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Length scale of puddle formation in compensation-doped semiconductors and topological insulators
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In most semiconductors and insulators the presence of a small density of charged impurities cannot be avoided,
but their effect can be reduced by compensation doping, i.e., by introducing defects of opposite charge. Screening
in such a system leads to the formation of electron-hole puddles, which dominate bulk transport, as first recognized
by Efros and Shklovskii. Metallic surface states of topological insulators (TIs) contribute extra screening channels,
suppressing puddles. We investigate the typical length �P , which determines the distance between puddles and
the suppression of puddle formation close to metallic surfaces in the limit where the gap � is much larger than the
typical Coulomb energy Ec of neighboring dopants � � Ec. In particular, this is relevant for three-dimensional
Bi-based topological insulators, where �/Ec ∼ 100. Scaling arguments predict �P ∼ (�/Ec)2. In contrast, we
find numerically that �P is much smaller and grows in an extended crossover regime approximately linearly with
�/Ec for numerically accessible values �/Ec � 35. We show how a quantitative scaling argument can be used
to extrapolate to larger �/Ec, where �P ∼ (�/Ec)2/ ln(�/Ec). Our results can be used to predict a characteristic
thickness of TI thin films, below which the sample quality is strongly enhanced.

DOI: 10.1103/PhysRevB.96.075204

I. INTRODUCTION

The formation of locally conducting puddles is a phe-
nomenon caused by charged Coulomb disorder in insulators,
semiconductors, and Dirac matter like graphene, topological
surface states, or Weyl semimetals. Efros and Shklovskii [1]
predicted that puddle formation is, in three dimensions (3D),
an unavoidable consequence of the long-range nature of the
Coulomb interaction. Puddles are formed to screen large
potential fluctuations exceeding the size of the gap �.

In graphene it has been shown both theoretically and
experimentally that puddles are necessary to understand
most transport experiments close to charge neutrality [2–5].
Recently, they have been observed in the bulk of a three-
dimensional topological insulator [6,7]. These materials, from
the class of the Bi2−xSbxTe3−ySey compounds [8], are almost
perfectly compensated semiconductors with a band gap of
order 250–300 meV almost 2 orders of magnitude larger than
the typical Coulomb energy Ec of neighboring dopants [6].
The relatively high density (>1019 cm−3) of dopants implies a
strongly fluctuating Coulomb potential in the bulk. This leads
to band bending and eventually to the formation of electron
and hole puddles [9,10]. The additional surface states in the
topological materials induce an additional screening channel
close to the surface. Here surface puddles form [10,11] which
are akin to puddles that form in graphene on a substrate which
has charged impurities.

As the puddles are separated by insulating regions, they do
not directly contribute to the dc conductivity. However, they
do contribute to the optical conductivity at finite frequencies,
which has been used to detect their presence and to measure
the effective charge density in conducting regions [6]. We have
shown that screening from thermal excitations can efficiently
suppress puddle formation leading to a characteristic temper-
ature dependence of the optical response [6]. Furthermore, in
similar compounds a giant negative magnetoresistance was
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found experimentally and explained by merging of puddles
driven by the Zeeman effect [12].

Surface puddles and puddles in graphene can be observed
directly in real space by scanning tunneling microscopy (STM)
[4,5,13]. From the two-dimensional (2D) STM maps, the size
of the potential fluctuations and the corresponding length scale
can be directly read off. These agree well with theoretical
results, where these quantities are calculated self-consistently
[2,3,11]. However, nothing is known experimentally about the
length scales of puddles in the bulk and the effect of surface
screening on the bulk puddle formation.

In the following we demonstrate numerically that the length
scales governing the distance of puddles, the suppression of
(bulk) puddles close to surfaces of TIs, and the suppression
of puddles in thin films grow much slower with �/Ec

than expected from scaling arguments. First we introduce
the model and consider the scaling behavior of the charge-
charge correlation function. We show numerical results for
the bulk, and demonstrate that the simple scaling theory
fails. Then we additionally take into account the gapless
surface states which provide an extra screening channel. The
length scales governing the size of puddles on the surface
is different, and independent of the bulk band gap [11].
The bulk length describes, however, the size of a region where
surface screening suppresses the formation of bulk puddles
and is therefore important to understand the properties of
thin topological insulator samples. We use scaling arguments
to extrapolate our numerical results for �/Ec � 35 to the
experimentally relevant regime of �/Ec ∼ 100.

II. MODEL AND SIMULATIONS

Bi-based topological insulators typically have a very large
dielectric constant ε ≈ 200. Electron binding energies are
therefore small. Thus, the bare energies of the dopants are
located very close to the band edges and can be approximated
by +�/2 for the donors and −�/2 for the acceptors. To model
the nonlinear screening of randomly placed charged impurities
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in such a system we use a simple classical model [6,9,10,14]:

H = Hn + HC = �

2

∑
i

fini + 1

2

∑
i �=j

Vij qiqj , (1)

where fi = ±1 are random numbers with fi = +1 for a
donor states and fi = −1 for the acceptor state at position
r i . Vij denotes the Coulomb interaction between the dopants
at positions r i and rj . ni ∈ {0,1} denotes the electronic
occupation of the ith dopant and is determined by minimizing
the Hamiltonian. It is related to its charge qi (in units of |e|
where e is the electron charge) by

qi = fi + 1

2
− ni. (2)

A donor (acceptor) in its ground state is characterized by
fi = 1, ni = 0, and qi = 1 (fi = −1, ni = 1, and qi =
−1). Somewhat counterintuitively, screening occurs when the
Coulomb interaction drives donors or acceptors into a neutral
state with qi = 0. Several neutral donor states close by form
an electron puddle, while neighboring neutral acceptor states
form hole puddles. The Coulomb energy is modeled by

