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Generalized Elliott-Yafet spin-relaxation time for arbitrary spin mixing
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We extend our recent result for the spin-relaxation time due to acoustic electron-phonon scattering in degenerate
bands with spin mixing [New J. Phys. 18, 023012 (2016)] to include interactions with optical phonons, and present
a numerical evaluation of the spin-relaxation time for intraband hole-phonon scattering in the heavy-hole (HH)
bands of bulk GaAs. Comparing our computed spin-relaxation times to the conventional Elliott-Yafet result
quantitatively demonstrates that the latter underestimates the spin-relaxation time because it does not correctly
describe how electron-phonon interactions change the (vector) spin expectation value of the single-particle states.
We show that the conventional Elliott-Yafet spin relaxation time is a special case of our result for weak spin
mixing.
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I. INTRODUCTION

The name Elliott-Yafet (EY) mechanism continues to be
used in a variety of ways. Originally, it was introduced
as the mechanism for spin relaxation in degenerate bands
due to spin-orbit coupling and the electron acoustic-phonon
interaction in metals. For this case, Yafet derived an expression
for the spin-relaxation time [1], which we will call the
Elliott-Yafet formula and which contains two contributions.
One contribution was originally introduced by Elliott, and
is due to the combination of any explicitly spin-independent
scattering process that connects different nonpure spin states
[2]. In addition to the Elliott mechanism, there is another
contribution to spin relaxation due to the direct modulation
of the spin-orbit coupling by the electron-phonon coupling,
which was first analyzed by Overhauser [3], but is nowadays
often called the Yafet contribution [4].

One characteristic of Yafet’s formula is that it determines
the spin-flip transition probability with the assumption that
all states involved are almost pure spin states. That this may
be a problem was realized earlier [5,6], but we recently
pointed out [7] that there is another, potentially more serious
problem in that the influence of spin independent scattering
processes is not accounted for correctly. As we have argued
before [7] and show in detail in the present paper, these
shortcomings lead, in particular, to an overestimation of the
Elliott contribution in Yafet’s formula for spin independent
scattering processes. In Ref. [7], we have derived a new result
for the spin-relaxation time in degenerate bands with spin
mixing that corrects the shortcomings of Yafet’s formula. It
is the purpose of the present paper to provide a quantitative
comparison between the two expressions. Therefore, we have
chosen a model system with a comparatively large spin mixing
and efficient electron-phonon coupling. As such an electron-
phonon coupling involves optical phonons, we generalize our
earlier result for the spin-relaxation time to include different
electron-phonon interaction mechanisms. We treat here the
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spin relaxation of heavy holes in GaAs, in an approximation
that makes the hole bands doubly degenerate [8]. An advantage
of using holes in GaAs is that the electronic states and
the material parameters that characterize the electron-phonon
interaction are rather well known so that we can achieve an
accurate calculation of the spin-relaxation time without the
complication of a separate band-structure calculation for the
states and the interaction matrix elements. For recent reviews
that put hole spin relaxation in the context of semiconductor
spintronics, see Ref. [9], and for a general overview of
spintronics with an explanation of the Elliott-Yafet mechanism
vs other spin-relaxation mechanisms, see Refs. [10,11].

We stress that we determine the spin dynamics as opposed
to calculating transitions rates between opposite pseudospin
states, which is the quantum number that can be assigned to
discriminate between the two degenerate bands [12,13]. We
focus on the spin because Yafet’s formula has increasingly
been used in systems with an equilibrium magnetization
[6,14,15], where the spin dynamics with respect to a fixed
quantization axis is most important.

Hole spin dynamics after optical excitation in intrinsic
bulk GaAs were first measured in Ref. [16], determining a
spin relaxation time for heavy holes of 110 fs ± 10% using
nondegenerate pump-probe techniques [16]. Patz et al. have
recently reported hole spin relaxation times in a ferromagnetic
GaMnAs quantum well of 160–200 fs [17]. We do not
attempt a quantitative comparison with these experiments
as in Refs. [18,19], because we would then also have to
account for the dynamics of the optical excitation of electrons
and both heavy and light holes [20,21], heavy-hole to light-
hole scattering, and the interplay of electron-phonon and
electron-electron Coulomb interactions [22,23], which makes
a straightforward comparison with Yafet’s formula difficult, if
not impossible.

