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Motivated by an important recent experiment [Deng et al., Science 354, 1557 (2016)], we theoretically
consider the interplay between Andreev and Majorana bound states in disorder-free quantum dot-nanowire
semiconductor systems with proximity-induced superconductivity in the presence of spin-orbit coupling and
Zeeman spin splitting (induced by an external magnetic field). The quantum dot induces Andreev bound states
in the superconducting nanowire, which show complex behavior as a function of magnetic field and chemical
potential, and the specific question is whether two such Andreev bound states can come together forming a robust
zero-energy topological Majorana bound state. We find generically that the Andreev bound states indeed have
a high probability of coalescing together producing near-zero-energy midgap states as Zeeman splitting and/or
chemical potential are increased, but this mostly happens in the nontopological regime below the topological
quantum phase transition, although there are situations where the Andreev bound states could indeed come
together to form a zero-energy topological Majorana bound state. The two scenarios (two Andreev bound states
coming together to form a nontopological almost-zero-energy Andreev bound state or to form a topological
zero-energy Majorana bound state) are difficult to distinguish just by tunneling conductance spectroscopy,
since they produce essentially the same tunneling transport signatures. We find that the “sticking together”
propensity of Andreev bound states to produce an apparent stable zero-energy midgap state is generic in class D
systems in the presence of superconductivity, spin-orbit coupling, and magnetic field, even in the absence of any
disorder. We also find that the conductance associated with the coalesced zero-energy nontopological Andreev
bound state is nonuniversal and could easily be 2e2/h, mimicking the quantized topological Majorana zero-
bias conductance value. We suggest experimental techniques for distinguishing between trivial and topological
zero-bias conductance peaks arising from the coalescence of Andreev bound states.
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I. INTRODUCTION

The great deal of current interest [1–7] in Majorana
zero modes (MZMs) or Majorana fermions focusing on
semiconductor-superconductor hybrid structures [8–11] arises
mainly from the significant experimental progress [12–20]
made in the subject during the past five years. In particular,
proximity-induced superconductivity in spin-orbit-coupled
semiconductor nanowires can become topological with local-
ized MZMs in the wire if the system has a sufficiently large
Zeeman spin splitting overcoming the induced superconduct-
ing gap. Such MZMs, being zero-energy midgap states, should
produce quantized zero-bias conductance peaks (ZBCPs)
associated with perfect Andreev reflection in tunneling mea-
surements [21–24]. Indeed, experimentally, many groups
have observed such zero-bias conductance peaks in tunneling
measurements on nanowire-superconductor hybrid structures
although the predicted precise and robust quantization (with a
conductance value 2e2/h) has been elusive. Many reasons
have been provided to explain the lack of precise ZBCP
quantization [25–27], but alternative scenarios, not connected
with MZMs, for the emergence of the ZBCP have also been
discussed in the literature [28–32]. Whether the experimentally
observed ZBCPs in semiconductor-superconductor hybrid
structures arise from MZMs or not remains a central question
in spite of numerous publications and great experimental
progress in the subject during the 2012–2017 five-year
period.

A key experimental paper by Deng et al. has re-
cently appeared in the context of ZBCPs in semiconductor-
superconductor hybrid systems [20], which forms the entire
motivation for the current theoretical work. In their work,
Deng et al. studied tunneling transport through a hybrid system
composed of a quantum dot-nanowire-superconductor, where
no superconductivity (SC) is induced in the quantum dot (i.e.,
the superconductivity is induced only in the nanowire). In
Fig. 1, we provide a schematic of the experimental system,
where the dot simply introduces a confining potential at one
end of the nanowire, which is covered by the superconductor
to induce the proximity effect. Such a quantum dot may
naturally be expected to arise because of the Fermi energy
mismatch of the lead and the semiconductor much in the
way a Schottky barrier arises in semiconductors. Reducing
the potential barrier at the lead-semiconductor interface to
produce a strong conductance signature likely requires the
creation of a quantum dot as shown in Fig. 1. Thus a quantum
dot might be rather generic in conductance measurements,
i.e., one may not have to introduce a real quantum dot in
the system although such a dot did exist in the set-up of
Ref. [20]. The quantum dot may introduce Andreev bound
states (ABSs) in the nanowire, and the specific issue studied
in depth by Deng et al. is to investigate how these Andreev
bound states behave as one tunes the Zeeman spin splitting
and the chemical potential in the nanowire by applying a
magnetic field and a gate potential, respectively. It is also
possible that the ABSs in the Deng et al. experiment arise
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FIG. 1. A schematic plot of the junction composed of lead
and quantum dot-nanowire-superconductor hybrid structure, which
represents the actual system setup in Deng et al. experiment [20]. A
semiconductor (SM) nanowire is mostly covered by a parent s-wave
superconductor (SC). One fraction of the nanowire is not covered
by the superconductor and is subject to a confinement potential.
This part (encircled by the red dash line) between the lead and
the superconducting nanowire is called quantum dot (QD) in this
paper. Figures 2–9 are results based on this configuration. Later,
we also consider situations where a part or the whole of the dot is
covered by the superconductor making the whole hybrid structure
superconducting. Note that the quantum dot here is strongly coupled
to the nanowire and may not exhibit any Coulomb blockade behavior.

from some other potential fluctuations in the nanowire itself,
which is akin to having quantum dots inside the nanowire
arising from uncontrolled potential fluctuations associated
with impurities or inhomogeneities. (We consider both cases,
the dot being outside or inside the nanowire, in this work.) The
particular experimental discovery made by Deng et al., which
we theoretically examine in depth, is that Andreev bound
states may sometimes come together with increasing Zeeman
splitting (i.e., with increasing magnetic field) to coalesce and
form zero-energy states which then remain zero-energy states
over a large range of the applied magnetic field, producing
impressive ZBCPs with relatively large conductance values
∼0.5e2/h. Deng et al. speculate that the resulting ZBCP
formed by the coalescing ABSs is a direct signature of MZMs,
or in other words, the ABSs are transmuting into MZMs as
they coalesce and stick together at zero energy. It is interesting
and important to note that the sticking together property of
the ABSs at zero energy depends crucially on the gate voltage
in Deng et al. experiment, and for some gate voltage, the
ABSs repel away from each other without coalescing at zero
energy and at still other gate voltages, the ABSs may come
together at some specific magnetic field, but then they separate
out again with increasing magnetic field producing a beating
pattern in the conductance around zero bias. Our goal in the
current work is to provide a detailed description of what
may be transpiring in the Deng et al. experiment within a
minimal model of the dot-nanowire-superconductor structure
elucidating the underlying physics of ABS versus MZM in this
system. In addition, we consider situations where the quantum
dot is, in fact, partially (or completely) inside the nanowire
(i.e., the dot itself is totally or partially superconducting due to
proximity effect), which may be distinct from the situation
in Deng et al. experiment [20] where the quantum dot is
not likely to be proximitized by the superconductor although
any potential inhomogeneity inside the wire would act like a
quantum dot in general for our purpose. Specific details of
how the ABSs arise in the nanowire are not important for our

theory as most of the important new qualitative features we
find are generic as long as ABSs are present in the nanowire.

It may be important here to precisely state what we mean by
a “quantum dot” in the context of our theory and calculations.
The “quantum dot” for us is simply a potential fluctuation
somewhere in or near the wire that produces Andreev bound
states in the system. This “quantum dot,” being strongly
coupled to the nanowire (perhaps even being completely inside
the nanowire or arising from the Schottky barrier at the tunnel
junction), does not have to manifest any Coulomb blockade
as ordinary isolated quantum dots do. In fact, our theory
does not include any Coulomb blockade effects because the
physics of ABS transmuting into MZM or not is independent of
Coulomb blockade physics (although the actual conductance
values may very well depend on the Coulomb energy of the
dot). The situation of interest to us is when the confined states
in the dot extend into the nanowire (or are entirely inside
the nanowire), so that they become Andreev bound states.
In situations like this, perhaps the expression “quantum dot”
is slightly misleading (since there may or may not be any
Coulomb blockade here), but we use this expression anyway
since it is convenient to describe the physics of Andreev bound
states being discussed in our work.

It may be useful to provide a succinct summary of our
main findings already in this introduction before providing
the details of our theory and numerics. We show our most
important findings in Fig. 2 (all obtained by assuming the
dot leading to ABSs to be entirely outside the nanowire),
where we show our calculated differential conductance in the
dot-nanowire-superconductor system as a function of Zeeman
splitting energy (VZ) and the source-drain voltage (V ) in the
nanowire for a fixed chemical potential in each panel (which,
however, varies from one panel to the next). The four panels
indicate the four distinct generic results which may arise
depending on the values of chemical potential and Zeeman
splitting (with all other parameters, e.g., bulk superconducting
gap, spin-orbit coupling, tunnel barrier, temperature, dissipa-
tive broadening, etc., being fixed throughout the four panels).
We start by reminding that the topological quantum critical
point separating trivial and topological phases in this system
is given by the critical Zeeman splitting VZc =

√
μ2 + �2,

where μ and � are, respectively, the chemical potential and
the proximity-induced superconducting gap in the nanowire
[8–10]—thus, VZ < μ automatically implies a trivial phase
where no MZM can exist. Figure 2(a) shows the well-studied
result of the ZBCP arising from the MZM as the system enters
the topological superconducting phase with the topological
quantum phase transition point being at VZc = 1.5 meV with
the chemical potential being zero, μ = 0. (We note that our
calculations include the self-energy renormalization effect by
the parent superconductor which renormalizes the supercon-
ducting gap, as discussed in Sec. III of the manuscript.) This
result is obtained without any quantum dot (or ABS) being
present, and is the generic well-known theoretical result for the
simple nanowire in the presence of induced superconductivity,
Zeeman splitting, and spin-orbit coupling as predicted in
Refs. [8–11]. We provide this well-known purely nanowire
(with no dot and, consequently, no ABS) result only for the
sake of comparison with the other three panels of Fig. 2
where ABS physics is present because of the presence of the
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FIG. 2. Differential conductance through four nanowire systems with the same dissipation � = 0.01 meV, temperature T = 0.02 meV and
tunnel barrier of height 10 meV and width 20 nm. (a) A simple nanowire without quantum dot at chemical potential μ = 0 meV. A ZBCP
from MZM forms after TQPT at VZ = 1.5 meV, since the SC pairing at low bias is renormalized to 1.5 meV due to the self-energy term.
(b) A hybrid structure with μ = 4.5 meV. Two ABSs come together at VZ ∼ 1.5 meV and remain stuck at zero energy up to VZ = 2.5 meV (and
beyond), although the system is nontopological (VZ < μ). (c) A hybrid structure with μ = 3.8 meV. Two ABSs come together at VZ ∼ 1.5 meV
then split at a somewhat higher Zeeman field, but coming together again at VZ ∼ 3 meV. Again, this is all in the nontopological regime, since
VZ < μ. (d) A hybrid structure with μ = 2.0 meV. Two ABSs first stick together at VZ ∼ 1.8 meV, which is in the trivial regime (i.e., VZ < μ),
but then the ZBCP continues all the way to the topological regime (VZ > 2.5 meV, marked by the yellow vertical line), with the ZBCP value
remaining ∼e2/h throughout. Note that nothing special happens to the ZBCP feature across the yellow line indicating TQPT. Calculations
here include self-energy renormalization by the parent superconductor thus renormalizing the bare induced gap so that VZ = 1.5 meV is the
TQPT point rather than 0.9 meV as it would be without any renormalization. Panels (e)–(h) correspond, respectively, to panels (a)–(d) showing
“waterfall” diagrams of the conductance against bias voltage for various Zeeman splitting—each line corresponds to a 0.1 meV shift in VZ

increasing vertically upward. Similarly, panels (i)–(l) correspond, respectively, to panels (a)–(d), showing the calculated zero-bias conductance
in each case as a function of Zeeman splitting.