Vij = e2

4πεε0

√
|r i − rj |2 + a2

B

= Ec√|xi − xj |2 + 12
. (3)

Here the short-distance cutoff aB = 4πε0ε

m∗e2 was introduced by
Skinner et al. [9,10] to take into account that the wave function
of the bound state is smeared over a length scale set by the
effective Bohr radius of the impurity state. Skinner et al. [9,10]
argued that due to the large dielectric constant in Bi-based
topological insulators, aB is large and of similar size as
the typical distance of dopants. We use aB = N−1/3 where
N = NA = ND is the density of dopants where we assume
a perfectly compensated system where the density of donors
equals the density of acceptors NA = ND . For the last equality
in Eq. (3) we expressed all distance in units of the average
dopant distance N−1/3. Here

Ec = e2N1/3

4πεε0
(4)

is the typical energy scale describing the Coulomb interaction
of neighboring dopants. A large ε ∼ 200 leads to a small
energy scale Ec ∼ 3.3 meV ∼ 40 K (assuming a typical
density N = 1020 cm−3), about 2 orders of magnitude smaller
than typical band gaps �. Indeed, in Ref. [6] we used the
temperature dependence of the optical response to determine
Ec and found �/Ec ≈ 150, similar parameters have also been
found in Ref. [12]. In the following we assume T � Ec � �

and consider therefore only properties at T = 0.
The model (1) describes how donor and acceptor states

interact with each other. It does not include the states in the
electronic bands. This turns out [6] to be well justified in the
limit �/Ec � 1 as the density of the relevant electronic states
is much smaller than the density of dopants in this limit.

To find the true ground state of the model in Eq. (1)
is an exponentially hard problem, but there is an algorithm
to find an approximate ground state, called a pseudoground
state, in polynomial time [1,9]. The physical properties of a
pseudoground state are expected to be indistinguishable from

that of the true ground state. The single particle energies are
defined as

εj = �

2
fj − φj = �

2
fj −

∑
i �=j

Vij qi . (5)

In a pseudoground state

�E(α,β) = εβ − εα − Vαβ > 0 (6)

has to be fulfilled for all pairs with nβ = 0,nα = 1. This state
can be reached by exchanging electrons between states where
this condition is not met. The algorithm is described in detail
in Refs. [9,10] (we use a version where sites α and β are
randomly selected). Simulations are performed in a cubic
volume V = L3 with periodic boundary conditions with 2L3

dopants, typically we use L = 50 or L = 60 corresponding to
250 000 or 432 000 dopants. Numerical results shown below
are averaged over 200–800 disorder realizations, i.e., random
configurations of the dopant positions. We have checked
[15] that our code reproduces published results (e.g., on the
Coulomb gap in the density of states) from other groups [9] on
the same model in all quantitative details. In the following we
use dimensionless units where all length are measured in units
of N−1/3, and all energies are measured in units of Ec defined
in Eq. (4). In these units the only free parameter of our model
is � besides the (dimensionless) system sizes considered
in Sec. V.

III. LENGTH SCALES AND SCALING

One of the main questions that we will address is the
following: What is the typical distance between electron and
hole puddles or, equivalently, on what length scale does the
potential typically change by an amount of �? It turns out
that this length scale also characterizes screening properties
on average, as discussed in more detail below.

A simple scaling argument by Efros and Shklovskii [16]
suggests that the corresponding length scales as Rg ∼ �2.
The argument is as follows: in a volume of size V ∼ R3

there are on average NR3 positive and negative charges where
N is the density of dopants. But these two numbers are not
exactly equal, instead the typical charge of the region is (in
the uncorrelated state) QR ∼ ±

√
NR3. This implies a typical

potential of order φR ∼ QR/R ∼ √
R within that region. The

fact that this potential diverges for R → ∞ shows that this
situation is unstable and the huge potential fluctuations have to
be screened. The potential can be screened when the Coulomb
potential is sufficiently strong to change the charging state
of the dopant. This is possible for φ ∼ ±�/2. Using that
φ ∼ √

R, this strongly suggests that the typical length scale
Rg , describing both the screening length and the length scale
where the potential changes by ±�, is proportional to �2.
Accordingly, the typical charge density in a volume V = R3

g

is ρg ∼ QRg
/V ∼

√
R3

g/R
3
g = R

−3/2
g ∼ 1/�3. To summarize,

this scaling argument suggests

Rg ∼ �2 and ρg ∼ �−3. (7)

Restoring dimensionfull units, these equations read Rg ∼
N−1/3(�/Ec)2 and ρg ∼ ±eN (Ec/�)3. We will show below
that our numerical results for �/Ec � 35 show a much slower
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FIG. 1. Due to charged impurities, the potential fluctuates in
space. Huge fluctuations of the potential in the uncorrelated state
(dashed line), where all dopants are charged, are screened by the
formation of electron-hole puddles. The potential φ(r) [solid line,
(a)–(d)] obtained in the ground state is restricted to the range
[−�/2 − Ec,�/2 + Ec]. Puddle formation occurs in tiny regions
(gray shading) where φ(r) exceeds the band edges and is thus
above �/2 or below −�/2. (a)–(d) Four one-dimensional cuts
through the three-dimensional potential. (e) and (f) Two examples of
three-dimensional configurations of electron (orange) and hole (blue)
puddles. Only the neutral dopants within the puddles are shown (about
2% of the total number of dopants). The plots suggest that more than
one length scale governs puddle formation, see text. Plots are taken
from simulations with � = 10, periodic boundary conditions, and
L = 50 (250 000 dopants), the plots show boxes of size 25.

growth of length scales with �/Ec. We will attribute this
to a huge crossover regime and the presence of logarithmic
corrections obtained from a refined version of the scaling
argument in Sec. V.

