = 2πh̄/mec is the electron Compton wavelength.
The lifetime of the state |ψ (0)

α,1〉 is given by the quantity τα =
1/
α . For the magnetic field strength B = 10 T we obtain
from Eq. (9) the corresponding lifetimes τ1 = 7.6 × 10−5 s,
τ2 = 9.5 × 10−6 s. These values are much greater than the
lifetime of state |ψ (0)

α,1〉 against a phonon emission which is
of the order of 10−13 s in semiconductors [23]. It would
seem that under these conditions the photon decay channel
is impossible. However, we will show in the next sections that
due to the mechanism of a single-photon super-radiance the
decay channel of the state |ψ (0)

α,1〉 against the photon emission
becomes the dominating process.

III. SINGLE-PHOTON SUPER-RADIANCE

In order to estimate the rate of single-photon super-radiance
we use the method of the non-Hermitian effective Hamiltonian
[27], which has been applied to the study of microwave
scattering on a chain of two level atoms [28]. We consider
a one-dimensional chain of N noninteracting holes aligned
along the y axis with the incident photon directed along the z

axis. As a basis set of state vectors we take the states where one
hole is in the excited state |e〉 and the other N − 1 holes are
in the ground state |g〉. Therefore, we have N vectors
|n〉 = |g1,g2,.....gn−1,en,gn+1,....gN−1,gN 〉. The spontaneous
emission of the excited hole results in a continuum of states
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|k〉 = |g1,g2,.......gN−1,gN,k〉, where all holes are in the
ground state and there is one photon in the system. This process
can be described by the non-Hermitian Hamiltonian

H = H0 − iW (10)

where H0 is the Hamiltonian of holes, and operator W

describes the interaction of the holes with the photon field.
The matrix elements of Eq. (10) in the |n〉 representation

are

〈m|H |n〉 = h̄ωαδm,n − i〈m|W |n〉; (1 � m,n � N ). (11)

If the distance between holes along the direction of the photon
scattering (z axis) is much less than the photon wavelength,
the matrix element on the right-hand side of Eq. (11) takes the

form [28]

〈m|W |n〉 = h̄

√



(m)
α 


(n)
α (12)

where 
(n)
α is the rate of spontaneous photon emission from a

state where the nth hole is excited.
Due to the planar geometry of the film, the z coordinates

of all holes in the chain are the same—they are in an
identical arrangement relative to a wavefront. Therefore, we
assume that the rate of spontaneous emission of holes is the
same: 〈m|W |n〉 = h̄
α . Thus, we get a non-Hermitian N × N

matrix, where the main diagonal elements are h̄ωα − ih̄
α ,
and all off-diagonal elements are equal to −ih̄
α:

1
h̄
〈m|H |n〉 =

⎛
⎜⎜⎜⎜⎝

ωα − i
α −i
α −i
α . . . −i
α

−i
α ωα − i
α . . . . . . −i
α

−i
α −i
α ωα − i
α . . . −i
α

...
...

...
. . .

...
−i
α −i
α . . . . . . ωα − i
α

⎞
⎟⎟⎟⎟⎠ . (13)

The incident photon, when absorbed by the film, can excite
any hole. As we do not know which of the N holes is excited,
the wave function of the holes should be expressed as a
superposition of the state vectors |n〉:

� =
N∑

n=1

cn|n〉. (14)

It is not difficult to show that the solution of the Schrödinger
equation H� = E�, with H and � from Eqs. (13) and (14)
respectively, has the following properties.

(1) There is a single state with energy ES = h̄ωα − ih̄N
α

the wave function of which is a symmetric coherent superpo-
sition of the state vectors |n〉, where all quantities cn are the
same:

|�S〉 = 1√
N

N∑
n=1

|n〉. (15)

(2) There are N − 1 degenerate states with energy E =
h̄ωα , where all coefficients cn in Eq. (14) satisfy the condition
N∑

n=1
cn = 0. These states are dark, nondecaying states since

their widths are equal to zero.
The collective state |�S〉, Eq. (15), which we call a single-

photon Dicke state, can be formed by a single photon, which
propagates normal to the film surface and interacts in phase
with every hole in the plane of the film [16].

