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Phonon properties of copper oxide phases from first principles
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We present density functional theory (DFT) calculations on phonon dispersions, phonon density of states,
and thermodynamic quantities for the three copper oxide phases Cu2O, Cu4O3, and CuO. For monoclinic CuO
we consider the correct antiferromagnetic ground state. Sound velocities for the acoustic phonon branches
and Debye temperatures are calculated and are found to be in good agreement with experiment. We further
show how the method for the treatment of dipole-dipole interactions in dynamical matrices of Gonze and Lee
[Phys. Rev. B 55, 10355 (1997)] may be incorporated in the real-space (direct) method for interatomic force
constants (FCs). The role of the long-ranged dipole-dipole interactions in the phonon dispersion is discussed.
Based on this method, we outline a perturbationlike scheme to compute first-order derivatives of the phonon
mode frequencies with respect to the wave vector which can be used to compute velocities of sound.
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I. INTRODUCTION

Copper oxides are known to exist in three modifications: cu-
bic Cu2O (cuprite), monoclinic CuO (tenorite), and tetragonal
Cu4O3 (paramelaconite). Among these, the naturally p-type
[1–3] conducting cuprite has regained particular attention
for solar cell applications and consequently has become
well-studied, experimentally [4–13] and theoretically [13–26],
over the last decades. The monoclinic tenorite phase has
been considered for solar cell applications [10], and high-
TC superconductors [27]. In recent years, density functional
theory (DFT) based investigations within the framework of
LDA + U [26,28], hybrid functionals [26,29], and many-body
perturbation theory [13,30] concentrated on the electronic
structure which is governed by the interaction of the O
2p and Cu 3d states [28,30]. Experimental investigations
have succeeded in understanding the magnetic and related
structural properties [31–38]. It was found that there exist
two antiferromagnetic (AFM) orderings [32,34] with differing
Néel temperatures T

(1)
N = 231 K (incommensurable phase),

and T
(2)

N = 213 K (commensurable phase) [32–36]. In the
low-temperature (T < T

(2)
N ) AFM phase with eight formula

units per magnetic unit cell, apart from the Cu2+ ions (magnetic
moment of ∼0.65μB), the oxygen ions also carry nonzero
magnetic moments of ∼0.14μB [32]. Tetragonal, antiferro-
magnetically ordered paramelaconite is a phase considered to
be intermediate to cuprite and tenorite as it contains Cu atoms
in two oxidation states, Cu+[Cu(I)] and Cu2+[Cu(II)] [39].
In recent years, efforts have been made to explore the elec-
tronic properties experimentally as well as computationally
[10,13,26,40–42].

As far as lattice dynamics are concerned, experimental
studies of the past decades involving for example inelastic neu-
tron scattering, Raman spectroscopy, and IR measurements,
in particular focused on the cubic cuprite [43–67] and the
monoclinic tenorite [10,38,68–86] phase. For the latter, in the
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low temperature regime (T < T
(2)

N ) modes additional to those
expected from a factor group analysis of the C6

2h space group
have been observed [38,69,72,74,82]. This was taken as the
lattice dynamical indication for the formation of a magnetic
superlattice below the Néel temperature [82]. For some modes,
in addition, a strong dependence on temperature below T

(2)
N

was found which finally was attributed to a strong coupling
of the corresponding phonon modes to the magnetic ordering,
sometimes termed spin-phonon coupling [82]. Only recently,
Raman spectra of the intermediate paramelaconite phase of
Cu4O3 have been reported for samples grown by magnetron
sputtering [10,85].

DFT-based approaches to vibrational properties of solids
within the harmonic approximation nowadays either rely on
the supercell real-space (direct method) [87–89] or density
functional perturbation theory (DFPT, see, e.g., Refs. [90–93]).
Within the direct method, interatomic force constants (FCs) are
calculated using Hellman-Feynman forces resulting from dis-
placements of single atoms from their equilibrium positions.
In the linear response method employed within the framework
of DFPT, dynamical matrices are computed in reciprocal space
on a grid of wave vectors from first-order derivatives of the
wave functions with respect to atomic displacements. Both
approaches essentially yield the same information, however,
they differ in complexity and practicability.

To date, calculations on vibrational properties of copper
oxide phases have been rather rare. While the early studies
relied on rigid ion models [44,48], more recent investi-
gations employed ab initio methods in order to describe
the phononic structure within the harmonic approximation
[42,66,85,86,94,95]. Calculations involving Cu2O have made
use of the direct method as well as DFPT [66,94,95]. For
the tenorite and paramelaconite phases, recent calculations are
solely based on the direct method [42,85,86]. However, apart
from the case of Cu2O [66,95] the polar nature of the chemical
bonding has not been considered in the calculations of the
phonon properties of copper oxide phases. In polar insulating
crystals the FCs are long ranged in real space due to the creation
of dipoles through atomic displacements. This requires us to
consider separately a short-ranged and a Coulomb part of
the dynamical matrices [92,93]. Furthermore, in the case of
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monoclinic CuO, the correct ground state magnetic order [32]
has not been investigated yet [85,86].

In view of this, we shall show in this work how long-
ranged dipole-dipole interactions can be treated in dynamical
matrices obtained from the direct method following the method
of Gonze and Lee [92], which is conventionally used in
conjunction with dynamical matrices from DFPT calculations.
The emerging effect on phonon dispersion relations will be
discussed. Apart from that, based on the method of Gonze
and Lee [92], we outline a scheme that allows us to calculate
first-order derivatives of the phonon mode frequencies with
respect to the wave vector. This scheme is used to obtain
velocities of sound along selected directions. As a matter
of fact, the AFM ground state for CuO [32] (T < T

(2)
N ) is

considered in all calculations presented for this phase.

II. METHODS

A. The method of Gonze and Lee for the treatment of
dipole-dipole interactions in dynamical matrices

For insulating materials with polar bonds (as in the case
of copper oxides) dynamical matrices exhibit a contribution
through dipole-dipole interactions leading to a separation of
the form [92]

C̃
κ μ

κ ′ν (q) = C̃
sr κ μ

κ ′ν (q) + C̃
dd κ μ

κ ′ν (q), (1)

where the contributions to this “full” dynamical matrix are
a short-ranged (sr; non-Coulomb) and a dipole-dipole (dd;
Coulomb) part, and κ,κ ′ label atoms in the unit cell while μ,ν

are cartesian directions.
Independently of Eq. (1), full dynamical matrices at wave

vector q within the first Brillouin zone (BZ) are given through
a lattice Fourier transform of the interatomic force constants
(FCs) C

l κ μ

l′κ ′ν :

C̃
κ μ

κ ′ν (q) =
∑

l′
C

l κ μ

l′κ ′ν e+iqT (Rl′ −Rl ), (2)

where l,l′ refer to unit cells within the crystal, and due to
translational invariance it holds that Cl κ μ

l′κ ′ν = C
0 κ μ

l′−lκ ′ν . The sum
of Eq. (2) converges slowly for polar insulators since the FCs
in real space (more specifically the dipole-dipole part) only
decrease as the inverse of the third power of the interatomic
distance d0κ

l′κ ′ = Rl′ + xκ ′ − xκ [92,96], where xκ denotes an
atomic position vector in the unit cell. Mind that for the FCs
a similar decomposition into a short- and a long-ranged part
holds as for the full dynamical matrices, and the short-ranged
part is expected to decay (at least) as the inverse of the fourth
power of the interatomic distance [92]. As a result, the sum
in Eq. (2) is rapidly convergent when the short-ranged FCs
instead of the full (short-ranged+dipole-dipole: C

0κ μ

l′κ ′ν ) FCs
are to be Fourier transformed.