In Fig. 1 we compare several one-dimensional cuts of the
potential in the uncorrelated state (dashed lines) and in the
correlated ground state (solid lines) obtained from numerical
simulations. The potential fluctuations of the uncorrelated state
are much larger than ±�/2 (shown here for L = 50) triggering
screening. For the correlated ground state, in contrast, the
potential fluctuations are strongly reduced and lie within the
band gap. Puddles are formed in the tiny regions (shaded in
gray) where |φ| slightly exceeds �/2. One finds that in these
regions |φ| − �/2 ∼ Ec.

The 3D plots in Figs. 1(e) and 1(f) show directly the puddles.
Neutral donors constitute electron puddles and are colored
in orange, while neutral acceptors are part of hole puddles,
colored in blue. The snapshots and the cuts suggest that not
only a single, but several length scales govern puddle formation

[17–19]. The short one �P governs the closest distance of
puddles and rapid fluctuations of the potential as shown in
Fig. 1(b). Much longer length scales govern the formation of
lengthy, anisotropic cluster structures and also regions without
puddles, see Fig. 1(d).

To obtain more quantitative results, one can study the
statistical properties of either the potential φ(r) or directly
of the charge distribution ρ(r), since both are related by the
Poisson equation ∇2φ = −ρ (up to the short-distance cutoff
aB introduced above). In the following, we will mainly discuss
the charge-charge correlation function Cρρ . We split this into
a local part ∼δ(r − r ′) and a nonlocal part Cnl

ρρ :

Cρρ(r,r ′) = 〈ρ(r)ρ(r ′)〉 = Q0δ(r − r ′) + Cnl
ρρ(r − r ′), (8)

where we used charge neutrality 〈ρ〉 = 0. Here and in the
following the expectation value 〈·〉 denotes a disorder average.
After disorder averaging all correlation functions only depend
on the distance r = |r − r ′|. Thanks to charge neutrality we
know that

∫
d3r Cnl

ρρ(r) = −Q0. The weight of the δ-peak Q0

corresponds to 2N (1 − n0) where n0 is the fraction of neutral
dopants.

IV. SCREENING IN THE BULK

Screening in insulating charged Coulomb systems is a
highly nonlocal and nonlinear mechanism. Early work by
Baranovskii, Shklovskii, and Efros [17] (see also a lucid
discussion in Ref. [18]) pointed out that adding a single charge
can trigger an avalanche of discrete changes of the charge of
dopants not only in the neighborhood of the charge but also
at large distances. This appears to be a highly anisotropic,
nonlocal (and perhaps fractal [19]) process. The change of the
potential at larger distances is random in sign but does not
decay rapidly. In contrast to a metal, there is therefore no true
screening (as is also obvious from the fact that the system is
characterized by a Coulomb gap). In the following we will
not track these changes but focus on the shorter length scale
�P which governs the impurity-averaged charge correlations
Cnl

ρρ(�,s), but also controls the typical “nearest” distance of
oppositely charged puddles. Later we will argue that the same
length scale also governs the impact of metallic surface states
on puddle formation.

Instead of studying directly the charge-charge correlation
function Cnl

ρρ(�,s), we find it more convenient to investigate
the distance dependence of the “screening charge” defined by

Qs(�,r) = 4π

∫ r

0
ds s2 Cnl

ρρ(�,s). (9)

The advantage of this quantity is that it has a direct phys-
ical interpretation: it describes the charge accumulated—on
average—around a dopant within the radius r multiplied with
the charge of that dopant and the density of dopants. As
negative charges accumulate around a positive charge and
vice versa, the screening charge is always negative. Total
charge neutrality requires that around a positive (negative)
charge exactly the charge −1 (+1) accumulates for r → ∞.
As neutral dopants do not contribute, one therefore obtains
Qs(�,r → ∞) = −2N (1 − n0) = −Q0. This also follows
directly by integrating Eq. (8) over r in a charge-neutral
system. In our simulations we use boxes of size L with
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FIG. 2. Apparent scaling of the screening charge defined in
Eq. (9) for different values of the band gap �. The best scaling
collapse is found for an exponent γ = 1.1 characterizing an extended
crossover regime. The inset shows the unscaled data. Deviations
from the scaling behavior can be seen for r > 0.6 �1.1. Parameters
are L = 50 (250 000 dopants) for � = 12,16 and L = 60 (432 000
dopants) for � = 20,24, and we checked that there are no significant
finite size effects.

periodic boundary conditions. For r > L/2 we therefore have
to replace in the integral in Eq. (9) the factor 4πs2 by
W (s) = ∫

δ(s − |r|)d3r . This does not affect the scaling plots
discussed below but is useful to check for overall charge
neutrality.

We show numerical results for Qs in Fig. 2. On a rather
short length scale (see inset) the screening charge reaches the
value −Q0 = −2N (1 − n0) ≈ −2 (the plot uses units where
N = 1 and the fraction of neutral dopants n0 is less than 2% for
all shown values of �). The scaling plot (main figure) suggests
that the length scale �P , on which the screening occurs, grows
almost linear in � in the numerically accessible regime

�P ∼ �γ , γ ≈ 1.1 ± 0.1. (10)

Below we will argue that the exponent γ is not a “true”
asymptotic exponent but only an effective parameter describ-
ing an extended crossover regime. For values of r � 0.4�γ ,
the screening charge exceeds −Q0 ≈ −2. This implies that
there is a substantial amount of overscreening in the system:
on average too much charge of opposite sign accumulates
around each charged dopant.

We have checked that other observables, for example the
potential correlation function or the typical distance of neutral
dopants of different type, show similar scaling behaviors,
see Appendix B for an example. Most importantly, they
all consistently show the importance of the length scale �P

which governs not only screening but also the length scale on
which the dominant short-distance fluctuations of the potential
occur. �P therefore also determines the distance of puddles of
opposite charge.