quantum dot. In Fig. 2(b), the chemical potential is increased
to μ = 4.5 meV with the nonsuperconducting quantum dot
being present at the end of the nanowire. Here, the two ABSs
come together around VZ = 1.5 meV and remain stuck to zero
energy up to VZ = 2.5 meV (and beyond) although the system
is nontopological throughout the figure (as should be obvious
from the fact that VZ < μ throughout). Thus, ABSs coalescing
and sticking at zero energy for a finite range of magnetic
field is not necessarily connected with MZMs or topological
superconductivity. It should be noted that the ZBCP value in
Fig. 2(b) is close to 2e2/h, but this has nothing to do with
the MZM quantization, and we find that the ZBCP arising
from coalescing ABSs could have any nonuniversal value. In
Fig. 2(c), we change the chemical potential to μ = 3.8 meV,
resulting in the two ABSs coming together at VZ ∼ 1.5 meV,
and then splitting at a somewhat higher magnetic field, but
coming together again at VZ ∼ 3.0 meV with the ZBCP
value varying from e2/h to 1.5e2/h. Again, this is all in the
nontopological regime since VZ < μ throughout the figure.
Finally, in Fig. 2(d) we show the result for μ = 2 meV, where
the two ABSs first stick together at VZ ∼ 1.8 meV, which
is in the trivial regime (i.e., VZ < μ), but then the ZBCP

continues all the way to the topological regime (VZ > 2.5 meV,
marked by the yellow vertical line), with the ZBCP value
remaining >e2/h throughout. Interestingly, although there is
a topological quantum phase transition (TQPT) in Fig. 2(d) at
the yellow line, nothing remarkable happens in the ZBCP—it
behaves essentially the same in the trivial and the topological
regime! We note that the specific value of the ZBCP in each
panel depends on parameters such as temperature and tunnel
barrier, and can be varied quite a bit, but their relative values
are meaningful and show that the ZBCP in the trivial and
the topological regime may have comparable strength, and no
significance can be attached (with respect to the existence or
not of MZMs in the system) based just on the existence of zero-
bias peaks and their conductance values. Thus, stable zero-bias
conductance peak is necessary for MZMs, but the reverse
is untrue—the existence of stable ZBCP does not by itself
imply the existence of MZMs. Note that we are employing the
simplest possible model with no disorder at all, and as such our
findings are completely different from the disorder-induced
class D peak discussed in Refs. [29–31]. This is consistent
with the semiconductor nanowire in Ref. [20] being ballistic
or disorder-free, and hence the ABS-MZM physics being
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discussed in our work has nothing whatsoever to do with
the physics of “class D peaks” discussed in Refs. [29–31],
where disorder plays the key role in producing effectively an
antilocalization zero bias peak.

For the sake of completeness, we also show in Figs. 2(e)–
2(l) as the details of the calculated results with Figs. 2(e)–
2(h) and Figs. 2(i)–2(l) corresponding, respectively, to those
in Figs. 2(a)–2(d). Figures 2(e)–2(h) show the “waterfalls”
cuts of the actual conductance in Figs. 2(a)–2(d) with each
line corresponding to a different magnetic field (increasing
vertically). Figures 2(i)–2(l) show the calculated zero-bias
conductance, corresponding to Figs. 2(a)–2(d), respectively,
as a function of Zeeman splitting. The main message of
Figs. 2(e)–2(l) is the same as in Figs. 2(a)–2(d); i.e., ZBCPs
arising from the zero-sticking of trivial ABSs look very
similar to those arising from topological MZMs. In particular,
Figs. 2(a) and 2(b) as well as Figs. 2(e) and 2(f) and Figs. 2(i)
and 2(j) look qualitatively identical although one set of these
results belongs to topological MZM [Figs. 2(a), 2(e) and
2(i)] and the other set [Figs. 2(b), 2(f) and 2(j)] to trivial
ABS. Similarly, the TQPT in Figs. 2(d), 2(h) and 2(l) does
not manifest itself in any striking way for it to be discerned
without already knowing its existence a priori. We emphasize
that Figs. 2(e) and 2(f) look essentially identical qualitatively
although the ZBCP in Fig. 2(e) arises from the MZM and in
Fig. 2(f) from coalesced ABSs. Similarly, the dependence of
the zero-bias conductance on VZ could be quite similar in these
two cases too [Figs. 2(i) and 2(j)].

We note that the results of Fig. 2 are produced for a
nominal temperature ∼200 mK, which is higher than the fridge
temperature (∼40 mK), where typical experiments are done.
The main reason for this is that finite temperature smoothens
fine structures in the calculated conductance spectra arising
from energy levels in the nanowire, which are typically not
seen experimentally. Having a finite temperature does not
in any way affect the existence or not of the zero mode or
any of our conclusions. We add that the electron temperature
in semiconductor nanowires is typically much larger (>100
mK) than the fridge temperature, and T = 0.02 meV may
not be completely inappropriate even for the realistic system
although our reason for including this finite T is purely
theoretical.

The importance of our results as summarized in Fig. 2
is obvious. In particular, the coalescing of ABSs and their
sticking together near zero energy with a fairly strong ZBCP
is generic (as we will explain in the Sec. III) in the trivial
regime of the magnetic field and chemical potential, and
equally importantly, there is no special feature in the ZBCP
itself for one to discern whether such a coalesced ZBCP is
in the topological or trivial regime just based on tunneling
conductance measurements. The generic occurrence of almost-
zero-energy modes has previously been attributed as a property
of quantum dots in symmetry class D [33] in the presence of
random disorder whereas our theory by contrast is manifestly
in the clean disorder-free limit. In fact, as our Fig. 2(d)
indicates, the ZBCP may very well form in the trivial regime
and continue unchanged into the topological regime with
nothing remarkable happening to it as the magnetic field
sweeps through the topological quantum phase transition!
Experimental tunneling spectroscopy, by itself, might find

it difficult to distinguish MZMs from accidental zero-energy
ABSs just based on the observation of the ZBCP (even when
the ZBCP conductance ∼2e2/h), since experimentally one
simply does not know where the topological quantum phase
transition point is in the realistic nanowires. The good thing is
that our results indicate that it is possible that some of the Deng
et al. ZBCPs [20] may be topological, but it is also possible
that all of them are trivial ZBCPs. We simply do not know
based just on tunneling conductance measurements that have
been performed so far.

We mention that there have been earlier indications that
ABSs (or, in general, low-energy fermionic subgap states) may
manifest ZBCP features indistinguishable from MZM-induced
zero-bias peak behavior [32–37]. In particular, it was shown
by a number of authors that the presence of a smooth varying
potential background in the nanowire could produce multiple
MZMs along the wire (and not just the two pristine MZMs
localized at the wire ends), which could lead in some situations
to trivial ZBCPs in tunneling measurements mimicking MZM-
induced ZBCPs [34–36]. The fact that small quantum dot
systems could have ABS-induced ZBCPs was experimentally
established by Lee et al. [32]. Our work, however, specifically
addresses the quantum dot-nanowire-superconductor system,
showing that the recent observation by Deng et al. of ABSs
coalescing together near zero energy and then remaining
stuck at zero energy for a finite range of magnetic field by
itself cannot be construed as evidence for ABSs combining
to form MZMs–the ZBCP in such situations may very well
arise from accidental coalesced ABSs which happen to beat
or stay near zero energy. Clearly, more work is necessary in
distinguishing ABS-induced trivial zero modes from MZMs
in nanowire-superconductor hybrid structures. There has been
other recent theoretical work [38–41] on trying to understand
the Deng et al. experimental work of Ref. [20] using alternative
approaches assuming that the experimental ZBCPs form in the
topological regime (i.e., lying above the TQPT point in the
magnetic field).

We emphasize that although our initial goal motivating this
work was to understand the experiment of Ref. [20] where
transmutation of ABS into MZM is claimed in disorder-free
ballistic nanowires, we have stumbled upon a generic result of
substantial importance in the current search for topological
Majorana modes in nanowires (and perhaps in other solid
state systems too, where ABSs may arise). This generic
result is that the combined effect of spin-orbit coupling and
spin splitting could lead to subgap Andreev bound states
generically sticking around midgap in a superconductor, and
these nontopological “almost-zero” energy modes are virtually
indistinguishable from topological Majorana zero modes using
tunneling spectroscopy. Our result implies that considerable
caution is now necessary in searching for MZMs in nanowires
since the mere observation of ZBCPs even in clean systems is
insufficient evidence for the existence of MZMs.

The paper is organized as follows: In Sec. II, we give
the minimal theory describing the quantum dot-nanowire-
superconductor hybrid structures. In Sec. III, we introduce
the numerical method and calculate the tunneling differential
conductance in simple and hybrid structure systems. In
Sec. IV, analytical low-energy spectra of hybrid structures
are calculated to provide insightful information about the
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corresponding zero-bias conductance behavior. In Sec. V,
we consider the effect of strongly changing dot confinement
on the zero-bias behavior of the ABS, contrasting it with
that of MZM, providing one possible experimental avenue
for distinguishing between trivial and topological ZBCPs. In
Sec. VI, we calculate the differential conductance for hybrid
structures where the quantum dot has partial or complete
induced superconductivity (i.e., it is a strongly coupled part of
the nanowire itself). In Sec. VII, we discuss how our quantum
dot-induced ABS results connect with the corresponding
results in the case of smooth confinement at the wire ends
and can be understood using the reflection matrix theory.
Section VIII concludes our work with a summary and open
questions. A number of appendices provide complementary
detailed technical results not covered in the main text of the
paper.