Indeed, this is the fact to be exploited in order to bypass the
issue of slow convergence of the Fourier sum. Gonze and Lee
[92] suggested to use the partitioning of the full dynamical
matrix [according to Eq. (1)], and to calculate instead of
Eq. (2):

C̃
κ μ

κ ′ν (q) =
∑

l′
C

sr 0κ μ

l′κ ′ν e+iqT Rl′ + C̃
dd κ μ

κ ′ν (q), (3)

i.e., compute the Fourier transform only for the short-ranged
FCs and treat the dipole-dipole part separately.

The method due to Gonze and Lee [92] has traditionally
been used in the framework of DFPT [97,98], and proceeds
along the following lines: Using the linear response approach
(i.e., DFPT) full dynamical matrices are directly computed
on a predefined grid of Nq wave vectors (G = {qi}i=1,...,Nq )
that homogeneously samples the BZ [90,92,93]. Starting
from these full dynamical matrices {C̃κ μ

κ ′ν (qi)}i=1,...,Nq , the
short-ranged part is isolated by subtracting the dipole-dipole
part ∀qi ∈ G :

C̃
sr κ μ

κ ′ν (qi) = C̃
κ μ

κ ′ν (qi) − C̃
dd κ μ

κ ′ν (qi). (4)

The dipole-dipole part can be dealt with using Ewald
summation techniques (�: Ewald parameter) [92]. This sum-
mation is split into sums over reciprocal space and real space
lattice vectors (G and Rl), and a limiting contribution. For a
convenient choice of � the sums in reciprocal and real space
are carried out until convergence. With the low-frequency
dielectric permittivity ε∞

μν , and the Born effective charges

Z∗
κ,μν , the expression for C̃

dd κ μ

κ ′ν (q) can be computed from the
following set of equations for arbitrary q in the BZ [92]:

C̄
dd κ μ

κ ′ν (q) = 4π

�0

|K|�=0∑
G with

K = q + G

KμKνF0(K)eiKT (xκ−xκ′ )

−
∑

l,D �=0

�3Hμν(��,�D)
eiqT Rl

√
det ε∞

− 4

3
√

π

�3

√
det ε∞ δκκ ′ (ε∞)−1

μν , (5a)

C̃
dd κ μ

κ ′ν (q) =
∑
μ′ν ′

Z∗
κ,μ′μZ∗

κ ′,ν ′ν C̄
dd κ μ′

κ ′ν ′ (q)

− δκκ ′
∑

κ ′′,μ′ν ′
Z∗

κ,μ′μZ∗
κ ′′,ν ′ν C̄

dd κ μ′
κ ′′ν ′ (q = 0).

(5b)

We use the abbreviations 	μ ≡ 	0κ
l′κ ′,μ = ∑

ν (ε∞)−1
μνd

0κ
l′κ ′,ν ,

and D ≡ D0κ
l′κ ′ =

√
[d0κ

l′κ ′]T �0κ
l′κ ′ , and further define for

Eq. (5a): F0(K) = e−ε∞(K)/4�2
/ε∞(K), with ε∞(K) =∑

μν Kμε∞
μν Kν . The unit cell volume is �0 and the function

Hμν(x,y) is given by [92]

Hμν(x,y) = xμxν

y2

[
3 erfc y

y3
+ 2e−y2

√
π

(
3

y2
+ 2

)]

− (ε∞)−1
μν

[
erfc y

y3
+ 2√

π

e−y2

y2

]
. (6)

The short-ranged FCs are calculated from the short-ranged
part of the dynamical matrices by inverse Fourier transform
from reciprocal to real space [92]:

C
sr 0κ μ

l′κ ′ν = 1

Nq

∑
qi∈G

C̃
sr κ μ

κ ′ν (qi)e
−iqT

i Rl′ , if d0κ
l′κ ′ ∈ box

= 0, if d0κ
l′κ ′ /∈ box. (7)
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The “box” is the volume of size Nq × �0 in real space
(centered on atom κ) containing Nq lattice points Rl′ at which
the short-ranged FCs are obtained. We reiterate at this point
that these FCs now are supposed to be sufficiently short ranged
(decaying at least as |d0κ

l′κ ′ |−4) making the Fourier sum more
rapidly convergent [first term of Eq. (3)] compared to the case
when the full FCs are used [Eq. (2)] [92].

Now that the short-ranged FCs have been obtained, full
dynamical matrices at any point in the BZ (i.e., in particular
at points not contained in the original grid G ) can be
calculated by Fourier interpolation. For an arbitrary q vector
the interpolation procedure [implementing Eq. (3)] can be
summarized as follows:

(I) Calculate the first term of Eq. (3) with the short-ranged
FCs C

sr 0κ μ

l′κ ′ν to obtain the short-ranged dynamical matrix
C̃

sr κ μ

κ ′ν (q).
(II) Calculate the dipole-dipole part C̃

dd κ μ

κ ′ν (q) [second
term of Eq. (3)] according to Eqs. (5).

(III) Complete the instruction of Eq. (3): Add the
dipole-dipole part C̃

dd κ μ

κ ′ν (q) and the short-ranged part
C̃

sr κ μ

κ ′ν (q) in reciprocal space to obtain the full dynamical
matrix C̃

κ μ

κ ′ν (q).
(IV) Calculate phonon frequencies (ωmq) and eigenvectors

(wκμ
mq) for the mth branch by solving the eigenvalue equation

of D̃
κ μ

κ ′ν (q) = C̃
κ μ

κ ′ν (q)/(MκMκ ′)1/2:∑
κ ′ν

D̃
κ μ

κ ′ν (q)wκ ′ν
mq = (ωmq)2wκμ

mq. (8)

Since the approach we just reviewed “corrects” the short-
comings of the Fourier interpolation based on the full FCs, we
refer to it as dipole-dipole corrections.