Therefore, under this condition, state (15) decays with a
rate N
α , so that the rate of the spontaneous emission of a
single hole 
α , Eq. (9), should be substituted with the quantity

α:


̄α = N
α = 2π

3

q2
e

ε0h̄λα

(
L

λα

)2

, (16)

which is the linewidth of a single-photon super-radiant emis-
sion. In Eq. (16) the quantity λα (α = 1,2) is the wavelength
of the emitted photon,

λα = 2πcme

CαqeB
, (17)

and N is the number of holes which take part in the formation
of the single-photon Dicke state (15):

N = qeB

2πh̄
L2 = 1

2π

(
L

Re

)2

(18)

where L = Lx = Ly .
From the considerations given above we obtain the fol-

lowing estimations. For a magnetic field B = 10 T we esti-
mate transition frequencies (7)—ω1 = 1.6 × 1013rad/s, ω2 =
3.1 × 1013rad/s—with corresponding wavelengths λ1 =
0.012 cm and λ2 = 0.006 cm. In the range 0.2 � L � 0.4 cm
the expression (18) gives 9.7 × 109 � N � 3.9 × 1010. Then,
from expression (16), it follows that the rate of spontaneous
hole emission from a Ge film is more than 1014 s−1. Since
the rate of the phonon scattering in semiconductors is of the
order of 1013 s−1 (see, for example, [23]), we may neglect
all scattering mechanisms except for a single-photon super-
radiance, which becomes, under these conditions, the main
relaxation mechanism of excited holes.

IV. THE SURFACE CURRENT

First we define the ground state |G〉 of the ensemble of the
holes: |G〉 = |g1,g2, . . . ,gn, . . . ,gN−1,gN 〉 with the energy εG.
Next we take the external time-dependent electric field, which
is directed normal to the time-independent homogeneous
strong magnetic field:

V̂ (y,t) =
{

0,t < 0
V̂ cos (ωt),t > 0

(19)
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where V̂ = −yqeEy . It is not difficult to show that this driving
field gives rise to transitions only between the states |G〉
and |�S〉. The matrix element of the dipole operator between
these states is 〈�S |qeŷ|G〉 = qeRe

√
N/2, while the transition

amplitudes between |G〉 and dark states are zero.
As the energy spectrum of holes in Ge and Si is not

equidistant relative to the quantum number n [3], the evolution
of the hole state vector |�(t)〉, which accounts for the near
resonant transitions at h̄ωα � kBT , between states |G〉 and
|�S〉 is as follows:

|�(t)〉 = |G〉a(t)e−i
εG
h̄

t + |�S〉b(t)e−i( εG
h̄

+ωα−i
̄α)t (20)

where the amplitudes a(t) and b(t) satisfy initial conditions
a(0) = 1, b(0) = 0.

These amplitudes can be found near resonance ω ≈ ωα , in
the frame of conventional time-dependent perturbation theory:
a(t) = 1,

b(t) = Ey

qeRe

√
N

2
√

2h̄

(
ei(ωα−i
̄α−ω)t − 1

(ωα − i
̄α − ω)

)
. (21)

At resonance, ω = ωα , the condition |b(t)| � 1 sets an upper
bound on the amplitude of the external electric field Ey :

(Ey � 2
√

2h̄
α

qeRe

√
N

≡ Emax
α ).

From Eq. (20) we calculate a time-dependent steady-
state part of the hole dipole moment lim

t→∞ 〈�(t)|qeŷ|�(t)〉 ≡
〈qey(t)〉, which causes the transitions between states |G〉 and
|�S〉:

〈qey(t)〉 = Ey

N (qeRe)2

2h̄

(
(ωα − ω) cos ωt + 
̄α sin ωt

(ωα − ω)2 + 
̄2
α

)
.