V. SCREENING BY METALLIC SURFACE STATES

Topological insulators differ from ordinary insulators or
semiconductors because topology enforces the existence of
conducting surface states. These states are of interest in
the context of our discussion, because they provide an extra
channel for screening. STM measurements of surface states
can also be used to obtain quantitative information on the

strength and length scale of potential fluctuation at the surface
[13]. Most importantly, the suppression of puddles in thin slabs
of topological insulators is expected to lead to a substantial
reduction of the bulk conductivity and should therefore
enhance the quality of devices based on topological insulators
substantially. A major goal of this section is therefore to
estimate how thin a topological insulator has to be so that
puddle formation is effectively suppressed. Note that such a
suppression can occur even in the absence of metallic surface
states, as has been discussed heuristically by Mitin [20] for
semiconductor heterostructures.

The surface states of a 3D topological insulator can,
generically, be described by a Dirac equation, and thus have
asymptotically a density of states proportional to the doping
level. Their electronic properties can be characterized by the
surface doping μS and the effective fine structure constant α =

e2

4πεsurfε0h̄vF
, where, in vacuum, εsurf = εbulk+1

2 ∼ 100. Typical
values for α in Bi-based topological insulators are in the range
of α ≈ 0.1, . . . ,0.2 (using, e.g., vF taken from ARPES data
[21]). In Ref. [11], Skinner, Chen, and Shklovskii develop a
detailed analytic theory on how bulk impurity states affect
the surface. We will instead investigate the question how the
screening from surface states feeds back on bulk properties
using some of their results.

If the surface possesses a finite doping, described by a
finite chemical surface potential μS , it can screen charges on
a length scale described by the surface screening length �S

s ∼
vF /(α|μS |). We first consider the limit that �S

s is smaller than
the distance of bulk impurities �S

s � N−1/3 or, equivalently,
|μS | � Ec/α

2. In this case the surface state of the topological
insulator acts effectively like a perfect metal. Then, screening
of a dopant with charge qi at distance z from the surface is
described by positioning a mirror charge with charge −qi at the
same distance on the opposite side of the surface. This simple
screening mechanism can be implemented in a straightforward
way into the model described in Sec. II. To model a thin slab
of a topological insulator with two metallic surface states,
one formally needs an infinite sequence of mirror charges.
As described in Appendix D, an accurate and numerically
efficient description is obtained by using just a single mirror
charge and a linear correction term setting the potential to
zero at both surfaces. Besides its importance for applications
of TI materials, the problem of an infinitely large TI slab of
finite thickness Lz has also a technical advantage which we
will use in the following: the “bare” potential 0(r) arising
from randomly placed impurities remains finite for finite Lz

even in the thermodynamic limit (while it would diverge in the
absence of surface screening). This is the potential one obtains
in the absence of puddle formation when all donors (acceptors)
have charge +1 (−1). One can easily calculate the distribution
p[0(z)] of this potential by averaging over the position of
dopants, here z is the coordinate perpendicular to the surfaces.
In the following we will focus our discussion for simplicity
on the distribution in the middle of the sample z = Lz/2. Due
to the central limit theorem, this initial distribution (before
puddle formation) is Gaussian

p0
Lz/2() = 1

σ (Lz)
√

2π
exp

[
−1

2

(


σ (Lz)

)2]
, (11)
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where the width of the distribution σ (Lz) can simply be
computed from

√
〈0(z = Lz/2)2〉 and, in units of Ec, is given

by

σ (Lz) =
(

2
∫ Lz

0
dz

∫ ∞

−∞
dx dy V s[x,(0,0,Lz/2)]2

)1/2

≈ 2.41
√

Lz − 7.75√
Lz

for Lz � 1, (12)

where the potential V s is defined in Appendix D and the
second line is a fit to the numerical integral valid for large
Lz. The prefactor of the leading term depends only on
the geometry of the setup but is otherwise universal, the
subleading term is linear in the chosen cutoff aB defined in
Eq. (3). For small Lz, the width σ (Lz) is much smaller than
the gap, implying that puddle formation cannot take place.
As discussed in the Introduction, Efros and Shklovskii [16]
estimated the length scale triggering puddle formation (for a
different geometry) from the condition σ (Lz) ∼ �, leading
to a length scale proportional to �2 as discussed in Eq. (7).
We will need in the following a more quantitative version
of this argument. We will take into account, that for the
successful screening of the potential in the limit Lz → ∞,
it is not necessary to redistribute O(1) charges. Instead we can
use the total density of neutral dopants in the thermodynamic
limit n0 as an estimate of the volume fraction where the bare
potential triggers puddle formation by becoming larger than
�/2. The characteristic width of the slab L0

c below which
puddle formation is suppressed, is therefore estimated from
the condition

p0(|| > �/2) ∼ n0, (13)

with

p0(|| > �/2) = 2
∫ ∞

�/2
p0

Lz/2() d, (14)

solved by

σ (L0
c)2 ∼ �2

8 ln
[
1
/(

n0

√
π ln

[
2
/(

πn2
0

)]/
2
)] (15)

for small n0. Using Eq. (12), we find for � → ∞ as an estimate
for the characteristic width L0

c ,

L0
c ∼ �2

46.5 ln[1/n0]
≈ �2

139 ln[�]
, (16)