As a final point of this section we note that the term corre-
sponding to G = 0 in Eq. (5a), after having included the Born
effective charges like in Eq. (5b), leads to the nonanalytical
term that appears in the q → 0 limit of the dipole-dipole part
of the dynamical matrix along direction q̂ [90,92]:

C̃
na κ μ

κ ′ν (q̂) = 4π

�0

∑
μ′ q̂μ′Z∗

κ,μ′μ
∑

ν ′ q̂ν ′Z∗
κ ′,ν ′ν

ε∞(q̂)
. (9)

This term describes a macroscopic electric field [96,99]
which—due to the imposition of periodic boundary
conditions—is not captured in DFT calculations. Therefore,
for a given direction q̂, this term must be added explicitly to
the full dynamical matrix:

lim
q→0

C̃
κ μ

κ ′ν (q) = C̃
κ μ

κ ′ν (q = 0) + C̃
na κ μ

κ ′ν (q̂). (10)

B. The method of Gonze and Lee in the framework
of the direct method

In Sec. II A we have reviewed the method of Gonze
and Lee [92] in relation to DFPT. The key requirement for
this method to be applicable is that full dynamical matrices
{C̃κ μ

κ ′ν (qi)}i=1,...,Nq are known for a set of wave vectors that
homogeneously sample the BZ.

The purpose of this section is to show how this procedure
[92] can be used in conjunction with the direct method. This
method [87–89] is used in this article to compute FCs in

combination with DFT calculations (note that we are not using
DFPT to determine the FCs).

The direct method relies on systematically displacing an
atom κ ′ in unit cell l′ by a finite amount from its equilibrium
position in a supercell and calculating resultant Hellman-
Feynman forces from DFT on another atom κ in the l = 0
unit cell at the origin. From these forces we compute the FCs
using a two-point finite difference stencil.

The peculiarity of the FCs based on DFT calculations is
that they are determined from forces having contributions
from displaced atoms in all periodic images of the supercell.
This is due to periodic boundary conditions imposed in most
DFT codes [97,98,100–103]. Through the forces the periodic
contributions enter the FCs which is the reason why these are
often termed cumulative FCs [88]: C

0κ μ

l′κ ′ν = ∑
L′ C

phy 0 κ μ

l′+L′κ ′ν ,
where the summation extends over all periodic images of the
supercell, and C

phy 0κ μ

l′κ ′ν are the true physical force constants.
At wave vectors qc that are reciprocal lattice vectors of the
real space superlattice, the full dynamical matrix can be
obtained exactly without any further approximation [88,104].
For these wave vectors commensurable with the supercell
it holds that e+iqT

c R(s)
L = 1 since qT

c R(s)
L = 2π × integer, R(s)

L

being a lattice vector of the real space superlattice. There-
fore, using the FCs C

0κ μ

l′κ ′ν in Eq. (2), exact full dynamical
matrices C̃

κ μ

κ ′ν (qc) at the commensurable wave vectors are
obtained.

The qc vectors can be generated in the following way: Let
a(p)

1 ,a(p)
2 ,a(p)

3 and a(s)
1 ,a(s)

2 ,a(s)
3 be the generating vectors of the

real space unit- and superlattice, respectively. The two are
related by a linear transformation

∑3
j=1 a(p)

j Mjj ′ = a(s)
j ′ , with

M ∈ Z3×3. The columns of the reciprocal of the transformation
matrix [MT ]−1 ∈ Q3×3 can be taken as generating vectors for
a grid Gc of qc vectors of size Nqc = det M . Note that, using
these generating vectors, the qc vectors refer to the basis of
the reciprocal lattice corresponding to the lattice generated by
a(p)

1 ,a(p)
2 ,a(p)

3 in real space.
Since we have access to exact full dynamical matrices

on a grid Gc of wave vectors (which now plays the role of
G from Sec. II A), we are now in the position to apply the
method of Gonze and Lee [92] within the framework of the
direct method. Assuming that the (cumulative) FCs C

0κ μ

l′κ ′ν
have already been calculated from a supercell with volume
Nqc

× det(a(p)
1 ,a(p)

2 ,a(p)
3 ) = Nqc

× �0, the essential steps can
be summarized in the following way (qc replaces qi in the
equations from Sec. II A):

(i) ∀qc ∈ Gc: Use the (cumulative) FCs C
0κ μ

l′κ ′ν in Eq. (2) to
calculate the exact full dynamical matrices C̃

κ μ

κ ′ν (qc).
(ii) ∀qc ∈ Gc: Calculate the dipole-dipole part C̃

dd κ μ

κ ′ν (qc)
[Eqs. (5)] and remove it from the exact full dynamical matrices
C̃

κ μ

κ ′ν (qc) [following Eq. (4)] to obtain the short-ranged part
C̃

sr κ μ

κ ′ν (qc).
(iii) Construct the short-ranged FCs C

sr 0κ μ

l′κ ′ν in real space
by inverse Fourier transform like in Eq. (7).

(iv) To interpolate to arbitrary q vectors, follow items (I)
to (IV) for the Fourier interpolation described in Sec. II A.

In relation with the direct method, Wang et al. [105] have
proposed another method for the inclusion of dipole-dipole
corrections into dynamical matrices. Contrary to the approach
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followed here, in Wang’s method the Fourier interpolation is
carried out with the full FCs and subsequent addition of the
nonanalytic term from Eq. (9) times a wave-vector-dependent
factor [105,106]. Wang’s method has often been used in recent
years in conjunction with the direct method [13,105–114], and
has been implemented into many phonon codes [98,113,115–
118]. As also pointed out by Wang et al. [119], both methods
are quite different only from a technical point of view,
particularly in their treatment of the Fourier interpolation. We
found the differences in the overall phonon dispersion to be
quite small in cases of Cu2O and Cu4O3. For monoclinic CuO,
differences are more clearly visible and differences cannot be
ruled out for other materials. A detailed comparative study
shall, however, not be subject of the present work.

C. Calculation of first-order derivatives of phonon mode
frequencies in the limit q → 0

In discussing the properties of the eigenvalue problem
Eq. (8) for polar solids in the limit q → 0, seminal work has
been done by Born and Huang [99] (Chap. V). We rewrite
parts of their procedure for the treatment of long-wavelength
acoustic phonons in the presence of dipole-dipole interactions
(also discussed in great detail in Ref. [96]) for the case of
anisotropic dielectric permittivity and Born effective charge
tensors, introduced by Gonze and Lee [92].