II. MINIMAL THEORY

We calculate the differential tunnel conductance G =
dI/dV through a junction of a normal lead and the quantum
dot-nanowire-superconductor hybrid structure, as shown in the
schematic Fig. 1. We use the following Bogoliubov-de Gennes
(BdG) Hamiltonian as the noninteracting low-energy effective
theory for the nanowire [8–10]:

Ĥ = 1

2

∫
dx�̂†(x)HNW�̂(x),

HNW =
(
− h̄2

2m∗ ∂2
x − iαR∂xσy −μ

)
τz + VZσx + �0τx, (1)

where �̂ = (ψ̂↑,ψ̂↓,ψ̂
†
↓, − ψ̂

†
↑)

T
and σμ(τμ) are Pauli matrices

in spin (particle-hole) space, m∗ is the effective mass, αR

spin-orbit coupling, VZ the Zeeman spin splitting energy, and
�0 the induced superconducting gap. In some discussions
and calculated results we also replace the superconducting
pairing term by a more complex self-energy term to mimic
renormalization effects by the parent superconductor [42],
which will be elaborated later. The normal lead by definition
does not have induced SC, thus the lead Hamiltonian is

Hlead =
(

− h̄2

2m∗ ∂2
x − iαR∂xσy − μ + Elead

)
τz + VZσx,

(2)

where an additional onsite energy Elead is added representing
a gate voltage. The quantum dot Hamiltonian is

HQD =
[
− h̄2

2m∗ ∂2
x − iαR∂xσy + V (x) − μ

]
τz + VZσx, (3)

where V (x) = VD cos( 3πx
2l

) is the confinement potential. (We
have ensured that other models for confinement potential
defining the dot do not modify our results qualitatively.) The
quantum dot size l is only a fraction of the total nanowire
length L. The quantum dot is non-SC at this stage, although
later (in Secs. III D and VI) we consider situations where the
dot could have partial or complete induced superconductivity
similar to the nanowire. Whether the quantum dot exists
or not, there is always a barrier potential between the lead
and the hybrid nanowire system. Multi-sub-band effects are

introduced by constructing a second nanowire with different
chemical potential. An infinitesimal amount of dissipation i�

is also added into the nanowire Hamiltonian Eq. (1) for the
sake of smoothening the conductance profile without affecting
any other aspects of the results [26,27]. We emphasize that
there is no disorder in our model distinguishing it qualitatively
from earlier work [29–31], where class D zero bias peaks in
this context arise from disorder effects. Given this quantum
dot-nanowire model, our goal is to calculate the low-lying
energy spectrum and the differential conductance of the system
varying the chemical potential and the Zeeman splitting
to see how any dot-induced ABSs behave. The specific
goal is to see if we can qualitatively reproduce the key
features of the Deng et al. experiment in a generic manner
without fine-tuning parameters. Our goal is not to demand
a quantitative agreement with the experimental data since
too many experimental parameters are unknown (confinement
potential, chemical potential, tunnel barrier, superconductor-
semiconductor coupling, spin-orbit coupling, effective mass,
Lande g-factor, etc.), but we do want to see whether ABSs
coalesce generically and whether such coalescence around
zero energy automatically implies a transmutation of ABSs
into MZMs.

III. NUMERICAL RESULTS FOR TUNNEL
CONDUCTANCE

The goal of our current work is to understand the interplay
between Andreev and Majorana bound states in quantum
dot-nanowire-superconductor hybrid structures, and to answer
the specific question whether two Andreev bound states
can coalesce forming a zero-energy bound state leading to
a stable ZBCP in the tunnel conductance (as observed in
Ref. [20]). This motivates all the calculations in this section.
In Sec. III A, we calculate the differential conductance of a set
of nanowires without any quantum dot for the sake of making
comparison with the situation where ABS physics is dominant
due to the presence of the quantum dot. (We emphasize, as
mentioned already in Sec. I, that our “quantum dot” is simply
a prescription for introducing ABS into the physics of the
hybrid structure and is not connected with Coulomb blockade
or any other physics one associates with isolated quantum
dots.) In Sec. III B, the differential conductance of quantum
dot-nanowire-superconductor hybrid structures is calculated
as a function of Zeeman field or chemical potential for various
parameter regimes. Near-zero-bias peaks similar to the Deng
et al. experimental data are obtained, and the topology and
quantization properties of these peaks are carefully studied. In
Sec. III C, topological visibility [26,27] is calculated for both
Andreev and Majorana-induced ZBCPs as a theoretical tool
discerning the two cases, i.e., to explicitly check whether a
zero-energy state is trivial or topological. Of course, in our
simulations, we explicitly know the location of the TQPT and
can read off the topological or trivial nature of a particular
ZBCP simply by knowing the Zeeman field, the chemical
potential, and the induced gap. The topological visibility
calculation provides an additional check, which simply verifies
that a ZBCP arising below (above) the TQPT is trivial ABS
(topological MZM), as expected.
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For clarification, we first provide definitions of two fre-
quently used terms in the rest of this paper: simple nanowire
and hybrid structure. A simple nanowire, which by definition
does not have any ABS, is defined as a semiconductor nanowire
without quantum dot (i.e., the usual system already extensively
studied in the literature [25–27]). A hybrid structure, the
opposite of a simple nanowire, may have ABS in it, and is
defined as a quantum dot-nanowire-superconductor system.
The hybrid structure qualitatively mimics the Deng et al.
system of Ref. [20] (see Fig. 1). For results presented in
this section the chemical potential and the onsite energy are
uniform throughout the nanowire since the quantum dot is
explicitly outside the nanowire with the dot being non-SC
whereas the nanowire being SC (due to proximity effect). Note
that although the dot is considered outside the nanowire, any
bound state wave function in the dot may extend well inside
the nanowire (thus making it an ABS) depending on system
parameters.

Differential conductance is calculated using the S-matrix
method, which is a universal method in mesoscopic physics.
Numerical implementation of the S-matrix method is carried
out in this section through KWANT [43], which is a Python
package for calculating the S matrix of scattering regions in
tight-binding models. The model defined in Sec. II is partic-
ularly well-suited to the KWANT methodology of calculating
the S matrix. We discretize Eqs. (1)–(3) into a one-dimensional
lattice chain and extract the differential conductance from
the corresponding S matrix [44,45]. Since the calculational
technique is well-established, here we focus on presenting and
discussing our results, referring the reader to the literature for
the details [26,27,43–45]. The new aspect of our work is to
introduce the quantum dot (see Fig. 1) in the problem and
calculate the S matrix exactly for the combined dot-nanowire
system.

For the results presented in this section we choose the
following representative parameter values for the quantum
dot-nanowire system. Effective mass is chosen to be m∗ =
0.015me, along with induced superconducting gap �0 = 0.9
meV (we present some results for a smaller SC gap later),
nanowire length L � 1.3 μm, Zeeman energy VZ [meV]
= 1.2B [T] where B in Tesla is the applied magnetic field and
spin-orbit coupling αR = 0.5 eVÅ [27]. (Note that this induced
bare gap will be renormalized by self-energy corrections.) The
gate voltage in the lead is Elead = −25 meV. The confinement
potential in the quantum dot has a strength VD = 4 meV
and length l = 0.3 μm. (We have varied the dot parameters
to ensure that our qualitative results are generic, i.e., the
qualitative physics discussed in our work does not arise
from some special choice of the dot confinement details.)
The default value of the barrier between lead and nanowire
has height Ebarrier = 10 meV and width lbarrier = 20 nm.
Note that there is nothing special about these numbers and
no attempt is made to get any quantitative agreement with
any experimental data since the applicable parameters (even
quantities as basic as the effective mass and the g-factor) for
the realistic experimental systems are unknown. Our goal here
is a thorough qualitative understanding and not quantitative
numerical agreement with experimental data. We also leave
out disorder and/or soft gap effects since these are not central
to our study of ABS versus MZM physics in hybrid systems.

Introducing these effects is straightforward, but the results
become much less transparent.

A. Simple nanowire

We first focus on simple nanowires without any quantum
dots. There are no ABSs in this case by construction, and
any ZBCP can only arise from MZMs in our model. The
corresponding conductance has been well studied [25–27].
However, we still present our numerical simulations for such
simple nanowire systems for two reasons. First, we will
compare Andreev and Majorana induced conductances later in
this paper, and therefore it is important to have the pure MZM
results in simple nanowires (i.e., without any ABS) for our
specific parameter values. Second, the proximity effect (with
or without self-energy effects) discussed in the simple model
is generic and is applicable to the situation with quantum dot.
The conductance of three simple nanowire systems is shown
in Fig. 3. All of them use a one-band model with chemical
potential μ = 0 meV. The difference lies in the way of
introducing the proximity SC effect. In the first case [Fig. 3(a)],
a phenomenological constant s-wave SC pairing is introduced
and thus its Hamiltonian is exactly the minimal model defined
by Eq. (1). In the other two cases [Figs. 3(b) and 3(c)],
degrees of freedom in the SC are microscopically integrated
out, giving rise to a self-energy term in the semiconductor
nanowire [42,46,47]

�(ω) = −λ
ωτ0 + �0τx√

�2
0 − ω2

, (4)

where λ has the dimension of energy and is proportional to
the tunnel coupling between the parent superconductor and the
semiconductor nanowire. We choose λ = 1.5 meV throughout
this work. In the low energy limit ω → 0, the self-energy term
goes to the simple form of s-wave SC pairing but with a
renormalized SC pairing amplitude −λτx . Therefore, in both
cases, the Hamiltonian becomes energy-dependent including
the substrate-induced self-energy term

H (ω) =
(

− h̄2

2m∗ ∂2
x − iαR∂xσy − μ

)
τz + VZσx + �(ω).

(5)

In the third case [Fig. 3(c)], not only is a self-energy term
introduced, the bulk SC gap also has VZ-dependence, i.e., �0

in Eq. (4) is replaced by

�(VZ) = �0

√
1 − (VZ/VZc)2, (6)

where VZc represents the critical magnetic field beyond which
the bulk superconductivity is destroyed. (We introduce such a
field-dependent SC gap since this appears to be case often in
the nanowire experiments.) Then the Hamiltonian becomes

H (ω) =
(

− h̄2

2m∗ ∂2
x − iαR∂xσy − μ

)
τz + VZσx + �(ω,VZ).

(7)

Our reason for introducing a self-energy in the problem is
to include the renormalization effects by the parent supercon-
ductor to some degree [48]. This is not essential for studying
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FIG. 3. Differential conductance through three simple nanowires (no quantum dot) with chemical potential μ = 0 meV and length
L � 1.3 μm at zero temperature. The three nanowires are different in the way of introducing proximity superconducting effect. (a) Constant
s-wave SC pairing; (b) self-energy with constant parent SC pairing potential; (c) self-energy with the parent SC pairing decreasing with Zeeman
field. Note that in panels (b) and (c) the self-energy effect renormalizes the induced gap to the tunnel coupling value λ = 1.5 meV so that TQPT
is at VZ = 1.5 meV (and not the bare gap value 0.9 meV). In panel (a), by contrast, there is no self-energy correction, and hence the TQPT is at
VZ = 0.9 meV. In panels (d)–(f) we show the “waterfalls” corresponding to panels (a)–(c), respectively. In panels (g)–(i) we plot the zero-bias
conductance as a function of VZ corresponding to panels (a)–(c), respectively. We note that although we only show μ = 0 results here for the
simple nanowire, the corresponding results for all finite μ look identical to the results shown here except for the TQPT point shifting to larger
values of VZ consistent with the well-known theory (i.e., TQPT being given by

√
�2 + μ2).