with (sizable) relative corrections of the order of
ln[ln �]/ log[�]. In the last line we use that in the asymptotic
regime n0 ∼ 1/�3, see Eq. (7). This formula misses logarith-
mic corrections to n0 which give however only subleading
terms beyond the precision of Eq. (16). While our equation
can only be an order-of-magnitude estimate, we have kept
multiplicative numerical prefactors to indicate their rather
large numerical value. Note that Eq. (13) and therefore also
(16) was obtained only by considering properties of the
bare potential [by evaluating the integral in Eq. (12)], not
including any self-consistent screening effects. The formulas
can therefore only be viewed as a crude estimate of the relevant
length scale of the problem obtained by extrapolating from
the bare potential. The result clearly suggests the presence

of logarithmic corrections to scaling but we cannot exclude
that a resummation of logarithms leads to a modification of
the logarithm, e.g., Lc ∼ �2/ lnα[�]. A scaling Lc ∼ �γ for
� → ∞ with an exponent γ smaller than 1 can, however, be
excluded as in this case the regions where the bare potential
can trigger puddle formation are exponentially suppressed. In
the following we will compare the estimate from condition
Eq. (13) to the full numerical solution obtained for moderately
large values of � � 35 and find that the formula never-
theless reproduces the approximately linear � dependence
(γ ≈ 1.1 ± 0.1) in the regime � � 35.

The surface screening will suppress potential fluctuations
and the formation of puddles close to the surface. Therefore, all
donors will have charge +1, all acceptors have charge −1, and
the density of neutral dopants vanishes close to the surface.
This physics can be captured by computing the density of
neutral dopants, having a charge 0, as a function of distance
from the surface

n0(d) =
〈∑

i

δ(d − zi)δqi ,0

〉
, (17)

where zi is the (dimensionless) distance of dopant i from
the surface and δi,j denotes the Kronecker delta. In contrast to
charge and potential, the density of neutral dopants is a quantity
not fluctuating in sign and therefore its average is both easier
to compute (statistical fluctuations are much weaker) and to
interpret. In Fig. 3 (upper panel) we show n0(d) for different
values of Lz. As expected, the puddle formation and therefore
n0(d) is suppressed close to the two metallic surfaces. For
sufficiently thin Lz, n0(d) becomes small even in the center
of the sample. The lower panel of Fig. 3 therefore shows the
density of neutral dopants in the center of the slab n0(Lz/2), a
function of Lz. In Fig. 4 we show four different length scales,
�P , �c, �s , and L0

c , as function of �. The first three length scales
have been extracted from our numerics and the equations

Q2(�,�P ) = −1, (18)

n0(Lz/2) = 1
2nbulk

0 for Lz = �c, (19)

n0(�s) = 1
2nbulk

0 for Lz � �c. (20)

They describe the characteristic length scale �P on which—on
average—a charge is screened in the bulk (see Fig. 2), the
characteristic width �c of a slab of a topological insulator
below which the density of puddles drops to half the bulk
value, and the length scale on which puddle formation is
suppressed close to the metallic surface of a thick slab of
a topological insulator (see Appendix E). All three curves
show an approximately linear behavior with � quite different
from the � ∼ �2 (with logarithmic corrections) expected from
scaling arguments. All curves are well described by fits of the
form �i = ai + ci�

1.1. Remarkably, the same behavior is also
obtained from the estimate L0

c , which was obtained from the
condition in Eq. (13), i.e., from properties of the bare potential
(before puddle formation). Therefore �i is well described by a
linear fit to L0

c as shown by the solid lines in Fig. 4. The dashed
red line in Fig. 4 shows a power-law fit L0

c ∼ �1.1 + const.,
which works remarkably well. We therefore conclude that
(i) the average bulk screening and the surface screening are
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FIG. 3. Density of neutral dopants n0(d) in a slab of a topological
insulator of width Lz, where d is the distance from one of the
surfaces (� = 30). The metallic surface states screen the potential,
thus suppressing n0(d). For thick samples, Lz � 30, n0(d) is only
suppressed close to the boundaries while in the center one recovers the
bulk puddle density. For Lz � 20, n0(d) also drops in the middle of the
sample (simulations for Lx,y = 50, 2 · LxLyLz = 5000Lz dopants,
averaged over 300 disorder configurations). The lower panel show
the density of defects in the center n0(Lz/2) as a function of Lz for
various values of �.

governed by the same length scale, and that (ii) one can use
the “naive” scaling argument (13) to obtain this length scales
[up to multiplicative factors of O(1) and a small offset of
O(1)]. As we have shown above, the asymptotic behavior for
L0

c is according to Eq. (16) given by �2/ ln[�] and definitely
not by an exponent close to 1. The apparent power-law
behavior with an exponent close to one therefore reflects only
an extended crossover regime: there is no “true” power law
with an exponent smaller than 2 (see, e.g., Ref. [22] for a
discussion on the definition and determination of exponents).
The approximately linear behavior for 10 � � � 50 arises
from the interplay of logarithmic corrections at large � and
subleading corrections for small �, see Eq. (12). As also
the numerically determined length scales �i show the same
behavior, we conclude that also in this case the numerics
probes the same extended crossover regime for numerically
accessible vales of � � 35. Below, we will argue that one
can use the results for L0

c to estimate the value of �i for
larger values of � ∼ 100, relevant for Bi-based topological
insulators.