To keep in line with [96,99], we consider the following
change-of-phase for the full dynamical matrix:

C̃ κ μ

κ ′ν (q) = e+iqT xκ′ C̃
κ μ

κ ′ν (q)e−iqT xκ . (11)

This phase change of the dynamical matrix can be advan-
tageous for discussing relations between the FCs and the
macroscopic elastic constants (see [96], Chaps. 2 and 6).

In order to develop the equations governing the q →
0 limit of the phonon mode frequencies, we will work
with the mass-reduced full dynamical matrix D̃κ μ

κ ′ν (q) =
C̃ κ μ

κ ′ν (q)/(MκMκ ′)1/2 whose eigenvalues and eigenvectors we
shall denote by (ωmq)2 and b

κμ
mq, respectively.

Next, for fixed direction q̂, we expand the single parts of the
corresponding eigenvalue equation [cf. Eq. (8)] around q = 0
(letting λ = |q|):

D̃κ μ

κ ′ν = D̃ κ μ

0,κ ′ν + D̃na κ μ

κ ′ν + iD̃ κ μ

1,κ ′ν λ + 1
2 D̃ κ μ

2,κ ′ν λ2 + · · · ,

(12a)

bκμ
mq = b

κμ

0,m + ib
κμ

1,m λ + 1
2b

κμ

2,m λ2 + · · · , (12b)

ωmq = ω1,mq̂λ + 1
2ω2,mq̂λ

2 + · · · , (12c)

wherein D̃na κ μ

κ ′ν ≡ D̃na κ μ

κ ′ν (q̂) = C̃na κ μ

κ ′ν (q̂)/(MκMκ ′)1/2, and
the q = 0 label has been suppressed in favor of a concise
notation.

The parts of the set of Eqs. (12) needed in the following are

D̃ κ μ

0,κ ′ν = D̃sr κ μ

0,κ ′ν + D̃dd κ μ

0,κ ′ν , (13a)

D̃ κ μ

1,κ ′ν =
∑

γ

(
D̃sr κ μ

1,κ ′ν,γ + D̃dd κ μ

1,κ ′ν,γ

)
q̂γ , (13b)

D̃ κ μ

2,κ ′ν =
∑
γ λ

(
D̃sr κ μ

2,κ ′ν,γ λ + D̃dd κ μ

2,κ ′ν,γ λ

)
q̂γ q̂λ, (13c)

and

ω1,mq̂ =
∑

γ

∂ωmq

∂qγ

∣∣∣∣
q=0

q̂γ , (14a)

b
κμ

1,m =
∑

γ

∂b
κμ
mq

∂qγ

∣∣∣∣
q=0

q̂γ , (14b)

while the derivatives with respect to the wave vector of the
short-ranged part of the dynamical matrix at q = 0 read

D̃sr κ μ

1,κ ′ν,γ =
∑

l′

C
sr 0κ μ

l′κ ′ν√
MκMκ ′

d0κ
l′κ ′,γ , (15a)

D̃sr κ μ

2,κ ′ν,γ λ = −
∑

l′

C
sr 0κ μ

l′κ ′ν√
MκMκ ′

d0κ
l′κ ′,γ d0κ

l′κ ′,λ . (15b)

The derivatives of the dipole-dipole part require a careful
treatment. Starting from a phase-changed version of Eq. (5a),
we consider for the further treatment an expression of the form
[96,99]

C̄dd κ μ

κ ′ν (q) = 4π

�0

qμqν

ε∞(q)

(
e−ε∞(q)/4�2 − 1

)
+ 4π

�0

∑
|G| �= 0

K = q + G

KμKνF0(K)eiGT (xκ−xκ′ )

−
∑

l′,D �=0

�3Hμν(��,�D)
eiqT d0 κ

l′κ′
√

det ε∞

− 4

3
√

π

�3

√
det ε∞ δκκ ′ (ε∞)−1

μν , (16)

which possesses a unique limiting value at vanishing wave
vector. The Born effective charges must be included in the
first- and second-order derivatives of the dipole-dipole part:

D̃dd κ μ

1,κ ′ν,γ =
∑
μ′ν ′

Z∗
κ,μ′μZ∗

κ ′,ν ′ν

× lim
q→0

C̄dd κ μ′
1,κ ′ν ′,γ (q)/(MκMκ ′)1/2, (17a)

D̃dd κ μ

2,κ ′ν,γ λ =
∑
μ′ν ′

Z∗
κ,μ′μZ∗

κ ′,ν ′ν

× lim
q→0

C̄dd κ μ′
2,κ ′ν ′,γ λ (q)/(MκMκ ′)1/2, (17b)

with C̄dd κ μ

1,κ ′ν,γ (q) = −i ∂
∂qγ

C̄dd κ μ

κ ′ν (q), C̄dd κ μ

2,κ ′ν,γ λ (q) =
∂2

∂qλ∂qγ
C̄dd κ μ

κ ′ν (q). Mind that the factor −i in the first derivative
has been included because a factor +i was introduced in the
term linear in λ of Eq. (12a). Upon carefully performing the

075202-4



PHONON PROPERTIES OF COPPER OXIDE PHASES FROM . . . PHYSICAL REVIEW B 96, 075202 (2017)

limits the result is

C̄dd κ μ

1,κ ′ν,γ = −4πi

�0

∑
|G|�=0

eiGT (xκ−xκ′ )[(δμγ Gν + Gμδνγ )F0(G) + GμGν(ε∞G)γ F1(G)] −
∑

l′,D �=0

�3

√
det ε∞ Hμν(��,�D)d0κ

l′κ ′,γ ,

(18a)

C̄dd κ μ

2,κ ′ν,γ λ = −4π

�0
(4�2)−1(δμγ δνλ + δμλδνγ ) + 4π

�0

∑
|G|�=0

eiGT (xκ−xκ′ )[(δμγ δνλ + δμλδνγ )F0(G)

+ (δμλGν + Gμδνλ)(ε∞G)γ F1(G) + (δμγ Gν + Gμδνγ )(ε∞G)λF1(G)

+GμGνε
∞

γ λF1(G) + GμGν(ε∞G)γ (ε∞G)λF2(G)] +
∑

l′,D �=0

�3

√
det ε∞ Hμν(��,�D)d0κ

l′κ ′,γ d0κ
l′κ ′,λ , (18b)

wherein

F1(K) = −2F0(K)

4�2
− 2F0(K)

ε∞(K)
, (19a)

F2(K) = −2F1(K)

4�2
− 2F1(K)

ε∞(K)
+ 4F0(K)

(ε∞(K))2 . (19b)

We now return to the expansions in Eqs. (12) and equate
terms of like power in λ up to order λ2 to arrive at the following
set of equations:

∑
κ ′ν

D̃ κ μ

0,κ ′ν b κ ′ν
0,m = −

∑
κ ′ν

D̃na κ μ

0,κ ′ν b κ ′ν
0,m , (20a)

i
∑
κ ′ν

D̃ κ μ

0,κ ′ν b κ ′ν
1,m = −i

∑
κ ′ν

D̃na κ μ

κ ′ν b κ ′ν
1,m − i

∑
κ ′ν

D̃ κ μ

1,κ ′ν b κ ′ν
0,m ,

(20b)

1

2

∑
κ ′ν

D̃ κ μ

0,κ ′ν b κ ′ν
2,m = (ω1,mq̂)2b

κμ

0,m − 1

2

∑
κ ′ν

D̃na κ μ

κ ′ν b κ ′ν
2,m

+
∑
κ ′ν

D̃ κ μ

1,κ ′ν b κ ′ν
1,m − 1

2

∑
κ ′ν

D̃ κ μ

2,κ ′ν b κ ′ν
0,m .