II. MODEL

The electron-phonon interaction Hamiltonian considered in
this paper generalizes the approach of Ref. [7] by including
more atoms in the unit cell. We highlight the main differences
to the derivation in our earlier paper [7] and use the same
notation. Following Bir and Pikus [24], one writes the change
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of the potential experienced by the electrons due to phonons
in the form

δv̂(x) =
∑
n,r

Q(r)
n · ∂v̂

∂R(r)
n

(x,{R}), (1)

where v̂ = v(x) + ξ (∇v × p̂) · ŝ represents the ionic poten-
tial v(x) and the spin-orbit interaction with ξ = h̄

4mc2 . This
potential depends on all the ionic coordinates {R}. The hat
denotes an operator in real space and/or spin space; for
instance p̂ = −ih̄∇, and ŝ is the single particle spin operator.
Furthermore, Rn labels the equilibrium positions of the unit
cells in the lattice, and R(r)

n and Q(r)
n are the equilibrium position

and displacement of the rth atom in the cell at Rn, respectively.
For each phonon branch index λ with phonon polarization
vectors �ε (r)

q,λ we define the operator

v̂
(λ)
k+q,k = −e−i(k+q)·x ∑

n,r

i�
(r)
q,λe

−iq·Rn�ε (r)
q,λ · ∂v̂

∂R(r)
n

eik·x, (2)

where we have suppressed the dependence of v̂ on (x,{Rn}).
We use the abbreviation �

(r)
q,λ =

√
h̄

2MrNωq,λ
, where Mr is the

mass of the atoms with index r and where ωq,λ is the phonon
dispersion. This allows us to express the electron-phonon
matrix element in the form

g
(λ)
k+qμ′,kμ = 〈uk+qμ′ |v̂(λ)

k+q,kukμ〉, (3)

where μ, μ′ label the carrier states, and the integrals are
extended over the volume 	 of the first Brillouin zone.

The matrix element enters the electron-phonon interaction
Hamiltonian

He-pn =
∑
kq

∑
μμ′

∑
λ

g
(λ)
k+qμ′,kμ(bq,λ + b

†
−q,λ)c†k+qμ′ckμ. (4)

We also define the (z component of the) torque matrix
element between Bloch-u’s

t
(λ)
k+qμ′,kμ = 1

ih̄

〈
uk+qμ′

∣∣[ŝz,v̂
(λ)
k+q,k

]
ukμ

〉
, (5)

which is a key quantity for the change of spin angular
momentum due to incoherent scattering with bosons as
described by the interaction Hamiltonian (4). For an explicitly
spin-independent interaction operator v̂

(λ)
k+q,k the commutator

in Eq. (5) vanishes, and the torque matrix element is zero in
any basis.

III. SPIN-RELAXATION TIME: NEW RESULT
VS YAFET’S FORMULA

In Ref. [7] we have derived a spin-relaxation time in
degenerate bands for a small excited spin polarization, which
is the problem originally considered by Yafet [1]. Technically,
we need to assume a quasiequilibrium with a prescribed
spin polarization (in z direction) as excitation condition and
that the Bloch-u’s diagonalize the spin operator ŝz in the
degenerate subspace [25–27], see also Appendix A. Then
the spin-relaxation time due to the incoherent scattering with
phonons τSR is given by

1

τSR
= − 2

N Re
∑
kq

∑
μμ′

〈sz〉k+qμ′�k+q

∑
λ

t
(λ)
k+qμ′,kμg

(λ)
kμ,k+qμ′

(
1 + Nq,λ − nk

εk+q − εk − h̄ωq,λ + ih̄γ
+ Nq,λ + nk

εk+q − εk + h̄ωq,λ + ih̄γ

)
. (6)

Here and in the following we use the notation

〈sz〉kμ = 〈ukμ|ŝzukμ〉 (7)

for the single-particle spin expectation value. The occupation number of the phonon bath is described by the Bose function
Nq,λ = b(h̄ωq,λ) while the carrier distribution is a Fermi-Dirac distribution nk = f (εk − μ), with the chemical potential μ. For
small temperatures, the function �k = − ∂f