FIG. 4. � dependence of four different length scales �P , �c, �s ,
and L0

c . Three of them, �P , �c, �s , have been obtained numerically,
see Eqs. (18)–(20). �P characterizes the screening of charges (on
average) in the bulk, �c is the suppression of puddles in a thin slab
of a topological insulator, and �s is the suppression of puddles close
to a metallic surface. The error in �c arises from the error in the
determination of n0 in the thermodynamics limit, see Appendix C.
L0

c is an analytic order-of-magnitude estimate for lc based on Eq. (13)
and Eqs. (11) and (12) (using numerically determined values for
n0). The black dashed line in the upper panel is the curve �2/(8π ),
see Ref. [10], which shows that all length scales rise much slower
than �2, the red dashed line is a power-law fit 1.36 + 0.19�1.1 to
L0

c . To extrapolate to larger values of �, we use a linear fit of
�i to L0

c , �i = a′
i + c′

iL
0
c with a′

i = −1.67, − 4.29, − 0.07 and
c′
i = 1.05, 2.19, 0.46 for i = P,c,s, respectively (solid lines in both

panels). For � > 35 (lower panel), L0
c was determined assuming

n0(�) = n0(35)(35/�)3 (solid lines), see text. The dashed lines,
calculated from n0(�) = n0(35)(35/�)1.62, are shown to indicate how
sensitive the result is to a different extrapolation of n0.

Above we assumed a perfectly metallic surface state
|μS | � Ec/α

2, which has a screening length that is short
compared to the mean distance of dopants N−1/3. Using the
result given above, that the screening by bulk states sets in
only at a parametrically larger scale �s , we can relax this
requirement. Our results should be valid as long as the surface
screening length �S

S ∼ vF /(α|μS |) is small compared to �s , or
|μS | � vF /(α�s).

Here μS denotes an effective chemical surface potential.
Even if the chemical potential of the surface state is exactly at
the Dirac point 〈μS〉 = 0, disorder will induce a finite density
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of states allowing for screening. Due to the charged dopants
metallic puddles will form on the surface which can, in turn,
screen bulk charges. To estimate the effect of these surface
puddles (not to be confused with puddles in the bulk) we
use the results of Ref. [11] (similar results in the context of
graphene have, e.g., been obtained in Refs. [2,3]). For the
computation of the resulting surface screening length �S

S for
〈μS〉 = 0 the authors of Ref. [11] did not take into account any
bulk-screening effects, which is justified as long as �S

S � �s .
Under these conditions, Skinner, Chen, and Shklovskii [11]
found that |μS | ∼ Ec/α

2/3 or �S
S ∼ N−1/3/α4/3. From the

condition �S
S � �s , we obtain (using our dimensionless units)

�s > c

(
1

α

)4/3

for 〈μS〉 = 0, (21)

where c ≈ 0.6 according to Ref. [11], where the authors
estimate α ≈ 0.24 for a Bi-based topological insulator, which
results in the condition �s > 4 for this class of systems.

If the condition (21) is fulfilled, the surface state of a
topological insulator provides sufficient screening to suppress
efficiently the formation of puddles within the distance �s .

VI. DISCUSSION AND OUTLOOK

We have investigated the influence of charge dopants
in (topological) insulators, focusing on the case of perfect
compensation with equal densities of donors and acceptors.
Motivated by the physics of Bi-based topological insulators,
we studied the limit where the gap � is large compared to the
Coulomb energy Ec of neighboring dopants with �/Ec ∼ 100
as a typical value [6]. In our numerical simulations we are not
able to reach such large values of �. Therefore, analytical
estimates are needed to extrapolate to larger values of �. Our
main focus has been the investigation of the length scales
governing the formation (and destruction) of puddles. As has
been pointed out before in the literature [17,18], due to the
long-ranged nature of the Coulomb interaction and the highly
nonlinear screening effects, there is more than one such length
scale. We have, however, found that the size of a (average)
screening cloud around an impurity, the typical distance of
electron and hole puddles, and most importantly the length
scales governing the suppression of puddle formation in the
bulk due to metallic surface states, are all similar and show an
approximately linear increase with � for � � 35 (a fit gives
�i ∼ �1.1). We have found a simple analytic estimate of such
length scales based on properties of the bare potential, which
reproduces this behavior in an extended crossover regime
but predicts �i ∼ �2/ ln[�] for � → ∞. One can use this
analytic estimate to obtain a quantitative extrapolation of the
numerically determined results to larger values of �. This is
shown in the lower panel of Fig. 4. The fit �i = a′

i + c′
iL

0
c gives

an excellent fit to the numerically determined length scales �i

(see figure caption for details and fit parameters). Using this
extrapolation, we can estimate the corresponding length scale
for large values of �. Assuming, for example, �/Ec ∼ 100
and N ≈ 1019 cm−3, our best estimates for the dimensionless
length scales are �c ≈ 72.9 ± 15.0, �s ≈ 16.3 ± 2.8 where
errors have been estimated based on the use of different
extrapolations of n0, see Fig. 4. In physical units this implies
that the width of the region close to the metallic surface where

puddle formation is inhibited is about 62.6–88.6 nm. Puddle
formation in the center of a thin slab of a topological insulator is
predicted to be suppressed by metallic surface states by at least
a factor 2 if the slab is thinner than 268.7–407.9 nm. As puddles
largely control the bulk conduction at low temperatures by
reducing the energy gap for transport processes [1,9,10],
the suppression of puddle formation in the bulk is expected to
be accompanied by a strong suppression of bulk conduction.
More precisely, at least three effects will contribute to
the increase of bulk resistivity the screening from metallic
surfaces, the suppression of Coulomb fluctuations due to
the dimensional crossover (even without metallic surfaces),
and the crossover from a 3D to a 2D percolation problem
of electrons moving in a correlated potential [1,20]. As we
have shown that surface and bulk effects are governed by
similar length scales proportional to each other, we expect
that all effects are of similar importance. In compensation
doped Bi-based compounds the bulk conductance is expected
to be suppressed considerably (i.e., much faster than to be
expected from geometric factors) when the slab becomes
thinner than, e.g., 270 nm. It will be interesting to develop a
quantitative theory for transport in the future which combines
numerical calculations for smaller values of �/Ec with
analytic extrapolation schemes for large � similar to the ones
used in this paper.
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APPENDIX A: SUM RULES AND SCALING ARGUMENTS