the ABS-MZM story in itself, but the calculated transport
properties agree better with experiment in the presence of
the self-energy corrections. In spite of the three different
ways of introducing proximity SC effect, the calculated
differential conductance at low energies (small bias voltage)
shows universal behavior for the simple nanowire—a ZBCP
forms right after gap closing, indicating the TQPT. This ZBCP
is obviously associated with the MZMs at the ends of the
nanowire. The ZBCP is quantized at 2e2/h because of the
nanowire being in a topological superconducting phase and
is robust against variations in the tunnel barrier, chemical
potential and other parameters at zero temperature. Here in
our simulation, however, the peak value is slightly below the
quantized value 2e2/h because a small amount of dissipation
(� = 0.01 meV) has been added for data smoothening.
Although the three results are universal and identical in
Fig. 3 for the low-energy regime near the ZBCP, in the
high-energy regime (large bias voltage) conductance shows
qualitative differences with or without self-energy. In addition,

the TQPT point may shift due to self-energy corrections as
the induced SC gap is renormalized by the tunnel coupling
λ in Eq. (4). The calculated conductance in Fig. 3(a) has
clear patterns at large bias voltage, while in Figs. 3(b) and
3(c), the calculated conductance at eV > � is smooth and
featureless. This featureless conductance can be understood
by the smearing of the spectral function due to nanowire
electrons tunneling into the quasiparticle continuum in the
parent superconductor. Thus, the continuum (i.e., electron-
hole) behavior above the SC gap is different in Fig. 3 with
and without self-energy although the below-gap behavior near
zero energy is essentially the same in all three approximations
(except for a shift of TQPT to a higher critical VZ due to
the self-energy renormalization). We note, however, that in
Fig. 3(a) there is some evidence for the MZM-overlap induced
ZBCP oscillations [49,50] at the highest magnetic field values
(VZ > 2.5 meV), which is more obvious in Fig. 3(g) at the
highest VZ values. The edge of the quasiparticle continuum
in Fig. 3(b) stays at a fixed bias voltage due to constant
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�0, while the edge shrinks in Fig. 3(c) due to a decrease
of the field-dependent SC gap �(VZ) as a function of Zeeman
field. In the Deng et al. experimental data [20], we clearly
see the quasiparticle continuum edge shrinking with Zeeman
field and the conductance is featureless outside the SC gap,
which leads us to believe that a self-energy term for describing
proximity superconducting effect and a VZ-dependent bulk
SC gap �(VZ) are necessary physical ingredients for correctly
describing the higher energy features. Thus in all the calcula-
tions in the rest of the main paper, the proximity effect will be
introduced by a self-energy term and the SC bulk gap will be
�(VZ), unless explicitly stated otherwise. Here for the simple
nanowire case, we only show the conductance of one-band
models, while relegating the corresponding conductance of
two-sub-band models in Appendix A for completeness. We
note that both the self-energy effect and the two-sub-band
effect are necessary only for the qualitative agreement between
our conductance calculations and the experimental data away
from the midgap zero-energy regime. If we are only interested
in the zero-energy behavior of ABS and MZM, the minimal
model of Eq. (1) without any self energy or two-sub-band
effect is perfectly adequate.

B. Quantum dot-nanowire-superconductor hybrid structures

In nanowire tunneling experiments quantum dot physics
is quite generic, and it may appear at the interface between
the nanowire and the lead due to Schottky barrier effects
as mentioned in Sec. I, since all that is needed is a small
potential confinement region in between the lead and the
wire which is non-SC. In our model, the only role played
by the quantum dot potential is to introduce ABSs in the
nanowire, and hence, if an experiment observes in-gap ABS in
the superconducting nanowire, we model that by a “quantum
dot” strongly coupled to the nanowire. In this subsection,
we calculate the differential conductance of generic hybrid
structures, for which the Hamiltonian is a combination of
quantum dot Eq. (3) and nanowire Eq. (7). Only one-band
model with the self-energy is presented in the main text, while
two-sub-band models and constant s-wave proximity pairing
cases are discussed in Appendix B. We also present the energy
spectra of hybrid structures with or without Zeeman spin
splitting and spin-orbit coupling in Appendix C. In the main
text of this section, we mainly show our calculated tunneling
conductance results.

1. Scan of Zeeman field

The calculated differential conductance through the dot-
nanowire hybrid structure as a function of Zeeman field at
various fixed chemical potentials (μ = 3.0, 3.8, 4.5 meV)
is shown in Fig. 4. Finite temperature T = 0.02 meV is
introduced by a convolution between zero-temperature con-
ductance and derivative of Fermi-Dirac distribution: GT (V ) =
− ∫

dEG0(E)f
′
T (E − V ). In each panel of Fig. 4, a pair of

ABS-induced conductance peaks at positive and negative bias
voltage tend to come close to each other when the Zeeman field
is turned on. At finite Zeeman field (∼1.5 meV), these two ABS
peaks either cross zero bias and beat [Figs. 4(a) and 4(b)] or
stick with each other near zero energy [Fig. 4(c)], all of which
are similar to the observations in the Deng et al. experiment

[20]. However, these near-zero-energy peaks, especially the
ZBCP formed by sticking of two ABSs, are all topologically
trivial ABS peaks in Fig. 4, because VZ <

√
μ2 + �2 with the

Zeeman splitting explicitly being less than the critical value
necessary for the TQPT. We emphasize that experimentally
the TQPT critical field is unknown whereas in our theory we
know it by definition. If we did not know the TQPT point, there
was no way to discern (just by looking at these conductance
plots) whether the ZBCP in Fig. 4 arises from trivial or
topological physics! The generic beating or accidental sticking
behavior from the coalesced ABS pair is the consequence of
the renormalization of the bound states in the quantum dot in
proximity with nanowire in the presence of Zeeman splitting
and spin-orbit coupling, which has little to do with topology
and Majorana. More detailed discussion of this point will be
presented in Sec. IV. All we emphasize here is that coalescence
of ABS pairs into a ZBCP [as in Fig. 4(c)] cannot be construed
as ABSs merging into MZMs without additional supporting
evidence. In Figs. 4(d)–4(f) we provide further details by
showing “waterfalls” patterns of conductance for increasing
VZ corresponding to the results in Figs. 4(a)–4(c), respectively,
whereas in Figs. 4(g)–4(i) we show the calculated zero-bias
conductance as a function of VZ for results in Figs. 4(a)–4(c),
respectively.

2. Scan of chemical potential

Calculated differential tunnel conductance through the dot-
nanowire hybrid structure as a function of chemical potential
at various Zeeman fields at T = 0.02 meV is shown in Fig. 5.
In Figs. 5(a) and 5(b), the ABS-induced conductance peaks
repel away from each other without coalescing at zero energy.
In Fig. 5(c) the ABS peaks come together at some specific
magnetic field, and beat with increasing chemical potential.
In Fig. 5(d) ABS peaks beat and stick with each other. All
these features are similar to observations in the Deng et al.
although the relevant variable in the experiment is a gate
voltage whose direct relationship to the chemical potential
in the wire (our variable in Fig. 5) is unknown, precluding
any kind of direct comparison with experiment [20]. But all
of these near-zero-energy peaks are topologically trivial in our
results of Fig. 5 because VZ <

√
μ2 + �2 everywhere. We

show in Figs. 5(d)–5(f) the calculated zero-bias conductance
corresponding to Figs. 5(a)–5(c), respectively. Again, sticking
together of ABSs at zero energy producing impressive ZBCP
peaks are not sufficient to conclude that topological MZMs
have formed. In Fig. 5, all the results are nontopological!

We note that the ABSs sticking to almost zero energy and
producing trivial ZBCPs generically happen only for larger
values of chemical potential (as should be obvious from Figs. 4
and 5) with the ABSs tending to repel away from each other
or not quite stick to zero [e.g., Figs. 5(a) and 5(b)] for μ < �.
We find this to be a general trend. Unfortunately, the chemical
potential is not known in the experimental samples.

3. Generic near-zero-bias conductance features independent
of the choice of parameters

In the previous subsections, we show how topologically
trivial ABSs could induce near-zero-bias conductance peaks
that are quite similar to MZM-induced ZBCPs. The most
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FIG. 4. The calculated differential conductance through the dot-nanowire hybrid structure as a function of Zeeman field at various fixed
chemical potentials (μ = 3.0, 3.8, 4.5 meV) at T = 0.02 meV. In all three panels (a)–(c), a pair of ABS conductance peaks at positive and
negative bias voltage tend to come close to each other when the Zeeman field is turned on. At finite Zeeman field (∼1.5 meV), in (a) and
(b), these two ABS peaks cross zero bias and beat, while in (c) they stick with each other. However these near-zero-energy peaks, especially
the ZBCP formed by sticking of two ABSs in (c), are all topologically trivial ABS peaks because VZ <

√
μ2 + �2 with the Zeeman splitting

explicitly being less than the critical value necessary for the TQPT. In panels (d)–(f) we show “waterfall” plots of conductance line cuts for
different VZ (increasing vertically upward by 0.1 meV for each line) corresponding to panels (a)–(c), respectively, whereas in panels (g)–(i) we
show the calculated zero-bias conductance in each case corresponding to panels (a)–(c), respectively. Note that these results include self-energy
renormalization correction for the proximity effect.

important results among them are also summarized in the
introduction (Fig. 2). To show that all these results are generic,
not dependent on the particular choice of parameters, we here
present another sets of differential conductance plots (Fig. 6)
with different choice of parent superconducting bulk gap �0

and the coupling λ between the semiconductor nanowire and
the proximitizing superconductor. In the previous discussions,
the default values are �0 = 0.9 meV and λ = 1.5 meV. Here in
Fig. 6, the upper panels use �0 = 0.4 meV and λ = 1.5 meV,
while the lower panels use �0 = 0.2 meV and λ = 1.0 meV.
Apart from these different parameters, all other ingredients are
kept exactly the same as those in Fig. 2 so as to make direct
comparison. If we compare Fig. 2(a)–2(d) with Figs. 6(a)–
6(d), we find that the edge of the quasiparticle continuum
is determined by the value of �0, while the near-zero-bias
conductance behavior looks exactly the same, independent of
�0, because the low-energy induced gap is the coupling λ,
not the bare bulk gap �0, as discussed below Eq. (4). Thus,

in Figs. 6(e)–6(h), the low-energy conductance behavior is
changed by a difference choice of λ [e.g., the critical Zeeman
field for the formation of MZM-induced ZBCP in Fig. 6(e) is
smaller than that in Fig. 6(a)]. However, this kind of variation
for the near-zero-bias ABS-induced conductance peaks due to
the change of �0 and λ is perturbative, as shown in Figs. 6(f)–
6(h) with respect to either Figs. 6(b)–6(d) or Figs. 2(b)–2(d).
The way to understand this observation is that ABSs are bound
states localized in the quantum dot, with some wave-function
leakage into the proximitized nanowire, and thus the effect of
superconducting gap on the ABSs is only perturbative. Thus,
ABS-induced ZBCP physics is independent of the SC gap size
as long as the gap is not so small as to be comparable with the
energy resolution in the experiment (or numerics). We expect
this physics to arise whenever there are ABSs in the system
in the presence of spin-orbit-coupling and Zeeman splitting
independent of the SC gap size and other details (except that
the chemical potential should not be too small). More detailed
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FIG. 5. Calculated differential conductance through the hybrid structure as a function of chemical potential at various Zeeman fields at
T = 0.02 meV. In (a) and (b), the ABS conductance peaks repel away from each other without coalescing at zero energy. In (c) the ABS
peaks come together at some specific magnetic field, and beat with increasing chemical potential. In (d) ABS peaks beat and stick with each
other. However, all of these near-zero-energy peaks are topologically trivial because VZ <

√
μ2 + �2. In panels (e)–(h) we show the calculated

zero-bias conductance corresponding respectively to panels (a)–(d) as a function of chemical potential at fixed VZ . Note that the TQPT happens
here at low VZ < 2.0 meV (not shown).

discussion on this perturbative effect will be presented in
Sec. IV.