∂ε
|εk−μ approaches a δ function in energy peaked at the chemical potential μ, and h̄γ

is an infinitesimal broadening. By εk we denote the dispersion of the degenerate pair of bands while the phonon dispersion is
given by h̄ωq,λ. The normalization factor is N = ∑

k

∑
μ |〈sz〉kμ|2�k, which is related to a Fermi surface average of the squared

ŝz expectation value

s̄z =
√∑

μ

∑
k |〈sz〉kμ|2�k∑
μ

∑
k �k

(8)

via N = (
∑

μ,k s̄z�k)2.
Next, we show the approximations one has to employ in Eq. (6) to recover Yafet’s formula [1]. This provides an important

check on our result (6). Starting from Eq. (6) by explicitly using the expression for the torque matrix element, see Eq. (5), we
find

1

τSR
= 2

N h̄
Re

∑
kq

∑
μμ′,λ

i
[〈sz〉k+qμ′ − 〈sz〉kμ

]∣∣〈ukμ|v̂(λ)
k,k+quk+qμ′

〉∣∣2〈sz〉k+qμ′�k+q

×
(

1 + Nq,λ − fk

εk+q − εk − h̄ωq,λ + ih̄γ
+ Nq,λ + fk

εk+q − εk + h̄ωq,λ + ih̄γ

)
, (9)

where we used the completeness relation
∑

ν |ukν〉〈ukν | = 1 and the following property of the eigenbasis 〈ukμ|ŝz|ukν〉 =
〈ukμ|ŝz|ukμ〉δμν . The latter relation is guaranteed by construction of the |ukμ〉 states, see the discussion in Appendix A following
Eq. (A7).
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Now we have to assume that only interband scattering
processes can change the spin, i.e., μ′ = μ̄. This is Yafet’s
assumption that applies rigorously to purely spin up and
spin down bands, but is an approximation for the case of
k-dependent spin mixing. In the spirit of Yafet’s assumption,
we also approximate the matrix elements of the spin operator
by the values ± h̄

2 , i.e., we make the replacements

(〈sz〉k+qμ̄ − 〈sz〉kμ)〈sz〉k+qμ̄ = h̄2

4
−

(
− h̄2

4

)
= h̄2

2
(10)

and N = ∑
k′
∑

μ |〈sz〉k′μ〉|2�k′ = (h̄2/2)
∑

k′ �k′ . With
Re(ia) = −Im(a) this leads to

1

τSR
= − 2

h̄
∑

k′ �k′
Im

∑
kq

∑
μ,λ

∣∣g(λ)
kμ,k+qμ̄

∣∣2�k+q

×
(

1 + Nq,λ − fk

εk + q − εk − h̄ωq,λ + ih̄γ
+ Nq,λ + fk

εk + q − εk + h̄ωq,λ + ih̄γ

)
,

(11)

where we have also inserted the definition of the matrix
element (3).

Equation (11) is essentially Yafet’s Eq. (18.6) in Ref. [1]
in our notation. For completeness, we note the steps to get the
exact analogy to his result. He uses the Dirac identity

Im
1

�E + ih̄γ

γ→0→ −πδ(�E) (12)

and replaces∑
μ

|gkμ,k+qμ̄〉|2 = 2
h̄

2ρV 2ωq,λ

∣∣∣M (λ)
k+q⇑,k⇓

∣∣∣2. (13)

Note that relation (12) removes the minus sign in front of the
relaxation time. This concludes the proof that Yafet’s result
(11) is a special case of our result (6) for weak spin mixing.

IV. STATES AND HOLE-PHONON INTERACTION

We now turn to the numerical evaluation of the
spin-relaxation time (6). To this end, we need the states
ukμ, the band dispersions, electron-phonon interaction, and
torque matrix elements, as well as the expectation values of
the spin operator ŝ. For our chosen model system of heavy
holes in GaAs, these band dispersions and matrix elements
are readily available. Since we want to treat the relaxation of
a small spin polarization created in an equilibrium population
of electrons, we analyze the case of a relaxed population of
heavy holes in this band structure, as they would be created
in p-doped GaAs, but we neglect the influence of the dopant
ions. This has the further advantage that the Fermi surface
of the relaxed heavy holes is comparatively simple. With
these assumptions, we have a test bed for our spin-relaxation
time that is well defined, and can be checked independently
with a limited numerical effort that does not require ab initio
calculations. Thus, our model for the band structure is the
4 × 4 Luttinger Hamiltonian with standard parameters for
GaAs taken from Ref. [28]. This Hamiltonian does not include
k3 terms, which give rise to spin splitting due to the bulk
inversion asymmetry in GaAs. By neglecting this splitting,

the hole bands become degenerate at every k point and realize
the conditions for which Yafet’s result was derived.