From the definition of Cnl
ρρ , Eq. (8), and the Poisson equation

one can derive a set of exact sum rules

〈HC〉
V

= 2π

∫
ds s1 Cnl

ρρ(�,s), (A1)

〈Hn〉
V

= n0N� = 2π �

∫
ds s2 Cnl

ρρ(�,s) + �, (A2)

Q0 = 〈Q〉
V

= −4π

∫
ds s2 Cnl

ρρ(�,s), (A3)

〈φ2〉 = −8π2
∫

ds s3 Cnl
ρρ(�,s). (A4)

Here 〈HC〉 is the disorder average of the Coulomb energy, 〈Hn〉
are the single particle energies of the dopants, see Eq. (1), 〈Q〉
is the number of ionized dopants (not counting the neutral
ones), and 〈φ2〉 is the expectation value of the square of the
potential (all expressed in our dimensionless units).

We can use these sum rules to obtain a more rigorous
version of the scaling argument given above. We start from
the assumption that the physics of the system is governed by a
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single length scale large compared to the average distance of
impurities. In this case Cnl

ρρ(�,s) can be written as

Cnl
ρρ(�,s) = �−β Cnl

ρρ(s/�γ ). (A5)

We will show that from this assumption alone Eq. (7) can
be derived. Later, we will conclude that the scaling ansatz
is not fully valid: there are substantial subleading corrections
even for values of � � 35 and logarithmic corrections in the
� → ∞ limit. In this Appendix, we will, however, explore
only the consequences of the scaling ansatz.

The bulk fluctuations of the potential are of the order of the
band gap �, see Fig. 1, which implies 〈φ2〉 ∼ �2. Furthermore,
as the fraction of neutral atoms vanishes for large �, n0 → 0
for �/Ec → ∞, the density of charged dopants Q0 is of order
�0 with only subleading corrections. To leading order we
therefore obtain from Eqs. (A3) and (A4)

�0 ∼
∫

ds s2 Cnl
ρρ(�,s) = �−β+3γ

∫
ds s2 Cnl

ρρ(s), (A6)

�2 ∼
∫

ds s3 Cnl
ρρ(�,s) = �−β+4γ

∫
ds s3 Cnl

ρρ(s). (A7)

Therefore, the scaling ansatz predicts β = 3γ and 2 = −β +
4γ or, equivalently, γ = 2 and β = 6, implying a length scale
∼�2 and a typical charge density ∼1/�3. This is just a refined
version of the argument presented above in Eq. (7).

From Eqs. (A1) and (A6) we further deduce that the
Coulomb energy density 〈HC〉/V ∼ −�−β+2γ = −�−γ (Cnl

ρρ

is negative as it describes screening, for example the ac-
cumulation of negative charge around a positive one). This
implies that the Coulomb energy is minimized by choosing
the screening length Rs ∼ �γ as small as possible. However,
this minimization competes with the increasing Hn ∼ n0N�,
see Eq. (A2), and of course has to respect the constraints, in
particular Eq. (A7).

Our numerical results are in strong disagreement with the
scaling result. Several factors play a role: First, even for
� ∼ 35 the asymptotic scaling regime is not yet reached. It
can be seen from Fig. 4, indicating that both �s and �P are well
below 10 in this regime. Second, a more quantitative estimate
based on properties of the bare potential strongly suggested
the presence of logarithmic corrections, see Eq. (16). This may
indicate that in Eq. (A7),

∫
ds s3 Cnl

ρρ(�,s) obtains logarithmic
corrections from a slow decay ∼1/s4 of Cnl

ρρ(�,s).

APPENDIX B: CORRELATIONS OF THE POTENTIAL

As show in Fig. 1, the potential in the bulk of a
compensation-doped insulator fluctuates in space. It is ap-
proximately restricted to the range [−�/2,�/2] and exceeds
±�/2 by an amount of order Ec only in the region where
puddles form. The correlation function 〈φ(r)φ(0)〉 shows on
which length scale the characteristic potential fluctuations
occur.

In Fig. 5 we show 〈φ(r)φ(0)〉 normalized to 〈φ(0)φ(0)〉
∼ �2. At short distances (of the order of the distance of
impurities), this is governed by the autocorrelation of the
potential of a single charge and decays on a length scale
set by aB . As can be seen in the upper panel of Fig. 5, the

FIG. 5. The potential correlation function 〈φ(r)φ(0)〉 normalized
to 〈φ(0)φ(0)〉 allows us to determine the length scale of fluctuations
of the potential. Upper panel: Unscaled data. Lower panel: Scaling
plot for � = 12, . . . ,24. For the scaling of the horizontal axis, we
first subtract a short-distance cutoff (see text) and then use the scaling
of the bulk screening length �P ∼ �γ where γ ≈ 1.1, see Eq. (10),
see text. Scaling breaks down both at short distances of the order of
the cutoff and for larger distances, likely related to a second, longer
length scale related to overscreening.

normalized correlation function is independent of � in this
regime. The next-largest length scale, the screening length, on
which the correlations decay is more interesting. As expected,
we find that this length scale is governed by the bulk screening
length �P ∼ �γ , see Eq. (10). This is shown by the scaling
plot in the lower panel of Fig. 5. Clearly the same length
scale ≈0.2N−1/3(�/Ec)1.1 (including prefactors) determines
the screening radius and the dominant length scale of potential
fluctuations. Note that scaling does not hold at the short
distances (�aB and/or impurity distance N−1/3) and that we
had to subtract a short distance cutoff to obtain a reasonable
scaling collapse.

At larger length scales, the correlation function becomes
negative. This physics is, however, not governed by �P as
follows from the absence of a scaling collapse in this regime.
As discussed in the main text, the physics in the second regime
is related to overscreening and occurs on a length scale which
we cannot resolve with our numerical simulations.