(20c)

Noting that the displacements of the acoustic modes are just
a rigid displacement of all atoms, b κμ

0,m = √
Mκu

μ

0,m, and using
the charge neutrality condition

∑
κ Z∗

κ,μν = 0, the solution of
the first equation (20a) is trivial. We solve Eq. (20b) for the
first-order derivatives in the eigenvectors:

b
κμ

1,m = −
∑
κ ′ν

∑
κ1κ1′
μ1μ1′

[(1⊥ + G ⊥ naD̃⊥)−1]κ μ
κ1 μ1

× G ⊥κ1 μ1
κ1′μ1′ D̃

κ1′μ1′
1,κ ′ ν

√
Mκ ′u ν

0,m, (21)

where we defined the Green’s function of the subspace of
optical modes V ⊥,

G ⊥κ μ

κ ′ν =
∑

m∈V ⊥
b

κμ

0,m

[
b κ ′ν

0,m

]∗/
(ωmq=0)2, (22)

and the subspace-projected nonanalytical part:

D̃na ⊥κ μ

κ ′ν =
∑

mm′∈V ⊥
b

κμ

0,m

[
b κ ′ν

0,m′
]∗

×
∑
κ1κ1′
μ1μ1′

[
b

κ1μ1
0,m

]∗
D̃na κ1 μ1

κ1′ μ1′ b
κ1′μ1′

0,m′ . (23)

In the context of Eqs. (22) and (23) (ωmq=0)2 and b
κμ

0,m shall
denote the eigenvalues and eigenvectors of the dynamical
matrix in Eq. (13a), respectively. Inserting Eq. (21) into
Eq. (20c) we may solve for the first-order derivative of the
phonon mode frequencies by following the arguments for the
solvability of Eq. (20c) discussed in Chap. 2 of Ref. [96] with
the result that ∑

ν

[χμν − δμν(ω1,mq̂)2]u ν
0,m = 0, (24)

with (M0 = ∑
κ Mκ ) χμν = M−1

0

∑
κκ ′

√
MκMκ ′χ

κ μ

κ ′ν , and

χ
κ μ

κ ′ν = 1

2
D̃ κ μ

2,κ ′ν +
∑
κ1κ1′
μ1μ1′

D̃ κ μ

1,κ1μ1

× [(1⊥ + G ⊥ naD̃⊥)−1G ⊥]κ1 μ1
κ1′ μ1′ D̃

κ1′μ1′
1,κ ′ ν . (25)

D. Thermodynamics

Within the harmonic approximation the thermodynamic
functions can be computed from simple summations over
functions of the phonon eigenfrequencies. In this article we
compare the vibrational entropy Sph, and the lattice specific
heat at constant volume C

ph
v , to experimental data from the

literature. The expressions for the afore-mentioned quantities
at temperature T are (h̄ → 1, kB: Boltzmann constant) [96]:

Sph(T ) = kB

Nq

∑
q,m

{
ωmq

2kBT
coth

(
ωmq

2kBT

)

− ln

[
2 sinh

(
ωmq

2kBT

)]}
, (26)

Cph
v (T ) = kB

Nq

∑
q,m

( ωmq

2kBT

)2

sinh2
( ωmq

2kBT

) . (27)
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TABLE I. Structural parameters for Cu2O (GGA), and Cu4O3 (GGA + U [123]) compared to experimental and calculated values from the
literature (Ref. [26]: HSE06, Ref. [85]: LDA + U ). �0 refers to the unit cell volume.

Literature

Phase Parameter Present work Theory Experiment

Cu2O a (Å) 4.303 4.2675 [26] 4.2696 [10]
Cu–O (Å) 1.86 1.85 [26] 1.85 [10]
�0 (Å3) 79.7 77.72 [26] 77.83 [10]

Cu4O3 a (Å) 5.873 5.8392 [26], 5.595 [85] 5.837 [124]
c (Å) 9.990 9.8966 [26], 9.650 [85] 9.932 [124]
z 0.1146 0.1142 [26], 0.115 [85] 0.1173 [124]
Cu+–O(1) (Å) 1.86 1.85 [26] 1.87 [124]
Cu2+–O(2) (Å) 1.93 1.91 [26] 1.92 [124]
Cu2+–O(1) (Å) 2.00 1.98 [26] 1.97 [124]
�0 (Å3) 344.6 337.44 [26], 302.08 [85] 338.39 [124]

Within Debye theory the constant-volume heat capacity per
unit cell is [96]

C
ph
v,D(T ) = 9nkB

(
T

�D

)3 ∫ �D
T

0
dξ

ξ 4eξ

(eξ − 1)2
. (28)

Here �D denotes the Debye characteristic temperature, and n

is the number of atoms in the unit cell. The Debye temperature
as a function of T is derived by minimizing the residual of
calculated (measured) specific heat and Eq. (28) with respect
to �D, min�D |Cph

v (T ) − C
ph
v,D(T )|2.

E. Computational details

For all our calculations we use the VASP [100–103]
code and the therein implemented projector augmented-wave
method (PAW) [120,121]. The copper PAW potentials treat
the Cu 3p6, 3d10, and 4s1 electrons as valence electrons while
for the O PAW potential the O 2s2 and 2p4 electrons are
chosen as valence states. For Cu2O and Cu4O3 we use the
GGA parametrization for the exchange correlation functional.
For the latter case of Cu4O3 we additionally apply rotationally
invariant Hubbard U corrections as suggested by Liechtenstein
et al. [122]. For monoclinic CuO the LDA + U method is used.
Any calculation involving Hubbard U corrections is conducted
with the ab initio values of U = 7.5 eV and J = 0.98 eV that
have been determined for a copper oxide system [123].