4. Continuous crossover from ABS- to MZM-induced ZBCP

As already mentioned in the introduction, a topologically
trivial ABS-induced near-zero-bias conductance peak can
continue all the way to the topologically nontrivial MZM-
induced zero-bias conductance peak, with nothing remarkable
happening at the TQPT point [Fig. 2(d)]. The ABS to MZM
transition is in fact a smooth crossover, not that different from
what would happen to the MZM itself if one starts from a
very short wire with strongly overlapping end MZMs and then
crosses over to exponentially protected well-separated MZMs
in the long wire limit simply by increasing the wire length.
Here we provide a zoom-in plot of Fig. 2(d) focusing on the
vicinity of TQPT, to see explicitly how ABSs and MZMs
interact with each around around the TQPT. As shown in Fig. 7,

it is the conductance for a hybrid structure with chemical
potential μ = 2 meV as a function of Zeeman field and
bias voltage. The critical Zeeman field is VZc = 2.5 meV, as
indicated by the vertical yellow line, to the left (right) of which,
the hybrid structure is in topologically trivial (nontrivial)
regime. When VZ < 2.5 meV, there is ABS near zero-bias,
while when VZ > 2.5 meV, the MZM-induced ZBCP forms
and stays over a large range of Zeeman field. We want to
emphasize that the ABS-induced peaks and the MZM-induced
peaks are uncorrelated with each other, they do not transmute
into each other by any means. This statement is supported
by the observation that the near-zero-energy ABS below the
formation of the MZM-induced ZBCP in Fig. 7 still exists at
finite energy in the topological regime, and it affects the MZMs
by squeezing the width of the ZBCP and lowering its peak
value when the their energy separation is small (∼2.7 meV).
Put in another way, those ABSs forming the near-zero-bias

FIG. 6. Differential conductance for simple nanowires and hybrid structures with different SC gap parameters. In the upper panels, (a)–(d),
the parent superconducting gap is �0 = 0.4 meV, and the coupling between the nanowire and the parent superconductor is λ = 1.5 meV. In
the lower panels, (e)–(h), �0 = 0.2 meV and λ = 1.0 meV. These plots should be directly compared with Fig. 2, which shows that all the
ABS-induced near-zero-bias conductance features are generic. (In the other figures in this paper, �0 = 0.9 meV and λ = 1.5 meV.)
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FIG. 7. Zoom-in of Fig. 2(d), the conductance for a hybrid
structure with μ = 2 meV as a function of Zeeman field, where
the critical Zeeman field is VZc = 2.5 meV, as shown by the vertical
yellow line.

conductance peaks never transmute into the MZMs, they exist
on their own and may affect the MZMs at some point. All that
happens in Fig. 7 is that the ABS is near zero energy below the
TQPT, and once the MZM forms above the TQPT, the ABS
moves away from zero energy producing some level repulsion
physics with the MZM above the TQPT. We emphasize that
there is neither an ABS-MZM transition nor an ABS-MZM
transmutation. We note, however, that the level repulsion
pushing the ABS away from zero energy in Fig. 7 actually
happens a finite field above the TQPT reflecting crossover
nature of the ABS-MZM “transition.”

5. Effect of tunnel barrier

It has been well established that a zero-temperature ZBCP
from MZM has a robust quantized peak value 2e2/h against
the variation of tunnel barrier. For peaks from ABSs, however,
such robustness is absent, and there is no generic value for the
height of ABS peaks—they range from 0 to 4e2/h [21]. We
have checked explicitly that we can get any conductance value
associated with the ABS-associated ZBCP by tuning various
parameters. In particular, a ZBCP conductance around 2e2/h

is quite common from the nontopological ZBCP arising from
coalesced ABSs through fine-tuned barrier strength. This de-
pendence of ABS-induced ZBCP on the tunnel barrier strength
can be used to check the robustness of any experimentally
observed ZBCP. If the ZBCP height is immune to variations in
the tunnel barrier, the likelihood is high that the corresponding
ZBCPs are induced by topological MZMs.

C. Topological visibility

Based on our numerical simulations, we conclude that it
is difficult to differentiate between Majorana and Andreev
induced ZBCPs by merely looking at differential conductance,
e.g., Figs. 3(c) and 4(c) both show ZBCPs approaching 2e2/h

at large Zeeman field. Whether the ZBCPs are topological
or not is determined by calculating whether VZ is larger
or smaller than the critical value for the TQPT, i.e., VZc =√

μ2 + �2. We can also use another complementary quantity
called topological visibility [26] to measure the topology of

FIG. 8. (a) Calculated topological visibility of a simple nanowire
and a hybrid structure, whose corresponding conductance is in
Fig. 3(c) with μ = 0 meV and Fig. 4(c) with μ = 4.5 meV. At small
Zeeman field, TV in both cases are close to 1, indicating trivial
phases. At large Zeeman field, the TV of the simple nanowire goes
down to negative values approaching −1, while that of the hybrid
structure also goes down but still remains around zero. (b) Calculated
TV corresponding to Fig. 2(d) of hybrid structure with μ = 2.0 meV
sweeping through the TQPT point at VZc = 2.5 meV (the vertical
yellow line separating the trivial ZBCP from the topological ZBCP).

ZBCPs, discerning topological MZM-induced ZBCPs from
trivial ABS-induced ZBCPs. Topological visibility (TV) is
defined as the determinant of the reflection matrix:

T V = Det(r), (8)

where the reflection matrix r contains both the normal and
the Andreev reflections from the nanowire at zero-bias volt-
age. Topological visibility is a generalization of topological
invariant (Q) defined by S matrix at zero-bias voltage, which
is Q = Det(r) = sgn[Det(r)]. The topological invariant takes
only binary values as ±1 due to the assumption of particle-
hole symmetry and unitarity of the reflection matrix [26,51].
However, for a finite-length nanowire, the topological invariant
always takes the trivial value, i.e., Q = +1 because of the Ma-
jorana splitting from MZM overlapping making conductance
at zero bias always zero even when the topological criteria
is satisfied. When an infinitesimal amount of dissipation is
added into the nanowire leading to a finite value of zero-bias
conductance, Det(r) can take any real value between −1 to +1
because the unitarity condition is no longer satisfied. Thus,
TV = Det(r), as a generalization of topological invariant,
varies between −1 and +1. When the value of TV is close
to −1, the system is thought of as topologically nontrivial,
and otherwise, the system is more topologically trivial. The
TV of a simple nanowire and a hybrid structure are shown in
Fig. 8(a), whose corresponding conductance is in Figs. 3(c)
and 4(c), respectively. At small Zeeman field, TVs in both
cases are close to 1, indicating trivial phases. At large Zeeman
field, the TV of the simple nanowire goes down to negative
values approaching −1 while that of the hybrid structure also
goes down but still remains around zero. This fact indicates
that although a pair of ABSs coalesce forming a ZBCP, this
peak is topologically trivial, while Majorana-induced ZBCP is
topological. Thus, merely getting a ZBCP with value close to
2e2/h does not necessarily mean the system enters topological
regime. Unfortunately, there is no direct method to measure
the topological visibility experimentally. In Fig. 8(b), we show
the calculated TV corresponding to Fig. 2(d) where the TQPT
is at VZc = 2.5 meV (the vertical yellow line). We notice
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FIG. 9. Calculated differential conductance through four hybrid nanowire systems with the quantum dot completely proximitized and with
the same amount of dissipation � = 0.01 meV and temperature T = 0.02 meV. (a, b) Differential conductance as a function of Zeeman splitting
at fixed chemical potential. In (a), the critical Zeeman field is at VZc =

√
�2 + μ2 = 2.5 meV (marked by a yellow vertical line), beyond which

the system enters the topological regime. Here � = λ = 1.5 meV due to self-energy renormalizing the SC pairing. In (b), the critical Zeeman
field is outside the range of VZ , thus the zero-energy peak here is trivial. (c, d) Differential conductance as a function of chemical potential at
fixed Zeeman field VZ = 0 and VZ = 2.0 meV.

that TV starts to dive to be more negative for VZ > 2.5 meV
consistent with the TQPT separating a trivial ZBCP below and
above VZ = 2.5 meV, but the result is not absolutely definitive
because of the presence of dissipation, finite temperature,
gap closing, and Majorana overlap. These problems may
exist in the experimental systems too masking the TQPT
and making it difficult to distinguish trivial and topological
regimes.

More details on the role of topological visibility in this
context can be found in Ref. [26], and we do not show
any more TV results in the current paper except to make
one remark. The calculated TV is approaching −1 (or not)
whenever the corresponding Zeeman energy for the zero
mode is above (below) the critical TQPT value VZc, thus
distinguishing (theoretically) the MZM and ABS zero modes.
For our purpose, any apparent zero mode (or almost-zero
mode) below (above) the TQPT point (which is exactly known
in our theory, but not in the experiment) is considered to be an
ABS (MZM) by definition.

We note in this context that the trivial ZBCP in Figs. 4(b)
and 4(c) may persist to large Zeeman splittings [as in Fig. 2(d)]
going beyond the TQPT point [VZ > 3.8,4.5 meV in Figs. 4(b)
and 4(c), respectively], and then the coalesced ABSs have
eventually become MZMs at large enough magnetic field
values [see, e.g., Fig. 2(d)]. Unfortunately, there is no way to
know about such a trivial to topological crossover by looking
simply at the ZBCP (without knowing the precise TQPT point),
and hence experimentally, one cannot tell whether a coalesced
ZBCP is trivial or topological by studying only the ZBCP.
One way to distinguish is perhaps careful experimentation
varying many experimental parameters (e.g., magnetic field,
chemical potential, tunnel barrier, SC gap) to test the stability
of the absolute value of the ZBCP against such perturbations.
The MZM-induced topological ZBCP should manifest the
universal strength of 2e2/h, whereas the trivial ABS-induced
ZBCP will have nonuniversal behavior. Another issue which
may become important in the experimental context [20] is that
the bulk SC gap may collapse in the high magnetic field regime
where one expects the MZM to manifest itself.

D. Proximitized quantum dot

All the calculations in the previous subsections are based on
hybrid structures with the quantum dot outside the nanowire,

i.e., there is no induced superconductivity in the quantum
dot at all. In real experimental situations, however, it is
possible that unintentional quantum dots may appear inside
the SC nanowire, or the parent superconductor may partially
or completely proximitize the quantum dot. Another way of
saying this is that ABSs may arise in the nanowire from
unknown origins where no obvious quantum dots are present.
(Such a possibility can never be ruled out although whether
it actually happens in a particular experimental system or
not would depend on unknown and uncontrolled microscopic
details.) We now consider hybrid structures with the quantum
dot completely proximitized and calculate the corresponding
differential conductance. The calculated differential conduc-
tance is shown in Fig. 9. Both Figs. 9(a) and 9(b) are differential
conductance as a function of Zeeman splitting. In Fig. 9(a),
the critical Zeeman field is at VZc =

√
�2 + μ2 = 2.5 meV

(marked by a yellow vertical line), beyond which the system
enters the topological regime. By contrast in Fig. 9(b), the
critical Zeeman field is outside the range of VZ , thus the
zero-bias peak is trivial. But there is no way to differentiate
between the two situations by just looking at the ZBCPs.
Another intriguing phenomenon in Figs. 9(a) and 9(b) is that
the positions of the pair of ABSs at zero Zeeman field are much
closer to the induced SC gap than situations where the quantum
dot is not proximitized, as shown in Fig. 4. This is because the
SC pairing for ABSs in fully proximitized dot is larger than the
renormalized SC pairing in unproximitized dot. Thus, the gap
in the former case is larger and closer to the induced SC gap in
the nanowire. Thus, the position of ABS peaks at zero Zeeman
field can be regarded as a clue to the degree of proximitization
of the quantum dot. Such a feature is also manifest in Fig. 9(c),
where we show the conductance as a function of chemical
potential at zero Zeeman field. In contrast with Fig. 5(a),
now the peaks from ABSs are closer to the induced SC gap.
Figure 9(d) shows the differential conductance as a function
of chemical potential at a finite Zeeman field VZ = 2 meV,
where peaks from the two ABSs inside the SC gap are close to
zero-energy. We believe that in most experimental situations
the ABSs arise from strongly coupled “effective” quantum dots
within the nanowire (or from “dots” present at the Schottky
barrier between the semiconductor nanowire and the normal
metallic lead). More detailed results and discussion on hybrid
structures with proximitized quantum dot are provided in
Sec. VI.
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FIG. 10. The spectrum of the isolated quantum dot. The blue curve is the spectrum of the bound state whose energy crosses Fermi level
as a function of Zeeman field. The black curve is its particle-hole partner, which is redundant in this case since there is no SC pairing in the
isolated quantum dot. Green curves are spectra of other bound states that are always well above or below Fermi level.