APPENDIX C: DENSITY OF NEUTRAL DOPANTS

To determine the density of neutral dopants in the thermody-
namic limit, we have simulated boxes of size L3 with periodic
boundary conditions. The resulting density for � = 25 is
shown in the upper panel of Fig. 6 as function of 1/L. As we do
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FIG. 6. Upper panel: Density of neutral dopants obtained from
simulation of boxes of size L3 with periodic boundary conditions.
Largest simulations include 2 × 703 ∼ 700 000 dopants. To extrap-
olate to L → ∞ we use both a quadratic (green) and linear (black)
extrapolation schemes, assuming finite size errors of order 1/L2 and
1/L, respectively. Error bars (red) are determined by combining the
1σ error intervals of both schemes. Lower panel: � dependence of
the density of neutral dopants in the thermodynamic limit. For the
range of � accessible to our numerics, the data is consistent with
1/�1.6 (orange line) reflecting an extended crossover regime. A 1/�3

dependence (dashed line) does not fit the data for � � 35.

not know the analytic 1/L dependence of that quantity and as
the numerical result is consistent with different interpolating
functions, we use the following procedure. To estimate the
density in the thermodynamics limit, we use a quadratic
extrapolation scheme (green line), assuming that finite size
effects are of order 1/L2. Within the statistical error bars this
is approximately equivalent to the value obtained for the largest
system size used in our numerics. A linear extrapolation in 1/L

(black line) gives a higher value for n0(L → ∞). The error
bar is obtained from the largest and smallest one-standard-
deviation values obtained from both interpolation schemes.
It therefore reflects not only the statistical uncertainty of our
data but also the much larger systematic error related to the
unknown L dependence of finite size effects.

The lower panel of Fig. 6 shows how the density of
neutral dopants drops for increasing �. In the crossover
regime accessible to our numerics, n0(�) decays much slower
than the 1/�3 law expected up to logarithmic corrections
from the scaling arguments, see Eq. (7). This slow decay

FIG. 7. Potential of a charged impurity located at z = 2 and at
z = 4 in the presence of two metallic surfaces at z = 0 and z = 10.
The plot compares the exact result (upper blue and green curves)
to the approximation given by Eq. (D2) (lower red and orange
curves).

is, however, consistent with the slow rise of the length
scales characterizing screening, which increase approximately
linear instead of quadratically with � in the same parameter
regime.

FIG. 8. Screening from surface states of a topological insulator
suppresses puddle formation close to the surface. Upper panel:
Scaling plot of the density of neutral dopants n0(d) as a function of the
distance d to a metallic surface state (|μS | � Ec/α

2, L = 50). Curves
are shifted by aB = 1 since neutralization starts only for d > aB . The
inset shows the unscaled data. Lower panel: The width �s of the
surface layer without puddles, defined by n0(�s) = (n0)bulk/2 as a
function of �. A fit gives an exponent 1.12 very close to the bulk fit,
see Eq. (10).
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APPENDIX D: SCREENED COULOMB POTENTIAL
IN THE PRESENCE OF TWO METALLIC LAYERS

The effective potential of a single impurity with (dimen-
sionless) coordinate xi with distance x3

i from a metallic layer
at x3 = 0 is described by [using the same conventions and
cutoffs as in Eq. (3)]

V m(xi ,x) = V
[
x − (

x1
i ,x

2
i ,x

3
i

)] − V
[
x − (

x1
i ,x

2
i , − x3

i

)]
.

(D1)

A “mirror charge” guarantees that the potential vanishes on
the metallic surface. In the presence of two metallic surfaces
located at z = 0 and z = Lz, an infinite sequence of mirror
charges is required. For efficient simulations it is mandatory
that the screened potential can be computed rapidly. We have
found that a potential containing only the mirror charge to the
closest metallic surface in combination with a linear correction
term which sets the potential to zero at both surfaces is
sufficiently accurate and numerically efficient, see Fig. 7. We
therefore use in our simulations for zi � Lz/2,

V s(xi ,x) = V m(xi ,x) − z

Lz

V m[xi ,(x1,x2,Lz)]. (D2)

For zi > Lz/2 we use a mirror image of the potential given
above with mirror plane z = L/2. Due to this construction the
derivative of the potential with respect to zi has a small jump
at zi = Lz/2. We have found that this leads to a tiny, hardly
visible bump at z = Lz/2 in the density of neutral dopants

n0(z). When we determining the density of neutral dopants in
the center of the slab, we fit a parabola to n0(z) for 0.4Lz <

z < 0.6Lz omitting a tiny region of width 0.04Lz around z =
Lz/2. In practice, the tiny bump (and the small corrections to
the fit described above) does, however, have no qualitative or
quantitative influence on our results.

APPENDIX E: SCREENING FROM A SINGLE SURFACE

In this Appendix we briefly discuss the suppression of
puddle formation close to a metallic surface (for a system
much thicker than �c). The inset of Fig. 8 shows n0(d) for
values of � ranging from 10 to 26. On a relatively short length
scale, the bulk value of n0(d) is reached. In the lower panel of
Fig. 8 we plot the width �s of the zone, where surface screening
suppresses puddle formation, defined by n0(�s) = (n0)bulk/2.
After subtracting the offset aB = 1 we obtain numerically an
approximate power law relation in the numerically accessible
regime

�s ∼ �γ , γ ≈ 1.1 ± 0.2. (E1)

We also performed simulation with several other values of
aB (aB = 0,0.5,1.5,2) and have checked that subtracting aB

results in the same curve (for a fixed value of �). Also the
scaling plot in the upper panel of Fig. 8 confirms that �d

governs the size of “dead zone”, where puddle formation is
suppressed.
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