We choose the degenerate eigenstates as the two states
that diagonalize the spin operator ŝz in the two-dimensional
subspace of HH bands at each k [7,25,29]. The explicit form of
the Luttinger Hamiltonian and the states are given in Appendix
A. To quantify the spin mixing in these states, see Eq. (A10),
we note that the single-particle spin averaged over the Fermi
surface, as defined in (8), is s̄z = ±0.58 × h̄

2 . Yafet’s derivation
assumes that this value is s̄ = ± h̄

2 . It is a peculiarity of the
hole states considered here that this value is independent of
the chemical potential and thus the same for all hole densities.

For the interaction of electrons with phonons, one can
distinguish, in general, contributions that are spin independent
and explicitly spin dependent, as well as those due to short-
range and long-range interactions. We discuss the physics here
and present the details in Appendix B. For acoustic phonons,
there are no long-range contributions, and we determine the
matrix element in the long-wavelength limit following Bir and
Pikus [24]. Importantly, this matrix element, see Eq. (B12),
yields a nonvanishing torque matrix element because it
includes both spin-independent and explicitly spin-dependent
contributions.

For longitudinal optical (LO) phonons, there is a
short-range and a long-range contribution, so that the
interaction operator takes the form v̂(LO) = v̂(LO,lr) + v̂(LO,sr).
The long-range part of the interaction is usually called
Fröhlich, or polar, coupling, and is due to long-range
electrostatic fields set up by the vibrating ions. This is the
most effective coupling for momentum relaxation, as its
matrix element behaves like g(LO,lr) ∝ q−1, see, e.g., Ref. [30].
However, it is electrostatic in nature, i.e., v̂(LO,lr) is explicitly
spin independent, so that its torque [ŝz,v̂

(LO,lr)
k+q,k ], and all of the

matrix elements (5), regardless of the basis, vanish [31].
The short-range interaction, which is sometimes called the

nonpolar optical phonon coupling or deformation potential
interaction exists for all three optical phonon branches; it has
a matrix element g(λ,sr) (where λ labels the optical phonon
branch), see Eq. (B3), that is independent of q for q → 0
[24,31]. In contrast to the long-range polar interaction, the
short-range nonpolar interaction is explicitly spin dependent,
and it therefore represents the most effective spin-dependent
electron-phonon interaction in GaAs. This was realized in
Ref. [19], but not included in earlier attempts at calculating
hole-spin relaxation after optical excitation [5,18].

V. NUMERICAL RESULTS

We now discuss results for the spin-relaxation time com-
puted with Eq. (6) using the states and matrix elements for
heavy holes of GaAs. We treat the case of a relaxed density
of holes, and do not model the creation of these holes by
optical excitation, or effects of doping. The hole distribution is
thus described by a Fermi-Dirac distribution with a chemical
potential μ determined by the density and an electronic
temperature Teq = 300 K that equals the temperature of the
phonon bath. The numerical broadening h̄γ in Eq. (6) is
chosen to be 0.6 meV and we have checked that the results
are converged. We consistently work in the long-wavelength
limit and follow Scholz [31] in choosing Cartesian polarization
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FIG. 1. Density dependent HH intraband spin relaxation time
calculated using Eq. (6) for Teq = 300 K. The solid line includes
all coupling mechanisms, the dashed line only the contribution of the
nonpolar coupling to optical phonons, and the dotted line (inset) only
the deformation potential coupling to acoustic phonons.

vectors for the long-wavelength optical phonons; we therefore
have to approximate the different LO and TO phonon energies
by an average value.

In our Eq. (6), and also Yafet’s result (11), the contributions
from different phonon modes are added. For LO phonons, the
product (g(lr) + g(sr))t (sr) occurs in Eq. (6), because there is no
long-range contribution to the torque. Due to the particular
form of the matrix elements for holes in the long-wavelength
limit, the cross terms of the form t (lr) g(sr) vanish after
integration over q, so that we effectively have three additive
contributions to the spin-relaxation time from Eq. (6), and
to Yafet’s original relation (11): the deformation potential
coupling to acoustic phonons, the nonpolar coupling to optical
phonons and the polar coupling to LO phonons. We compare
their respective contributions in the following.