IV. SELF-ENERGY MODEL OF QUANTUM DOT

So far we have numerically calculated differential con-
ductance through various nanowire systems, showing either
ZBCPs or near-zero-bias peaks. Some of these conductance
plots, e.g., Figs. 4 and 5, are quite similar (essentially identical
qualitatively) to those in the Deng et al. experiment [20], but
this is only suggestive as we have no way of quantitatively
simulating the experimental devices because of many unknown
parameters (not the least of which are the detailed quantum
dot characteristics). We have shown explicitly that ABSs
could come together and remain stuck at zero energy in
the quantum dot-nanowire hybrid system producing trivial
ZBCPs that perfectly mimic the topological ZBCPs associated
with MZMs in simple nanowires. This tendency seems to
be quite generic at higher chemical potentials, whereas at
lower chemical potentials the ABSs seem to simply repel
each other. This section is devoted to understanding the
relevant physics leading to the conductance patterns discussed
above. We calculate analytically the energy spectra of hybrid
structures, especially focusing on low-energy states, which can
provide insightful information about the corresponding zero-
bias conductance behavior. We mention that superconductivity,
spin-orbit coupling, and Zeeman splitting are all essential
ingredients for the ABS physics being discussed here. Thus,
the zero-sticking property of trivial ABSs (as a function of
magnetic field) is a generic feature of class D superconductors,
even without any disorder.

With no loss of generality, we focus on a single hybrid
structure with chemical potential μ = 3.0 meV using the
minimal model of a constant s-wave paring potential in this
section since the low-energy behavior is not affected by the
way proximity SC is introduced. The basic idea here is to
see how a self-energy theory of quantum dot bound states,
taking explicitly (but perturbatively) into account the SC
nanowire as well as Zeeman splitting and spin-orbit coupling,
leads naturally to ABS-sticking near zero energy independent
of trivial or topological regime one is considering. In other
words, the tendency of ABSs coalescing near zero energy is a
generic property of class D superconductors and has nothing
whatsoever to do with MZMs or TQPT. This is consistent with
a previous analysis [33] of so-called Y-shaped resonances that
were proposed to occur in generic quantum dots coupled to

SCs on the grounds of random matrix theory where the system
of interest was random (i.e., had disorder in it in sharp contrast
to our disorder-free consideration). The focus of our work here
is to expand on the likelihood of this occurrence in a spin-orbit
coupled nanowire system in general even without any disorder.
The resulting ZBCP may arise from an MZM in the topological
regime or an ABS in the trivial regime controlled entirely by
the magnetic field where it happens (i.e., whether this field is
above or below the critical Zeeman field for the TQPT). What
we find is (and show in Sec. III in depth) that the trivial ABSs
could stick to zero energy for a large range of magnetic field
without being repelled away, thus mimicking the expected zero
mode behavior of topological MZMs.

A. Exact results from diagonalization

First, we look at the isolated quantum dot system whose
Hamiltonian is HQD as shown in Eq. (3). The spectrum is
shown in Fig. 10(a), where the blue curve denotes the bound
state whose energy crosses Fermi level as a function of Zeeman
field, the black curve denotes its particle-hole partner, which
is redundant in this case since there is no SC pairing in the
isolated quantum dot, and the green curves are spectra of other
bound states that are always well above or below the Fermi
level. As Zeeman field increases, the bound state eigen-energy
crosses Fermi level, but it is then repelled by neighboring
energy states due to spin-orbit coupling, which leads to the
beating shape in the spectrum. Note that the theory explicitly
must consider both Zeeman and spin-orbit coupling effects. We
provide more details on the directly calculated energy spectra
of the hybrid system in Appendix C.

Second, we include the superconducting nanowire and
couple it with the quantum dot; they together constitute the
hybrid structure. The system is now class D (but with no
disorder)—it has superconductivity, Zeeman splitting, and
spin-orbit coupling. The total Hamiltonian is a combination
of Eqs. (1) and (3),

Htot = HQD + HNW + Ht,
(9)

Ht = u + u† = f̂ †
α

(−tδαβ + iαRσ
y

αβ

)
ĉβ + H.c.,

where HQD is the isolated quantum dot, HNW is the super-
conducting nanowire and Ht is the coupling between them. ĉ
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annihilates an electron at the end of the nanowire adjacent to
the dot and f̂ † creates an electron at the end of the dot adjacent
to the nanowire. By diagonalizing the total Hamiltonian, we
obtain the spectrum shown in Fig. 10(b), where the blue curves
are particle-hole pairs that cross Fermi level, while the green
curves are states well above or below Fermi level. By focusing
on the spectra near Fermi level in Figs. 10(a) and 10(b), we
see that the effect of the nanowire on the bound states of
the quantum dot is that it shifts the spectrum and changes
the spectrum curvature. The strong similarity between the
spectrum of hybrid structure in Fig. 10(b) and the differential
conductance in Fig. 4(a) indicates that the energy spectrum
provides a good perspective on understanding the behavior
of differential conductance, which is in general true at low
temperature since the low-temperature transport is dominated
by contributions from the low-energy states.

B. Approximate results from self-energy theory

The numerical results in the previous subsection show
graphically that coupling with the nanowire has a perturbative
effect on the energy spectrum of the isolated quantum dot. We
now calculate the analytic form of the perturbed spectrum
in the quantum dot using an effective theory including
perturbative corrections of the quantum dot spectra arising
from the superconducting nanowire. The total Hamiltonian is
still Eq. (9). We first project HQD onto the subspace spanned
by the bound state crossing the Fermi level and its redundant
hole partner, thus obtaining

H eff
QD = Eeff

QDγz, (10)

where γ ’s are Pauli matrices on the projected two-dimensional
subspace. Eeff

QD = EQD − �μ, with EQD the bare energy of the
bound state in the isolated quantum dot crossing the Fermi
level, and �μ represents the renormalization of the chemical
potential due to projecting out all the other states. Then we
integrate out the degrees of freedom in the nanowire, leading to
an energy-dependent self-energy term in the isolated quantum
dot,

�(ω) = u(ω − HNW)−1u†, (11)

where u,u† represent the hopping between nanowire and
quantum dot. Similarly, we project this self-energy term onto
the two-dimensional subspace in quantum dot and get

F (ω) = P̂�(ω)P̂ , (12)

where P̂ denotes the projection operator. Thus, the approxi-
mate energy spectrum of the hybrid structure near the Fermi
level is given by the roots of

Det
[
ω − H eff

QD − F (ω)
] = 0. (13)

The spectrum obtained from this effective theory is shown in
Fig. 10(c), where blue circles represent the exact spectra from
diagonalizing the total Hamiltonian in the previous subsection,
while the red line is the spectrum obtained from the projected
effective theory with the appropriate choice of �μ in Eq. (10).
The excellent agreement between the exact diagonalization
results and the effective theory results demonstrates that the
proximity effect from the SC nanowire onto the quantum dot
bound states is perturbative renormalization.

We can take one more step to get an analytic expression of
the ABS spectra using the low energy assumption ω → 0. In
the nanowire, particle-hole symmetry constrains the form of
projected self-energy term F (ω) to be (Appendix D)

F (ω) = f0(ω)γ0 + fx(ω)γx + fz(ω)γz

� β0ωγ0 + βxωγx + αzγz, (14)

where f0,x are odd functions of ω, and fz is an even function
of ω. Here, f ’s are expanded up to their leading order for small
ω. Then the leading order solution is given by the approximate
root of Eq. (13):

ω � Eeff
QD + αz√

(β0 − 1)2 − β2
x

. (15)

This result indicates that the proximity effect of the nanowire
is twofold: it first shifts the projected spectrum of the isolated
quantum dot, and it reduces the curvature (i.e., enhances
the effective mass if we focus on the parabolic part) of the
spectrum, since numerics show β0 	 1,βx .

Our finding is that the near-zero conductance peaks in
hybrid structures are mainly contributed by the ABSs related
to the quantum dot. These ABSs can be regarded as bound
states in the quantum dot perturbatively renormalized by the
nanowire. ABS spectra show parabolic shapes as a function of
Zeeman field with renormalized effective mass and chemical
potential. When the parabolic spectrum crosses the Fermi
level, the spectrum together with its particle-hole partner
manifests a beating pattern around midgap, and if this beating
involves small amplitude, the resulting ABS will appear to be
stuck at zero energy manifesting a generic ZBCP, which has
nothing to do with MZMs. It is simply a low energy fermionic
bound state in the SC gap. For the approximately zero-energy
ABSs the renormalized effective mass is accidentally huge
and the renormalized chemical potential shifts the ABS close
enough to zero energy. How close is “close enough” depends
entirely on the energy resolution of the experiment—all
these apparent zero-energy trivial ABS modes are beating
around midgap, it is only when this beating happens to
be smaller than the resolution, the mode appears stuck at
zero energy. Especially when broadening effects from finite
temperature and/or intrinsic dissipation are larger than the
beating amplitude, near-zero peaks seem to appear stuck at
zero energy since the energy resolution is not fine enough
to resolve the beating pattern. This makes it essentially
impossible to obtain a simple analytic form for the range of
magnetic field (i.e., range of VZ) over which the trivial ABSs
will remain close to zero—this range is a multidimensional
complicated function determined by all the parameters of
the hybrid system even in our simple perturbative model
(chemical potential, magnetic field, induced gap, quantum dot
confinement details, experimental resolution around zero bias,
temperature, broadening, etc.).

We emphasize that all four ingredients are essential in the
perturbative theory: quantum dot, superconducting nanowire,
spin-orbit coupling, and Zeeman splitting. What is, however,
not necessary is topological p-wave superconductivity or
Majorana modes. Generically, the ABSs in class D supercon-
ducting nanowires may be attracted to the midgap, and once
they coalesce there, they will have a tendency to stick to zero
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energy. The fact that class D superconductors generically allow
trivial zero-energy states can also be seen from the known level
statistics whose probability distribution has no repulsion from
zero energy [52] in contrast to the other class superconductors.
What we show in our analysis here is that this tendency of
D-class peaks to stick to zero energy can happen for simple
ABSs arising from single quantum dots, there is no need to
invoke disorder as leading to such class D peaks [29–31,53],
and such zero-bias sticking could survive over a large range of
magnetic field variation. The disorder-free nature of our theory
distinguishes it from earlier work on class D zero-bias peaks,
which are caused by disorder induced quantum interference
[29–31,53].