Literature data for the lattice parameters of CuO based on
LDA + U [26,85] calculations show deviations of about 2% to
4% from experiment. We therefore use the experimental lattice
parameters a = 4.6837 Å, b = 3.4226 Å, c = 5.1288 Å, and
β = 99.54◦ measured by Åsbrink and Norrby [31]. From these
the magnetic unit cell for temperatures below T

(2)
N with eight

formula units (16 atoms) is constructed [32].
We relax structural parameters only for cubic Cu2O and

tetragonal Cu4O3. Calculated values are listed in Table I
together with calculated and measured data from the literature.
For the structural relaxation a cut-off energy of 1200 eV and an
energy tolerance of 10−8 eV for the self-consistency are used.
In case of Cu2O 12 k points in each direction are selected for
the BZ integration while for Cu4O3 83 k points are chosen.
The GGA(+U ) approach reproduces experimental values for
structural parameters [10,124] very well for these phases, and

also gives values in good agreement with recent theoretical
investigations [26] based on hybrid-DFT (HSE06) methods.

In the case of Cu2O supercells have been chosen as to give
full dynamical matrices on a 5 × 5 × 5 grid of commensurable
wave vectors with a displacement length of 0.01 Å and a
k-point density of 0.2 Å−1 for the force calculations [125]. For
Cu4O3 we calculate FCs from supercells giving full dynamical
matrices on a 4 × 4 × 4 grid with a displacement length of
0.03 Å and one k point for the force calculations. For CuO we
calculate FCs from supercells giving full dynamical matrices
on a 3 × 6 × 3 grid with a displacement length of 0.05 Å and
one k point for the force calculations. Only displacements
independent by symmetry are considered for each chemical
species. Before constructing the supercells atomic positions
are relaxed at an energy cutoff of 800 eV (also used for the
supercell calculations of all phases) in structures with internal
degrees of freedom (CuO and Cu4O3), until the residual forces
are smaller than 10−5 eV/Å. The number of k points are chosen
in accordance with the supercell sizes.

Born effective charge and the static dielectric permittivity
tensors, as needed for the dipole-dipole part of the dynamical
matrix, are computed from DFPT as implemented in VASP.
The energy cutoff and energy tolerance are the same as for the
supercell calculations. For the BZ integration we choose 163

k points for Cu2O, 103 k points for Cu4O3, and 8 × 16 × 8 k
points in the case of CuO.

III. RESULTS AND DISCUSSION

A. Phonon band structure and density of states

Figure 1 overviews the phonon density of states (PDOS)
and phonon band structure for all three copper oxide phases.
Dipole-dipole corrections have been invoked in all cases. The
particular influence of the latter on the phonon dispersion will
be discussed in more detail below.

The PDOS for cubic Cu2O, tetragonal Cu4O3, and mon-
oclinic CuO display quite distinct features. The PDOS of
Cu2O [lower panel of Fig. 1(a)] is dominated by the large gap
between the copper and the oxygen states. Contrary to CuO,
the low-lying (below ∼120 cm−1) Cu-related modes in Cu2O
and Cu4O3 produce sharp features in the density of states.
Monoclinic CuO [lower panel of Fig. 1(c)], however, shows a
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FIG. 1. Phonon band structures (upper panel) and phonon density of states (lower panel) for (a) Cu2O, (b) Cu4O3, and (c) CuO. Experimental
data for Cu2O (red-bounded stars) is extracted from figures in Ref. [66], and—apart from the latter reference—covers Refs. [60,126]. For
simplicity, different references are not distinguished through use of different colors or symbols in the plot.

smoothly increasing PDOS below 100 cm−1 resulting from the
steep dispersion of the acoustic modes before also displaying
a (moderately) peaked structure at higher frequencies than the
other two phases. As also discussed in Ref. [42], the difference
in magnitude of the FCs for Cu(I) and Cu(II) atoms in the
paramelaconite phase becomes very obvious from the different
frequency regions the magnetic [Cu(II)] and nonmagnetic
[Cu(I)] copper atoms contribute to in the PDOS.

In Fig. 1(a), for Cu2O, we have included experimental
phonon frequencies from the literature [60,66,126]. Agree-
ment between calculated and measured values is excellent,
particularly for the low-lying copper-driven modes. The
high-frequency, oxygen-related modes, on the contrary, are
placed systematically too low (∼10 to 20 cm−1) compared to
experiment—a fact previously observed for GGA calculations
[66,95].

In the following we shall discuss the influence of dipole-
dipole corrections on the band structure of the three copper
oxide phases. For the sake of simplicity, bands subject to
changes due to employment of these corrections are labeled
according to the symmetry representation of the purely
transverse mode at the � point. This means that, for some
particular band on some path directed towards q = 0, we will
always refer to the �-point symmetry which, in general, will
not coincide with the symmetry of this direction. Bands that
are influenced by the dipole-dipole corrections establish the
infrared-active modes at the BZ center.

Figure 2 displays phonon frequencies with and without
dipole-dipole corrections for all copper oxide phases along
selected directions in reciprocal space. Frequencies without
dipole-dipole corrections are related to the eigenvalues of
full dynamical matrices from the Fourier transform in Eq. (2)
calculated with full FCs C

0κ μ

l′κ ′ν , instead of using Eq. (3).
For cubic Cu2O there are two infrared-active T1u modes.

However, we only consider the high-frequency T
(2)

1u mode
along the � → X direction. The splitting is 22 cm−1 for
the T

(2)
1u mode at 611 cm−1 opposed to 1.4 cm−1 for the

T
(1)

1u at 146.1 cm−1 [not shown in Fig. 2(a)]. This is in
reasonable agreement with calculated and measured values
[64,66]. Owing to cubic symmetry the limiting value for q → 0
of the LO mode is the same for all directions.

The representations of the infrared-active modes for tetrag-
onal Cu4O3 at the � point are (D4h point group) 5A2u ⊕ 8Eu

while for monoclinic CuO they read (C2h point group)
5Au ⊕ 4Bu. For these phases, due to noncubic symmetry,
the frequencies of the modes depend on the direction for
which the wave vector approaches zero. Figures 2(b) and
2(c) show magnified band structures along the � → Z and
the � → Y directions for Cu4O3 and CuO, respectively. In
the case of Cu4O3 the A

(4)
2u mode is of strong longitudinal

character resulting in a deviation of ∼50 cm−1 from the purely
transversal mode. For CuO the two longitudinal Bu modes
strongly couple to the direction leading to splittings between
TO and LO mode of ∼20 cm−1 (B(3)

u ) and ∼70 cm−1 (B(4)
u ).
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FIG. 2. Phonon band structure along selected directions in recip-
rocal space for (a) Cu2O, (b) Cu4O3, and (c) CuO. Dispersions are
shown without (red; left to �) and with dipole-dipole corrections (dark
blue; right to �). Shaded areas mark the frequency range bounded by
the LO and TO components of the respective mode at the � point (see
indication of the irreducible representation on the right). Note that
only modes subject to clearly visible changes due to the dipole-dipole
corrections have been indicated.