Figure 1 shows the total spin-relaxation time τSR (solid line)
calculated with our Eq. (6) as well as the contributions from the
different couplings. The dominant one is the nonpolar coupling
to optical phonons (dashed line), with the the acoustic phonons
having only a very small effect over the whole range of hole
densities considered here. There is no contribution from the
long-range polar coupling to LO phonons. As expected, τSR

decreases with hole density.
In Fig. 2 we use Yafet’s original relation (11), to compute

the spin-relaxation time and the different contributions to
it for the same parameters as in Fig. 1. Note first that
there is now also a contribution from the polar coupling
to LO phonons. Although the nonpolar coupling to optical
phonons is the dominant contribution, the polar coupling is
on the same order of magnitude. For larger hole densities the
influence of the polar coupling decreases, and the acoustic
phonons do not contribute much over the whole density range
studied here. When comparing the ratio between the polar
and nonpolar contributions, one needs to keep in mind that the
contribution from the nonpolar coupling, and thus also the total
spin-relaxation times, depend on the magnitude of the optical
deformation potential constant d0. Different values for this
parameter have been reported, ranging from 27.4 eV [31],
over 36.4 eV [32], to experimentally deduced values of 48 eV
[33,34]. Since d0 = 48 eV was also used in other theoretical
calculations [19,35], we choose this value, but if the true value
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FIG. 2. Density dependent HH intraband spin-relaxation time at
Teq = 300 K calculated using Yafet’s formula. Shown are the different
contributions of nonpolar optical phonons (dashed line), polar LO
phonons, and acoustic phonons (dotted, inset). The complete result is
given by the solid line.

is closer to 28 eV, then the polar LO phonon coupling becomes
the dominant contribution in Yafet’s formula (11), which is a
qualitatively wrong result.

Figure 3 compares the most important features of the two
different calculations presented in Figs. 1 and 2. The solid line
represents the complete spin-relaxation time calculated using
Eq. (6). For Yafet’s formula we show two results: one with all
electron-phonon coupling mechanisms included (dotted line)
and one without the polar coupling (dashed line). Including all
coupling mechanisms (dotted line) leads to a spin-relaxation
time that is off by about 35% or more for the density range
considered here. Note that the absolute value of the deviation
depends on d0. This result shows how Yafet’s formula deviates
from Eq. (6), which contains a correct description of the single-
particle spin expectation values at each k point, and the change
of the spin vector due to scattering transitions.

An interesting comparison results if we investigate numer-
ically the influence of the polar (or Fröhlich) coupling, as
shown in Fig. 3. The polar coupling to LO phonons does not
contribute at all in our result (6) due to its vanishing torque
matrix element. However, its interaction matrix element glr

0.2 0.4 0.6 0.8 1 1.2 1.4
40

60

80

100

120

140

FIG. 3. Comparison of spin-relaxation times computed with
Eq. (6) (solid line) and Yafet’s formula for two cases: with (dotted) and
without (dashed) the spin-independent polar coupling to LO phonons.
In Eq. (6) the polar coupling does not contribute because it has a
vanishing torque matrix element.
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connects states at k and k + q with different spin expectation
values, so that switching it off in Yafet’s formula changes
the spin-relaxation time; numerically we find for the case
without the spin-independent Fröhlich interaction a reduced
deviation of about 14%, independent of the hole density. Thus
Yafet’s formula (11) gives a better result by neglecting the
spin-independent polar LO-phonon interaction, even though
this is the most efficient momentum scattering mechanism.
Stated differently, Fig. 3 shows that Yafet’s formula (11)
may massively overestimate the contribution of an efficient
spin-independent scattering process, the influence of which on
the spin dynamics is usually called the Elliott mechanism. The
remaining difference on the order of 10% between the dashed
line and our full result is due to interaction mechanisms that
contain both spin-independent and spin-dependent contribu-
tions. Given that Yafet’s assumption of the spin expectation
value s̄z = ± h̄