Specifically, the ingredients discussed in the previous
paragraph produce localized ABSs in the symmetry class D
with a large weight at the end. Superconductivity provides
particle-hole symmetry and Zeeman splitting breaks time-
reversal symmetry to place the system in the symmetry class
D. Spin-orbit coupling is needed to break spin-conservation
without which the system would become two copies of a
different symmetry class. Class D is important to induce
energy-level repulsion that pushes the lowest pair of ABSs
toward zero energy [54]. As seen from Eq. (14), the self-
energy from the superconducting nanowire that is in symmetry
class D generates the eigenstate repulsion, which pushes the
ABSs toward zero energy. The tendency of ABSs to stick
as the Zeeman field is varied in class D is analogous to the
Y-type resonance discussed in the context of superconducting
quantum dots [33].

A definitive prediction of the arguments in the previous
paragraph is that the combination of spin-orbit coupling and
Zeeman splitting is required to create states that stick to zero
energy, which only occurs in symmetry class D. This can be
checked explicitly by obtaining the corresponding low-energy
spectra in the hybrid quantum dot-nanowire system without
Zeeman splitting or without spin-orbit coupling respectively.
We carry out these direct numerical simulations and show
the corresponding results in Appendix C, where it can be
clearly seen that only the situations with superconductivity,
spin-orbit coupling, and Zeeman splitting all being finite allow
for the possibility of zero-sticking (and beating) of ABS. Thus,
the same ingredients which lead to the existence of MZMs
in nanowires (superconductivity, spin-orbit coupling, and
Zeeman splitting) also lead to Andreev bound states sometimes
producing almost-zero-energy midgap states. This is a most
unfortunate situation indeed. This means that confirming the
presence of Majoranas through transport measurement might
be more complicated than simply observing a robust zero-bias
peak. While a ZBCP is indeed necessary, it is by no means
sufficient even if the ZBCP value agrees with the expected
quantized conductance of 2e2/h. It will also be necessary
to vary the tunneling through the quantum dot to reduce it
to a quantum point contact which can explicitly be verified
to be carrying a single spin-polarized channel in the normal
state [55]. In addition, it must be ensured that the ZBCP
quantization is indeed robust against variations in various
system parameters such as tunnel barrier, magnetic field,
and chemical potential. In particular, varying the quantum
dot confinement through tunable external gate voltage and
checking for the stability of the ZBCP may be essential to

ensure that the relevant ZBCP indeed arises from MZMs and
not ABSs. This is considered in the next section.

V. DISTINGUISHING BETWEEN TRIVIAL
AND TOPOLOGICAL ZERO MODES

In the previous sections, we numerically show that differ-
ential conductance from MZMs and near-zero-energy ABSs
may share strong similarities with each other, making them
hard to distinguish. Although theoretically one can look at
topological criteria or TV to distinguish between the two cases,
quantities like chemical potential and TV are hardly known in
the real experimental setup. So to distinguish ZBCPs arising
from topological and nontopological situations, we discuss an
alternate experimentally (in principle) accessible method, i.e.,
to see how the zero modes are affected by the change of the
depth of the quantum dot confinement potential. We mentioned
before that the phenomenon of the generic existence of trivial
ABS-induced zero modes is qualitatively independent of the
quantum dot confinement details, but now we are asking a
different question. We focus on a fixed hybrid structure with
ABS-induced (or MZM-induced) zero modes, and ask how
this specific zero mode and the near-zero-bias differential
conductance (comparing the ABS and the MZM cases) react
to the change in the depth VD of the quantum dot confinement
potential keeping everything else exactly the same.

A. Energy spectra for hybrid structures with ABS- and
MZM-induced zero modes

We show our numerical results in Fig. 11. Figure 11(a) is
the calculated spectrum as a function of chemical potential at
fixed VZ = 2.0 meV for VD = 4 meV with topological MZM-
induced (or trivial ABS-induced) zero modes at small (large)
chemical potential regimes. Now, we ask how this spectrum
evolves if we only vary VD keeping everything else exactly the
same. Figure 11(b) presents the MZM spectrum (i.e., at small
chemical potential) as a function of dot depth, showing that it
is robust against change of dot depth. By contrast, Fig. 11(c)
shows the ABS spectrum (i.e., large chemical potential) as
a function of the dot potential depth, clearly showing that
the ABS “zero mode” is not stable and oscillates (or splits)
as a function of the dot potential. Put in another way, the
fact that we see near-zero-energy ABSs is quite accidental
for any particular values of Zeeman splitting and chemical
potential, which only happens when the dot depth is fine-
tuned to be some value, e.g., VD = 4 meV so that the energy
splitting of the ABS zero mode happens to be smaller than the
resolution. So varying the dot depth (e.g., by experimentally
changing gate potential) will be a stability test distinguishing
topological MZMs and nontopological ABSs. Note that it is
possible (even likely) that the original ABS-induced ZBCP will
split as the dot potential changes, whereas a new trivial zero
mode could appear, but the stability (or not) of specific ZBCPs
to gate potentials could be a powerful experimental technique
for distinguishing trivial and topological ZBCPs. Of course,
experimentally tuning the dot potential by an external gate
may turn out to be difficult in realistic situations, but modes
which are unstable to variations in gate potentials are likely to
be trivial ABS-induced ZBCPs.
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FIG. 11. (a) Calculated energy spectrum of a hybrid structure as a function of chemical potential μ with fixed Zeeman splitting VZ =
2.0 meV, dot depth VD = 4.0 meV. Critical chemical potential is at μc =

√
V 2

Z − �2 � 1.8 meV with red (green) lines indicating topological
(trivial) zero modes. (b) Fixed chemical potential in the topological regime μ = 0.5 meV <μc, to see how MZMs vary with the depth of the
quantum dot. (c) Fixed chemical potential in the non-topological regime μ = 4.5 meV >μc, to see how near-zero-energy ABSs vary with the
depth of the quantum dot. We see that MZMs are robust against the change of the dot depth, while ABSs oscillate or split with the change of
the dot depth. So varying the dot depth (experimentally changing the gate potential) could be a stability test distinguishing between topological
MZMs and non-topological ABSs.

B. Conductance for hybrid structures with ABS-
and MZM-induced zero modes

We also show the calculated differential conductance
through the hybrid structures as a function of the depth of
the quantum dot and bias voltage, as shown in Fig. 12. The
conductance color plots in the upper Figs. 12(a)–12(c) are
for topological nanowires, i.e., VZ > VZc =

√
μ2 + �2, and

thus all the zero-bias or near-zero-bias conductance peaks are
MZM-induced. Such ZBCPs are stable against the variation of
the depth of the quantum dot. With the increase of the Zeeman

field, ZBCPs will be split and form Majorana oscillations
as a function of the dot depth. By contrast, the conductance
color plots in the lower Figs. 12(d)–12(f) are for topologically
trivial nanowires (VZ < μ), and thus all the near-zero-bias
conductance peaks are ABS-induced. These nontopological
near-zero-bias peaks also show beating patterns as a function
of the dot depth, which is quite similar to the patterns for
Majorana oscillations, although the origin is nontopological.
But the crucial difference between the two situations is that
ABS-induced oscillations are not guaranteed to cross zero

FIG. 12. Differential conductance as a function of the dot depth for hybrid structures at various but fixed chemical potential and Zeeman
field. In the upper panel (a–c), all the hybrid structures are in the topological regime, i.e., all the zero-bias or near-zero-bias conductance peaks
are MZM-induced. In the lower panels (d–f), all the hybrid structures are topologically trivial, i.e., the zero-bias or near-zero-bias conductance
peaks are ABS-induced.
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bias for a variation of the parameter choice, e.g., increasing
chemical potential as shown in Figs. 12(e) and 12(f), while
for MBS-induced oscillations, although the amplitude of
oscillation will increase with parameters in the nanowire (e.g.,
Zeeman field), the oscillation itself is sure to pass through
zero-bias voltage. The difference between the two situations
rises from the crucial fact that ABS-induced ZBCPS are almost
zero modes involving (always) some level repulsion, whereas
the MZM-induced ZBCP oscillations arise from the splitting
of a true zero mode in the infinite wire limit.

VI. QUANTUM DOTS AS SHORT-RANGE
INHOMOGENEITY

So far, our theoretical analysis (except for Sec. III D and
Fig. 9) has focused on quantum dots explicitly created at the
end of a nanowire (see Fig. 1). In this case the quantum dot is
normal (i.e., nonsuperconducting), while the rest of the wire
is proximity-coupled to the parent superconductor. However,
in general the quantum dot could be unintentional, i.e., the
experimentalist may be unaware of its presence near the wire
end, and it could be partially or completely covered by the
superconductor. For example, such a situation may arise if a
potential well with a depth of a few meV forms near the end of
the proximitized segment of the wire. Similar phenomenology
emerges in the presence of a low (but wide enough) potential
barrier. After all, there is no easy way to rule out shallow
potential wells (and low potential barriers) inside the nanowire
or near its ends. In this context, we emphasize that a better
understanding of the profile of the effective potential along
the wire represents a critical outstanding problem. It turns
out that all our results obtained so far still apply qualitatively
even if the quantum dot is partially or completely inside the
nanowire. In these cases we obtain exactly the same type of
low-energy ABSs that have a tendency of sticking together near
zero energy, thus producing ZBCPs that mimic MZM-induced
ZBCPs. We present these results in detail below. We are
providing these results here to go all the way from an isolated
nonsuperconducting dot at the wire end (as in the previous
sections of this paper) to a situation where the dot is inside
the wire and is completely superconducting. We explicitly
establish that the main results of the previous sections can be
obtained everywhere within this range, i.e., from isolated dots
to dots completely inside the nanowire. In fact, this behavior is
rather generic in nonhomogeneous semiconductor nanowires
[36]. Finally, in this section we pay special attention to the
profile of the ZBCPs associated with the almost-zero-energy
ABSs. The key question that we want to address is whether
or not a quantized ZBCP (i.e., a ZBCP with a peak height of
2e2/h) can be used as a hallmark for the Majorana zero modes
expected to emerge beyond a certain critical field.

In Fig. 13, we represent schematically the hybrid structure
[Fig. 13(a)] and the effective potential [Fig. 13(b)] correspond-
ing to three different situations that we consider explicitly in
this section using exactly the same model parameters: dot
entirely outside the proximitized segment of the nanowire,
dot completely inside the nanowire (i.e., the whole dot is
superconducting), and dot partially covered by the parent
superconductor. The depth of the potential well in the quantum
dot region is about 1 meV and its length is 250 nm. The

SC

SM wire

Q dot

Chemical potential
Nonhomogeneous wire

(a)

(b)

(c)

FIG. 13. (a) Schematic representation of hybrid structure.
(b) Effective potential as a function of position for a wire with a
quantum dot near its left end. In the calculations the length of the
quantum dot region is 250 nm, while the rest of the wire is 1 μm
long. Note that the length parent superconductor (SC) can be varied,
so that the quantum dot region can be uncovered, partially covered, or
completely covered by the SC. (c) Smooth nonhomogeneous effective
potential. The peak at the left end of the wire represents the tunnel
barrier.

coupling between the quantum dot and the rest of the wire is
controlled by the height of the corresponding potential barrier
[see Fig. 13(b)]. In addition, the coupling depends on how
much of the dot is covered by the superconductor. The param-
eters used in our calculations correspond to intermediate and
strong coupling regimes. We note that replacing the potential
well from Fig. 13(b) with potential barrier of a height several
times larger than the induced gap �ind leads to low-energy
features similar to those described below for the potential well.
Finally, for comparison we also consider a nanowire with a
smoothly varying non-homogeneous potential [Fig. 13(c)].