(22)

From Eq. (22) we estimate the rate of change of the average
dipole moment of the holes at resonant frequency ω = ωα:

〈qeẏ(t)〉r = Ey

N (qeRe)2ω
α

2h̄
̄α

cos (ωαt). (23)

From Eq. (23) we introduce the average velocity of a hole 〈v〉:
〈qeẏ(t)〉 = Nqe〈v〉 and define a surface current density:

Jy(ω = ωα,t) = Nqe〈v〉
L2

. (24)

And finally, from Eq. (24) we can estimate the current
in the film and the conductivity of an ideal 2D system.
Synchronous steady-state motion of the holes allows us to find
the conductivity of a 2D system when the number of holes,
which take part in the formation of the single-photon Dicke
state (15), is equal to N [Eq. (18)].

V. THE ANGULAR DISTRIBUTION OF
SUPER-RADIANT EMISSION

The total power, which is supplied to a film, gives rise to
the transitions between the states |G〉 and |�S〉:

Pα = 1
2σαE2

yL
2. (25)

We assume there are no dissipative losses, so that all this power
is radiated into a free space.

In Eq. (25) a quantity σα is the conductivity at the frequency
ω = ωα , which is obtained from Eqs. (23) and (24):

σα = 1

4π

q2
e ωα

h̄N
α

= 3

4π

√
ε0

μ0

(
λα

L

)2

. (26)

Hence, we may express Pα in the following form:

Pα = 3

8π

√
ε0

μ0
λ2

αE2
y (27)

where, as we noted before, the amplitude of the electric field
satisfies the condition Ey � Emax

α .
In Ge with B = 10 T and L = 0.2 cm, the upper limit of the

electric-field intensity Emax
2 = 2.4 × 103 V/m, and from Ey =

0.2Emax
2 we obtain the emission power P2 = 2.6 × 10−7 J/s.

It is seen from Eq. (27) that the quantity C2
αPα , which we

call the universal emission power, depends neither on the film
dimension L nor on the material properties. It depends only
on the fundamental constants qe,c,me and on the electrical to
magnetic field ratio Ey/B.

From an experimental point of view, it is important to
know the angular distribution of a radiation field. An exact
form of radiation pattern is given by the real part of the
time-averaged power density 〈S〉 = 1

2μ0
[E × B∗], where E and

B refer to the peak amplitudes of the oscillating quantities,
E(t) = Eeiωt ,B(t) = Beiωt . In what follows, we calculate the
radiation pattern of spontaneous emission in a far-field region
(r � λ,rλ � L2), where in a single electromagnetic plane
wave a vector E is normal to a vector B, and E = cB. Hence,
in this region the time-averaged vector power density 〈S〉 is
simply a real number: 〈S〉 = c

2μ0
|B|2.

The magnetic field in a far-field region is given by the
expression [see the expression (A7) in the Appendix]

B(r) = −i
μ0

4π
[k × J(k)]

eikr

r
(28)

where r is a distance from a source of the field, k is the wave
vector (k = ω/c), which is directed along r in a far-field region,
and J(k) is a spectral component of a source current J(r):

J(k) =
∫

V

J(r)e−i(k·r)dr. (29)

Therefore, for 〈S〉 we obtain

〈S〉 = 1

2r2

√
μ0

ε0
[k × J(k)]2. (30)

In our case, the current in a square L × L film can be written
as

J(r) =
{

0 |x|,|y| > L
2

eyJyδ(z) |x|,|y| � L
2

(31)

where Jy is given in Eq. (24). In Eq. (31) the origin of
coordinates is taken in the geometrical center of a film where
the z axis is normal to the film plane. From Eq. (29) we find
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FIG. 1. Normalized radiated power density f (θ,ϕ) vs θ for fixed
ϕ. λ2 = 0.006 cm, L = 0.2 cm.

the spectral component J(k):

J(k) = eyJyL
2 sin

(
kxL

2

)
kxL

2

sin
( kyL

2

)
kyL

2

(32)

where

k = exkα sin (θ ) cos (ϕ) + eykα sin (θ ) sin (ϕ) + ezkα cos (θ ),
(33)

0 � θ � π,0 � ϕ � 2π , kα = 2π/λα , and ex,ey,ez are unit
vectors in the direction of the x axis, y axis, and z axis,
respectively.