2 is violated badly in the present system and the
heavy-hole states do not at all resemble pure spin states, this
relatively small remaining deviation may at first be surprising.
However, one needs to keep in mind that our result (as opposed
to Yafet’s) includes a correct determination of the ensemble
spin, even for pronounced spin mixing. It turns out that the
spin changing transitions are interband transitions, both in
our treatment and Yafet’s. The difference is that in Yafet’s
treatment those transitions connect almost pure spin states
and therefore flip an h̄/2 spin. In our case they change the
spin expectation value by a smaller amount, but this smaller
change occurs with respect to an ensemble spin determined for
nonpure spin states. On average, when spin mixing is included
correctly, a single transition in our treatment needs to flip “less
spin” than in Yafet’s calculation.

VI. CONCLUSION

We extended our analysis of spin relaxation due to electron-
phonon interactions [7] to include coupling to optical phonons,
which may have long-range electrostatic interactions. Our
approach accounts for the vector spin expectation values at
each k point and correctly describes how different electron-
phonon interactions change the spin in scattering transitions.
We showed that Yafet’s result is a special case of the spin-
relaxation time derived by us. We applied our expression for
the spin-relaxation time in degenerate bands with spin mixing
to the test case of phonon scattering in degenerate heavy-hole
bands in GaAs. By computing the spin-relaxation time for
different hole densities, we quantitatively showed that Yafet’s
result leads to a 35% shorter spin-relaxation time at low hole
densities than our spin-relaxation time. The biggest difference
is that in Yafet’s result the long-range LO phonon coupling
contributes to spin relaxation, whereas in our calculation this
spin-independent interaction does not contribute at all. Yafet’s
formula therefore tends to overestimate the contribution
to spin relaxation of efficient spin-independent scattering
mechanisms.
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APPENDIX A: HOLE STATES IN GAAS

To calculate the intraband HH spin-relaxation time, we use a
4 × 4 Luttinger Hamiltonian which describes the heavy-hole
and light-hole states close to the fundamental band gap in
GaAs. For our purposes, it is enough to include HH and LH
without coupling to the split-off and electronic bands. The
representation of the Hamiltonian in the k = 0 eigenstates is
given by [28]

ĥhole =

⎛⎜⎜⎜⎝
P + Q −S R 0

−S∗ P − Q 0 R

R∗ 0 P − Q S

0 R∗ S∗ P + Q

⎞⎟⎟⎟⎠, (A1)

with the abbreviations

P = h̄2

2m0
γ1
(
k2
z + k2

⊥
)
, Q = h̄2

2m0
γ2
(−2k2

z + k2
⊥
)
, (A2)

S = h̄2

2m0
2
√

3γ3kzk−, (A3)

and

R = − h̄2

2m0

√
3γ2

(
k2
x − k2

y

) + h̄2

2m0
2i

√
3γ3kxky. (A4)

We write k± = kx ± iky and k2
⊥ = k2

x + k2
y and use standard

parameters γ1 = 6.85, γ2 = 2.1, and γ3 = 2.9.
The twofold degenerate eigenenergies are

εHH = P −
√

Q2 + |R|2 + |S|2,

εLH = P +
√

Q2 + |R|2 + |S|2,
(A5)

and the eigenstates can be expressed in the form [28]

|HH,1〉 =

⎛⎜⎜⎜⎝
S

Q +
√

Q2 + |R|2 + |S|2
0

−R∗

⎞⎟⎟⎟⎠,

|HH,2〉 =

⎛⎜⎜⎜⎝
−R

0

Q +
√

Q2 + |R|2 + |S|2
−S∗

⎞⎟⎟⎟⎠,

(A6)

|LH,1〉 =

⎛⎜⎜⎜⎝
Q +

√
Q2 + |R|2 + |S|2

−S∗

R∗

0

⎞⎟⎟⎟⎠,

|LH,2〉 =

⎛⎜⎜⎜⎝
0

−R

−S

Q +
√

Q2 + |R|2 + |S|2

⎞⎟⎟⎟⎠.