From these figures it is clear that neglecting dipole-dipole
corrections will lead to grossly erroneous evolution of some
bands in the region around q = 0.

We close this section with some final remarks on the role of
dipole-dipole corrections in band structures of polar insulators.
We have seen from Fig. 2 that, as the wave vector approaches
the BZ center, the LO branch of the mode subject to splitting
of LO and TO components is deficiently described through
full dynamical matrices computed from the full FCs (C0κ μ

l′κ ′ν ).
If the interaction range of these FCs is sufficiently large,
the summation in Eq. (2) contains enough terms as to be
convergent. In this case, the LO branch, apart from the very
vicinity of q = 0, would be congruent with the one calculated
including dipole-dipole corrections. In order to exemplify
this, consider Fig. 3 where we show the dispersion relation
of Cu2O along the � → X direction together with phonon
frequencies at qc vectors commensurable with a 13 × 1 × 1
supercell. At these wave vectors the full dynamical matrices
are exact (and hence are the frequencies) since, through the
imposed periodic boundary conditions, interactions in Eq. (2)
are summed to infinity. Note that attaining these frequencies
requires no corrections to be applied to the respective full
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FIG. 3. Phonon band structure of Cu2O (blue solid line) along
the � → X direction together with phonon frequencies at qc vectors
commensurable with a 13 × 1 × 1 supercell (red-bounded stars).
Note that, among the frequencies at the commensurable wave vectors,
the topmost frequency at the � point (∼630 cm−1) is not missing but
coincides with the frequency directly below (∼610 cm−1). The reason
is that the highest-frequency q = 0 phonon mode is accompanied
by a macroscopic electric field which is incompliant with periodic
boundary conditions imposed in DFT calculations.

dynamical matrices. The fact that the interpolated frequencies
calculated with dipole-dipole corrections enforced for the full
dynamical matrices perfectly match the exact frequencies, may
be taken as an a posteriori confirmation that the method due
to Gonze and Lee [92] works in combination with the direct
method.

B. Thermodynamic functions

Figure 4 shows our results for the constant-volume lattice
specific heat [Eq. (27)] and the vibrational contribution to the
entropy [Eq. (26)]. To the best of our knowledge, experimental
data so far is only available for Cu2O [127] and CuO [70,131].

Experimental values for the constant-pressure heat capacity
(Cp) of Cu2O have been corrected in order to obtain the
heat capacity at constant volume (Cv) from the relation
Cp − Cv = V T α2/βT (V : sample volume; α: coefficient of
thermal expansion; βT : isothermal compressibility) using
the data of Refs. [128–130]. We find good agreement with
experiment. The small overestimate of C

ph
v and Sph for most

temperatures might be due to the slightly overestimated lattice
constant through the GGA exchange-correlation functional.

Experimentally, the heat capacity of monoclinic CuO has
been studied extensively and also the magnetic contributions
have been assessed [70,131–135]. Since our crystal structure
in combination with the magnetic ordering is only valid in
the low-temperature region, we shall limit our comparison
to temperatures below the antiferromagnetic commensurate
to incommensurate transition at T

(2)
N = 213 K [32]. Figure 4

shows our calculated results for the lattice heat capacity and
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FIG. 4. Constant-volume lattice specific heat (a)–(c) and lattice contribution to entropy (d)–(f) for all three copper oxide phases.
Experimental values in (a) for the constant-pressure heat capacity (Cp), and in (d) for the entropy of Cu2O have been taken from Hu
and Johnston [127] (blue stars). Constant-volume heat capacities (Cv) are derived from the relation Cp − Cv = V T α2/βT (V : sample volume;
α: coefficient of thermal expansion; βT : isothermal compressibility) using the data of Refs. [128–130]. In (c) and (f), in order to get Cv ,
experimental Cp vs T data for CuO from Refs. [70,131] have been modified following the procedure of Loram et al. [132]. The boundaries of
the gray-shaded regions in (c) and (f) mark the antiferromagnetic phase transitions characterized by temperatures T

(1,2)
N .

entropy compared to experimental data from Hu and Johnston
[131] and Junod et al. [70]. In order to extract the heat capacity
at constant volume from the Cp vs T data, a scheme proposed
in Ref. [132] has been applied. Agreement between calculated
and measured values for the specific heat is excellent up to
the anomaly in the experimental curve that coincides with the
first antiferromagnetic phase transition [70,131,132,134,135].
For the entropy the agreement prevails up to even higher
temperatures.

From the lattice heat capacities at constant volume we
extract the Debye characteristic temperatures �D for different
temperatures T as previously described in Sec. II D. The results
for all three phases are depicted in Fig. 5. For Cu2O measured
values for the heat capacities (see also Fig. 4) have been used to
extract the experimental Debye temperatures vs temperature.
Agreement with experimental data again is good for both
aforementioned phases.

C. Velocities of sound

Acoustic phonon group velocities are related to the
first-order derivative of the phonon dispersion through
vsound

mq̂ = ω1,mq̂ = ∑
γ ∂ωmq/∂qγ |q=0q̂γ . For a chosen direc-

tion q̂ the latter quantity is accessible by solving the 3 × 3
eigenvalue problem Eq. (24). By m we label the mode
polarization as (mainly) transversal (t) or longitudinal (l). This
is quantified by projecting the (normalized) center-of-mass
displacement per unit cell ū

μ
mq = M−1

0

∑
κ Mκu

κμ
mq on the

direction q̂:
∑

μ q̂μ ˆ̄uμ
mq. Therein ˆ̄uμ

mq = ū
μ
mq/|ūmq|, where the

eigenvectors w
κμ
mq and the displacement vectors u

κμ
mq are related

by u
κμ
mq = w

κμ
mq/

√
Mκ .

In Table II we collect the velocities of sound for all copper
oxide phases, as well as experimental data from the literature
[71,128,136]. Values have been calculated with and without
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FIG. 5. Debye temperature �D versus temperature T extracted
from calculated (measured) heat capacities for (a) Cu2O, (b) Cu4O3,
and (c) CuO. Calculated results are shown as solid black lines where
Eq. (28) has been used. Experimental values in (a) for Cu2O are
taken from Ref. [127] (blue stars). In (c) for CuO experimental data
from Loram et al. [132] (light-gray circles), and Gmelin et al. [134]
(dark-gray triangles) is shown.
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TABLE II. Velocities of sound vsound
m,q̂ along direction q̂ of phonon modes with mainly longitudinal (l) or transversal (t) polarization (m).