A substitution of Eq. (32) in Eq. (30) yields the radiated
power density:

〈S(r)〉 =
√

μ0

ε0

Jy
2L4

4λ2r2
f (θ,ϕ) [W/m2] (34)

where

f (θ,ϕ) = (
cos2θ + sin2θcos2ϕ

)( sin
(

kxL

2

)
kxL

2

sin
( kyL

2

)
kyL

2

)2

(35)
is the normalized power density which defines the angular
distribution of a super-radiant emission. Spherical angles θ

and ϕ in Eqs. (33) and (35) coincide with those of vector r
since in a far-field region vector k is directed along r. We
note that, except for the first factor in the right-hand side
of Eq. (35), the expression for f (θ,ϕ) is similar to that of
Fraunhofer diffraction on a square aperture.

In order to visualize the angle dependence of emission
power density we draw the function f (θ,ϕ), Eq. (35), in
three different coordinates. The plots are performed for λ2 =
0.006 cm, L = 0.2 cm, so the far-field region corresponds to
r � L2/λ2 ≈ 6.6 cm. In Fig. 1 we show the dependence of
normalized power density f (θ,ϕ) on θ for several fixed polar
angles ϕ. A 3D plot of the normalized radiation density emitted
in the upper half space is shown in Fig. 2. It is evident from
these plots that for our parameters most of the power is radiated
within a narrow region near a z axis, which corresponds to the

FIG. 2. 3D surface pattern of normalized radiation power density.

solid angle δ� ≈ π (λ2/L)2 = 2.82 × 10−3 sr. The main and
minor lobes can be seen in polar patterns of radiation power
density as shown in Fig. 3.

VI. DISCUSSION

In the paper we study a single-photon super-radiance under
the conditions of cyclotron resonance in a perfect single-crystal
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FIG. 3. Polar patterns of normalized radiation power density.
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p-type semiconductor film with a cubic structure. We assume
the film is at a sufficiently low temperature, so that we are able
to take the initial hole density at the Landau level n = 0 to be
qeB/2πh̄, with no holes at the excited Landau level n = 1.

We show that the rate of super-radiant emission, which
results from the transition between the collective states |G〉
and |�S〉, scales as the film area, which allows one to specify
the size of the film, at which the probability of a single-photon
super-radiance becomes much greater than the probabilities of
other scattering channels. For Ge in a static magnetic field of
the order of 10 T and film dimension L > 0.2 cm, the rate of a
single-photon super-radiance due to a hole transition is more
than 1014 s−1. This value is an order of magnitude higher than
the rate of the phonon emission by a hole. Therefore, we may
neglect all scattering mechanisms except for a single-photon
super-radiance, which becomes, under these conditions, the
main relaxation mechanism of excited holes.

We show that the universal power of super-radiant emission
depends only on the fundamental constants qe,c,me and on the
electric to magnetic field ratio Ey/B.

We calculate the angular distribution of super-radiant
emission and show that for our parameters most of the power
is radiated within a narrow region near a z axis, which corre-
sponds to the solid angle δ� ≈ π (λ2/L)2 = 2.82 × 10−3 sr.

In conclusion we would like to mention several issues which
may be important in the experimental realization of this effect.

A necessary condition for the formation of the single-
photon Dicke state |�S〉, Eq. (15), is the existence of a single
driving photon, which propagates normal to the film surface
[16]. In principle, it could be arranged if the film under study
is embedded in a resonant cavity the fundamental frequency
of which is close to the transition frequency between Landau
levels n = 1 and 0.