We will illustrate here a detail of the calculation for the
Kramers-degenerate eigenstates of the Luttinger Hamiltonian,
which is rarely mentioned in the semiconductor literature, but
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has some importance for spin relaxation. In order to quantify
the “spin mixing,” one would like to write any state involved
in the dynamics in the form

|ukμ〉 = akμ|↑〉 + bkμ|↓〉. (A7)

This decomposition is not unique because two eigenstates
are degenerate. Consequently, there are different explicit
expressions for the heavy-hole |HH,1〉, |HH,2〉 and light-hole
eigenstates in the literature. To fix the the eigenstates and
the spin mixing parameters akμ and bkμ, we choose the
Kramers conjugate eigenbasis {|H̃H1〉,|H̃H2〉,|L̃H1〉,|L̃H2〉}
that diagonalizes the spin operator in the subspace of the HH
and LH eigenstates. The representation of the spin operator in
the k = 0 eigenstates is given by

ŝz = h̄

2

⎛⎜⎜⎜⎝
1 0 0 0

0 1
3 0 0

0 0 − 1
3 0

0 0 0 −1

⎞⎟⎟⎟⎠. (A8)

Only if

〈H̃H,1|ŝz|H̃H,2〉 = 〈H̃H,1|ŝz|H̃H,1〉 = 0 (A9)

is fulfilled the spin mixing parameter is meaningful
[25–27,29]. In this way, the Kramers conjugate eigenstates for
the HH bands (for LH replace subscripts HH by LH) are given
by superpositions of the states usually used in semiconductor
physics; in detail

| ˜HH,1〉 = 1

NHH,1
[|HH,1〉 + bHH|HH,2〉],

(A10)

| ˜HH,2〉 = 1

NHH,2
[|HH,2〉 − b∗

HH|HH,1〉].

Here the abbreviations

bHH = − SR∗

2|SR|2
(
DHH −

√
D2

HH + 4|SR|2),
(A11)

bLH = − 3S∗R∗

2|SR|2
(

DLH −
√

D2
LH + 4

9
|SR|2

)
,

with

DHH = 1
3 (Q +

√
Q2 + |R|2 + |S|2)2 − |R|2 + |S|2,

DLH = (Q +
√

Q2 + |R|2 + |S|2)2 + 1
3 |R|2 − 1

3 |S|2
(A12)

are used. NHH/LH,1/2 is a normalization factor for the mixed
eigenstates.

APPENDIX B: THE HOLE-PHONON INTERACTION

The derivation of the spin-relaxation time as given in
Eq. (5) is based on the general electron-phonon interaction
Hamiltonian (3) with the interaction matrix element g

(λ)
k+qμ′,kμ,

which includes contributions from all the relevant electron-
phonon coupling mechanisms. In the case of the polar
semiconductor GaAs, we need to consider a mechanism that is
due to long-range dipolar electrostatic field, which gives rise

TABLE I. Material parameters for GaAs hole-phonon interaction,
taken from Ref. [31].

Quantity h̄ωLO h̄ωTO c ε(0) ε(∞) ρ a0

Value 36.2 33.3 3860 12.9 10.92 5316 0.5653
Unit meV meV m/s 1 1 kg/m3 nm

to the Fröhlich coupling to LO phonons, and the short-range
deformation potential interaction [31].

The Fröhlich coupling is given by∣∣v(λ)
k+qμ,kμ′

∣∣2 = ∣∣〈uk+qμ|v̂(λ)
k+q,k|ukμ′ 〉∣∣2

= h̄e2ωLO

2ε0V

(
1

ε(∞)
− 1

ε(0)

)
q2

λ

q4

∣∣〈uk+qμ|ukμ′ 〉∣∣2,
(B1)

with the elementary charge e, the energy of the longitudinal
optical phonons ωLO, the crystal volume V , the vacuum
permittivity ε0, and the low and high frequency dielectric
constants ε(0), ε(∞). The corresponding parameters can be
found in Table I. qλ is the corresponding component of the
transferred momentum q. To obtain this form of the matrix
element one has to introduce the simple set of elongation
vectors [31]

�ε(1)
λq = eλ

√
M1

M1 + M2
, �ε(2)

λq = −eλ

√
M2

M1 + M2
, (B2)

with λ ∈ {x,y,z}, where eλ is the unit vector along the cubic
axes. These elongation vectors are only exact for a nonpolar
material, such that in a polar crystal the transverse and
longitudinal modes cannot be distinguished. Because of this
approximation, we have to assume that the optical phonon
mode dispersions are nondegenerate with h̄ωLO ≈ h̄ωTO ≈
34.4 meV. This value does not differ much from the literature
parameters as given in Table I.