Velocities are listed with [Eq. (24)] and without dipole-dipole corrections. For reference, values for the derivative of the phonon dispersion
from finite differences (step width 	q = 10−4 bohr−1) are given in braces. Where available, experimental data are shown for comparison. For
monoclinic CuO the directions are labeled as in Ref. [71]. For Cu4O3 the directions refer to a body-centered tetragonal lattice [137], not to the
conventional choice of the unit cell. The estimated accuracy for the velocities is ∼10−2 km s−1. More digits, however, are given to capture the
differences between values from numerical differentiation and values from the perturbationlike treatment.

vsound
m,q̂ (km s−1)

Dipole-dipole corrections (this work):

Phase q̂ m with without Experiment

Cu2O [100] l 4.571 (4.571) 4.687 (4.687) 4.48a, 4.49b

t 1.150 (1.150), 1.150 (1.150) 1.150 (1.150), 1.150 (1.150) 1.41a, 1.42b

[110] l 4.554 (4.554) 4.527 (4.527) 4.55a, 4.55b

t 1.150 (1.150), 1.216 (1.216) 1.150 (1.150), 1.671 (1.671) 1.14a,1.14b, 1.41b

[111] l 4.549 (4.549) 4.473 (4.473) –
t 1.194 (1.194), 1.194 (1.194) 1.517 (1.517), 1.517 (1.517) –

CuO [100] l 5.979 (5.979) 5.647 (5.647) 6.4c

t 2.427 (2.428), 3.834 (3.834) 1.549 (1.551), 3.900 (3.900) –
[010] l 3.941 (3.942) 4.518 (4.519) 4.1c

t 1.760 (1.761), 3.863 (3.863) 1.759 (1.760), 3.859 (3.860) –
[001] l 7.070 (7.071) 7.360 (7.360) 7.8c

t 1.971 (1.972), 2.366 (2.367) 2.082 (2.083), 3.199 (3.199) –
[101] l 4.830 (4.831) 4.830 (4.831) 5.4c

t 2.748 (2.749), 3.685 (3.685) 2.873 (2.874), 3.685 (3.685) –
[101̄] l 7.012 (7.012) 7.012 (7.012) 9.1c

t 3.590 (3.591), 3.777 (3.778) 3.614 (3.615), 3.777 (3.778) –
[111̄] l 6.205 (6.205) 6.182 (6.182) 6.8c

t 1.605 (1.606), 3.466 (3.466) 2.338 (2.339), 3.481 (3.482) –
Cu4O3 [010] l 5.328 (5.328) 5.372 (5.372) –

t 1.225 (1.226), 2.794 (2.794) 1.254 (1.255), 2.891 (2.891) –
[111̄] l 6.420 (6.420) 6.538 (6.538) –

t 1.575 (1.576), 1.575 (1.576) 1.988 (1.989), 1.988 (1.989) –
[001] l 4.538 (4.538) 4.531 (4.531) –

t 1.540 (1.541), 3.435 (3.435) 1.377 (1.378), 3.503 (3.503) –
[111] l 4.637 (4.638) 4.620 (4.620) –

t 2.125 (2.126), 3.229 (3.229) 2.159 (2.159), 3.323 (3.323) –

aReference [136].
bReference [128].
cReference [71].

dipole-dipole corrections. The derivatives have been obtained
with the perturbative treatment [Eq. (24)] and by numerical dif-
ferentiation (finite differences) of the phonon dispersion. The
nice agreement between results obtained from both methods
validates the technically quite involved perturbative approach.

Indeed, if velocities of sound are required for a few
directions only, they can also be calculated from finite
differences of the acoustic branches instead of using the
perturbative treatment yielding Eq. (24). Of course, both
methods can be expected to deliver comparable results.
However, if for example lattice thermal conductivities are
desired (see, e.g., Togo et al. [114]), phonon group velocities
must be summed over the entire BZ. This clearly requires an
automatization of the process of calculating the derivatives of
the phonon dispersion and therefore a perturbative approach,
which does not rely on additional numerical parameters, i.e., a
numerical step width for the differentiation. Our method can be
generalized to finite q vectors and therefore has a much wider
range of applicability than a finite difference calculation.

Agreement with experiment is reasonably good for Cu2O
and CuO, only for the [001], [101], and the [101̄] direction in
case of CuO the computed longitudinal velocity of sound is
vastly too small. We have, however, to bear in mind that the
results in Ref. [71] have been determined at room temperature
(296 K), whereas we have considered the AFM ground state
[32].

While for many directions values for the velocities of
sound obtained with/without dipole-dipole corrections are
close, the dipole-dipole corrections can have non-negligible
influence (see, e.g., the smallest transversal velocities along the
[100],[111̄] directions for CuO, and along the [111̄] direction
for Cu4O3) for certain directions. Differences between the
averaged velocities of sound (vsound

av = 1
3

∑3
m=1

1
4π

∫
dq̂vsound

mq̂ )
calculated without/with dipole-dipole corrections are ∼5% for
Cu2O, ∼2% for Cu4O3, and ∼3% for CuO.

Dipole-dipole corrections can alter the slope of the acoustic
branches for small values of |q| because such long-wavelength
vibrations couple atoms at large distances |d0κ

l′κ ′ |, thereby
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depending on long-ranged FCs. Since the method of Gonze
and Lee [92] is meant to correct the long-ranged interactions,
differences in the acoustic branches (at least for certain
directions q̂) appear plausible. Indeed, as discussed by Gaál-
Nagy [138], an insufficient description of the long-ranged
interactions can lead to artificial imaginary modes (also for
nonpolar semiconductors), if the grid of wave vectors on which
full dynamical matrices initially are obtained (i.e., the grids
G ,Gc from Secs. II A and II B) is not dense enough around
q = 0. During our investigations, we have found cases in which
Fourier interpolation based on Eq. (2) led to imaginary modes
for acoustic branches. Usage of dipole-dipole corrections [with
Eq. (3)] then erased the imaginary modes leading to a much
more reasonable description.

IV. CONCLUSION

In conclusion, we have discussed vibrational properties
of the three copper oxide phases Cu2O, Cu4O3, and CuO,
where the correct AFM ground state [32] has been considered
for the latter phase. Good agreement with experiment has

been found, particularly for the vibrational heat capacity at
constant volume and the vibrational entropy. Furthermore, we
addressed the problem of including dipole-dipole corrections
from the method due to Gonze and Lee [92] into the full
dynamical matrices from the direct method. The influence on
the phonon dispersion relation has been thoroughly assessed
for all phases. Based on this method, we developed a scheme
that allows the calculation of first-order derivatives of the
phonon mode frequencies with respect to the wave vector
which can be particularly useful for calculating acoustic
phonon sound velocities.
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