We showed in the paper that in order to obtain a large decay
rate N
α , which overcomes other scattering channels, the film
size L should be much greater than the photon wavelength
λ. For large samples it leads to a reduction of the decay rate
by a factor (λ/L)2 [18], due to characteristic phase factors
eikrj , where k is the wave vector of the incident photon, and
rj is the hole position in the crystal volume. For a thin crystal
film, which we consider here, the majority of the emitters
are located near the film surface. In the case of the incident
photon propagating normal to the film surface, all surface
emitters experience nearly the same phase shift, so that in our
case we may neglect the geometrical reduction of the decay
rate.

As was shown above, for the formation of the qua-
sistationary state |�S〉, with a large decay rate N
α , the
transition frequencies ωα and decay rates 
α for all emitters
should be the same. This means that two-level systems (6),
u0(kx,x,y),u1(kx,x,y), spaced by different kx along the y axis,
need to be identical. To ensure this condition the film under
study should be as ideal as possible. There cannot be local
defects in the film located close to the maxima of the wave
functions u0(kx,x,y),u1(kx,x,y), the positions of which are
determined by the magnitude of kx .

We believe that the results obtained in our paper will help to
open a new window for developing novel light sources based
on super-radiance emission.
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APPENDIX: THE CALCULATION OF MAGNETIC FIELD
IN A FAR-FIELD REGION

The magnetic field generated by a source current density
J(r′) in an arbitrary point r of space can be found from
Maxwell’s equations in the following form [29]:

B(r) = −μ0

∫
V

[∇rG(r − r′) × J(r′)]dr′ (A1)

where the integration in Eq. (A1) is over the distribution
of a source current density J(r′). The quantity G(r − r′)
is the free-space Green’s function of the scalar Helmholtz
equation:

G(r − r′) = eik|r−r′|
4π |r − r′| (A2)

where k is the plane-wave wave vector, k = ω/c = 2π/λ.
Below we use a spectral representation of Green’s function

(A2):

G(r − r′) =
∫

dk′

(2π )3

eik′ ·(r−r′)

k′2 − k2 − iε
(A3)

where a small imaginary quantity ε in the denominator of
Eq. (A3) ensures the outgoing scattering wave solution of the
Helmholtz equation.

Substitution of Eq. (A3) into Eq. (A1) yields the result

B(r) = −i
μ0

8π3

∫
V

∫
k′

[k′ × J(r′)]
eik′ ·(r−r′)

k′2 − k2 − iε
dk′dr′.

(A4)
If we define a spectral current density

J(k′) =
∫

V

J(r′)e−i(k′ ·r′)dr′, (A5)

the expression (A4) can be rewritten as follows:

B(r) = −i
μ0

8π3

∫
k′

[k′ × J(k′)]
eik′ ·r

k′2 − k2 − iε
dk′. (A6)

When deriving Eq. (A6), the only implicit assumption we
made was the existence of the spectral current density (A5).
It can be rigorously proved that for any physical distribution
of the current density J(r) in a restricted volume the spectral
density J(k) always exists. In this case, J(k) is the integer
function with a bounded spectrum.

In a far-field region the expression (A6) can be substantially
simplified. In this region the electromagnetic waves are
essentially plain waves with the only wave vector kr , which
is directed along the vector r: kr = 2π

λ
r
r
. Therefore, we may
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take the quantity k × J(k) at this point out of the integral in
Eq. (A6) to obtain

B(r) = −iμ0 [k × J(k)]|k=kr

∫
k

dk′

(2π )3

eik′ ·r

k′2 − k2 − iε

= −i
μ0

4π
[k × J(k)]|k=kr

eikr r

r
(A7)

where

kr = exk sin(θ ) cos(ϕ) + eyk sin(θ ) sin(ϕ) + ezk cos(θ ),

(A8)

ex,ey,ez are unit vectors of the Cartesian coordinate system,
and k = 2π/λ.

Spherical angles θ and ϕ in Eq. (A8) coincide with those of
vector r since in a far-field region vector k is directed along r.
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