In difference to the Fröhlich interaction the short-range
deformation potential interaction is explicitly spin dependent
and is given by [24,31]

v̂
(λ)
k+qμ,kμ′ =

√
h̄

2ρV ωq,λ

Dλ
q, (B3)

with the deformation potential matrix

Dλ
q =

⎛⎜⎜⎜⎝
0 h j 0

h∗ 0 0 j

j∗ 0 0 −h

0 j ∗ −h∗ 0

⎞⎟⎟⎟⎠, (B4)

where the entries are

h = d0

a0
(δyλ − iδxλ), j = d0

a0
δzλ. (B5)

ρ is the density of GaAs, d0 is the deformation potential, and
a0 the lattice constant. The values for the different deformation
potentials, including d0 can be found in Table II. The difference
of a factor i compared to [31] arises because of a different
definition of the phononic displacement operator.
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TABLE II. Deformation potential parameters in eV [28]. The
deformation potential d0 is taken from [33,34].

Quantity d0 av b d

Value 48 1.16 −1.7 −4.55

For the interaction with the acoustic phonons we use the
general form [24]

Hac =

⎛⎜⎜⎜⎝
F H J 0

H ∗ G 0 J

J∗ 0 G −H

0 J ∗ −H ∗ F

⎞⎟⎟⎟⎠, (B6)

with

F = l + m

2
(εxx + εyy) + mεzz,

G = 1

3
{f + 2[m(εxx + εyy) + lεzz]},

(B7)

H = − 1√
3
n(iεxz + εyz),

J = 1√
3

[
1

2
(l − m)(εxx − εyy) − inεxy

]
,

where the constants l, m, n are defined via the deformation
potentials av, b, c

av = l + 2m

3
, b = l − m

3
, d = n√

3
. (B8)

The symmetrized strain tensor

εαβ = 1

2

(
∂uα

∂xβ

+ ∂uβ

∂xα

)
(B9)

is evaluated via the phonon displacement operator

uλ(x) = i

√
h̄

2ρV ωq,λ

∑
q,λ

(b†−q,λ + bq,λ)eiq·x�ελ(q), (B10)

where λ runs over the modes of the acoustic phonons. We use
the elongation vectors given in Pikus and Bir [24]: �εLA(q) =
q/q,

�εTA1(q) = 1

q⊥

⎛⎜⎝qy

qx

0

⎞⎟⎠, �εTA2(q) = 1

qq⊥

⎛⎜⎝qxqz

qyqz

−q2
⊥

⎞⎟⎠. (B11)

For the dispersion we assume h̄ωq,λ = h̄cq, with sound
velocity c. We find for the deformation potential interaction

v̂
(λ)
k+qμ,kμ′ =

√
h̄

2ρV ωq,λ

Dλ
q, (B12)

with

Dλ
q =

⎛⎜⎜⎜⎝
f h j 0

h∗ g 0 j

j∗ 0 g −h

0 j ∗ −h∗ f

⎞⎟⎟⎟⎠, (B13)

where the entries are for the longitudinal mode

f = l + m

2q

(
q2

x + q2
y

) + m

q
q2

z ,

g = 1

3

{
f + 2

q

[
m
(
q2

x + q2
y

) + lq2
z

]}
,

(B14)

h = − qz

q
√

3
n(iqx + qy),

j = 1

q
√

3

[
1

2
(l − m)

(
q2

x − q2
y

) − inqxqy

]
,

and for the two transverse modes

f = 0,

g = 0,
(B15)

h = − qz

2q⊥
√

3
n
(
iqy − qx

)
,

j = 1

q⊥
√

3

[
(l − m)qyqx − i

n

2

(
q2

y − q2
x

)]
,

and

f = l − m

2qq⊥
qz

(
q2

x + q2
y

)
,

g = −f,

h = − 1

2qq⊥
√

3
n
[
iqx

(
q2

z − q2
x − q2

y

) + qy

(
q2

z − q2
x − q2

y

)]
,

j = 1

qq⊥
√

3

[
1

2
(l − m)qz

(
q2

x − q2
y

) − inqxqyqz

]
. (B16)
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