In Fig. 14 we show the calculated low lying energy spectra
for three cases: (a) normal dot (i.e. uncovered by the SC),
(b) half-covered dot, and (c) fully covered dot. The system
is characterized by an induced gap �ind = 0.25 meV and a
chemical potential μ = −2.83�ind. The corresponding critical
field associated with the topological quantum phase transition,
VZc ≈ 3�ind = 0.75 meV, is signaled by a minimum of the
quasiparticle gap, as expected in a finite length system. First,
we note that all three situations illustrated in Fig. 14 clearly
show trivial almost-zero-energy ABSs in a certain range
of Zeeman field (lower than the critical field). However,
the Zeeman field V ∗

Z associated with the first zero-energy
crossing is significantly lower in the case of an uncovered
dot [Fig. 14(a)] as compared to the partially-covered dot
[Fig. 14(b)] and especially the fully covered dot [Fig. 14(c)].
Consequently, the range of Zeeman field corresponding to
almost-zero-energy ABSs gets reduced with increasing the
coverage of the quantum dot by the SC. Another key feature
is the dependence of the energy of the ABS at VZ = 0 on
the dot coverage. For the fully covered dot [Fig. 14(c)], this
energy is practically �ind. In fact, by proximity effect, all the
states that “reside” entirely under the parent superconductor
have energies (at VZ = 0) equal or larger than the induced
gap for the corresponding band. By contrast, the zero-field
energy of the ABSs in the half-covered [Fig. 14(b)] and
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(a)

(b)
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FIG. 14. Dependence of the low-energy spectrum on the applied
Zeeman field for a nanowire with a quantum dot near the left
end (see Fig. 13). (a) Quantum dot outside the superconducting
region. (b) Quantum dot half-covered by the parent superconductor.
(c) Completely covered quantum dot. The induced gap is �ind =
0.25 meV and the chemical potential μ = −2.83�ind, which cor-
responds to a critical Zeeman field of about 0.75 meV. The zero-
temperature conductance along various constant field cuts marked
“1,” “2,” and “3” are shown in Fig. 15.

uncovered [Fig. 14(a)] dots is significantly lower that induced
gap. To obtain such a state it is required that a significant
fraction of the corresponding wave function be localized
outside the proximitized segment of the wire. We find that,
quite generically, strongly coupled dots that are uncovered or
partially covered (when the uncovered fraction is significant)
can support ABSs that (i) have energies at VZ = 0 much
smaller than the induced gap and (ii) are characterized by
“merging fields” V ∗

Z significantly lower than the critical value
VZc. Consequently, in hybrid systems having strongly coupled
dots at the end it is rather straightforward to obtain low-energy
Andreev bound states that merge toward zero and generate
MZM-like zero-bias conductance peaks in the topologically
trivial regime, way before the topological quantum phase
transition. In a real system it is possible that superconductivity
be suppressed by the magnetic field before reaching the critical
value VZc. In such a scenario, a robust ZBCP that sticks to
zero energy over a significant field range is entirely caused
by (topologically trivial) merging ABSs, rather than (non-
Abelian) MZMs. We speculate that the the rigid zero-energy
state shown in Fig. S6 of Ref. [20] is an example of such a
trivial (nearly) zero-energy state.

Next, we address the following question: can one dis-
criminate between a MZM-induced zero-bias conductance
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FIG. 15. Differential conductance as function of the bias voltage
for a quantum dot not covered by the superconductor (top panel),
a half-covered dot (middle panel), and a fully covered quantum dot
(bottom panel). Each panel shows low-energy conductance peaks for
three different values of the Zeeman field marked “1,” “2,” and “3”
in the corresponding panel of Fig. 14.

peak and a trivial, ABS-induced ZBCP based on the height
of the peak at zero temperature? More specifically, does
the observation of a quantized peak guarantee its MZM
nature? In short, the answer is no. However, observing a
quantized ZBCP that is robust against small variations of
parameters such as the Zeeman field, the chemical potential,
and external gate potentials provides strong indication that the
peak is probably not generated by merging ABSs partially
localized outside the proximitized segment of the wire, i.e.,
scenarios (a) and (b) in Fig. 14. The results that support this
conclusion are shown in Fig. 15. Each panel in Fig. 15 shows
the (low-energy) differential conductance at T = 0 for three
different values of the Zeeman field marked “1,” “2,” and “3”
in the corresponding panel of Fig. 14. Generally, the largest
value of the ZBCP obtains for Zeeman fields corresponding to
the first zero-energy crossing, V ∗

Z , marked “1” in Fig. 14. In
this case, the maximum height exceeds 2e2/h. However, for
the fully covered dot (bottom panel) the excess conductance
consists of a very narrow secondary peak that would be
practically unobservable at finite temperature. In fact, we find
that in the case of a fully covered dot, at low-temperature,
the conductance peak height is practically quantized in both
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FIG. 16. Dependence of the low-energy spectrum from Fig. 14(b)
on the orientation of the applied magnetic field. Top: Magnetic field
oriented along the z axis (i.e., perpendicular to the wire and the
effective SO field, see inset). The spectrum is identical to Fig. 14(b).
Middle and bottom: Rotating the field in the x−y plane destroys
the property of the ABSs to coalesce into stable nearly zero energy
modes. In addition, the spectrum becomes gapless above a certain
(angle-dependent) value of the Zeeman splitting.

the trivial regime (field cuts “1” and “2”) and the topological
regime (field cut “3”), regardless of whether the ZBCP is split
or not. By contrast, for the uncovered and the half-covered
dots (top and middle panels, respectively) the peak height can
have any value between 0 and 4e2/h in the trivial regime
and becomes quantized in topological regime. Of course, a
quantized ZBCP can be obtained even in the trivial regime at
certain specific values of the Zeeman field, but its quantization
is not robust against small variations of the control parameters
(e.g., Zeeman splitting, chemical potential, SC gap).

A key requirement for the realization of topological su-
perconductivity and Majorana zero modes in semiconductor-
superconductor hybrid structures is that the applied magnetic
field be perpendicular to the effective Rashba spin-orbit (SO)
field. More specifically, the MZMs are robust against rotations
of the applied field in the plane perpendicular to the SO field,
but become unstable as the angle between the applied and
the SO fields (which corresponds to π/2 − θ in the inset
of Fig. 16) is reduced. The natural question is whether the
nearly-zero ABS modes induced by a quantum dot (or other
type of inhomogeneity) show a similar behavior. We find that
the coalescing ABSs (and, more generally, the low-energy

FIG. 17. Dependence of the low-energy spectrum on the field
orientation for a wire-dot system in the Majorana regime. The model
parameters are the same as in Fig. 14(b), except the chemical potential,
which is set to μ = −0.25�ind. The top panel corresponds to a field
oriented along the wire (or any other direction in the x−z plane),
while the bottom panel corresponds to an angle θ = π/3 in the x−y

plane (see inset of Fig. 16). Note the similarity with the bottom panel
from Fig. 16.

spectrum) are insensitive to rotations of the applied field in
the plane perpendicular to the effective SO field (i.e., the
x−z plane in Fig. 16). This property is illustrated by the
spectrum shown in the top panel of Fig. 16 corresponding
to a field oriented along the z axis. Note that this spectrum is
identical to Fig. 14(b), which corresponds to a field oriented
along the x axis. By contrast, when the field is rotated in the
x−y plane, the nearly zero ABS mode becomes unstable (see
the middle and bottom panels in Fig. 16). In addition, the
spectrum becomes gapless above a certain (angle-dependent)
value of the Zeeman splitting. We conclude that the coalescing
ABSs behave qualitatively similar to the MZMs with respect
to rotations of the field orientation. To further support this
conclusion, we calculate the low-energy spectra of the wire-dot
system in the Majorana regime for two different orientations
of the applied magnetic field. The results are shown in Fig. 17.
We note that rotating the field in the x−z plane (i.e., the plane
perpendicular to the SO field) does not affect the spectrum.
By contrast, rotating the field in the x−y plane changes the
low-energy features in a manner similar to that discussed in
the context of coalescing ABSs.

Before concluding this section, we compare a hybrid
system having a (strongly coupled) quantum dot near one
end with an inhomogeneous system with a smooth effective
potential as shown in Fig. 13(c). In the language of Ref. [36],
this would correspond to a long-range inhomogeneity, in
contrast to the quantum dots which can be viewed as short-
range inhomogeneities. The low-energy spectrum of the non-
homogeneous system is shown in Fig. 18. At zero field,
the energy of the ABS is lower than the induced gap as a
result of the nanowire being only partially covered (about
90%) by the parent superconductor, as discussed above. Note
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FIG. 18. Low-energy spectrum as function of the applied Zeeman
field for a system with smooth nonhomogeneous effective potential
[see Fig. 13(c)]. The length of the parent SC is the same as in the
case of half-covered quantum dot (i.e., a segment of the wire of
about 125 nm is not covered). Note the robust (nearly) zero mode
and the absence of a well defined minimum of the quasiparticle
gap corresponding to the crossover between the trivial and the
“topological” regimes.

the striking absence of a minimum of the quasiparticle gap,
which would signal the topological quantum phase transition
in a homogeneous system. The merging ABSs form a very
robust nearly-zero mode, which, according the analysis in
Ref. [36], consists of partially overlapping Majorana bound
states. The low-energy differential conductance corresponding
to the nearly zero mode in Fig. 18 is shown in Fig. 19 (as
function of the Zeeman field for three different values of the
bias voltage) and Fig. 20 (as function of the bias voltage for
three different Zeeman fields marked “1,” “2,” and “3” in
Fig. 18). The low-bias differential conductance traces shown
in Fig. 19 have values between 0 and (almost) 4e2/h. In
particular, the differential conductance exceeds 2e2/h in the
vicinity of the first zero-energy crossing, VZ ≈ 0.3 meV (see
Fig. 18). However, in practice it would be extremely difficult to
observe a ZBCP larger than 2e2/h at finite temperature. This
is due to the fact that the contribution exceeding the quantized
value forms a very narrow secondary peak (see Fig. 20, left
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FIG. 19. Dependence of the low-energy differential conductance
on the Zeeman splitting for the nonhomogeneous wire with the
spectrum shown in Fig. 18. The black, orange (light gray), and
red (gray) lines correspond to a bias voltage Vbias = 0.05,0.15, and
0.75 μV, respectively.
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FIG. 20. Zero-temperature differential conductance as function
of the bias voltage for three different values of the Zeeman field
marked “1,” “2,” and “3” in Fig. 18.

panel), similar to the completely covered dot shown in Fig. 15.
We interpret the double-peak structure of the ZBCP as resulting
from the partially overlapping Majorana bound state (MBS)
that form the ABS. The broad peak is generated by the MBS
localized closer to the wire end (which is strongly coupled to
the metallic lead), while the narrow additional peak is due to
the MBS localized further away from the end (which is weakly
coupled to the lead). Finally, we note that the low conductance
values in Fig. 19 are due to the splitting of the ZBCP. However,
the maximum value of the ZBCP is practically quantized at
very low (but finite) temperature, as evident from the results
shown in Fig. 20.

In summary, the results presented in this section lead
us to the following conclusions. First, semiconductor-
superconductor hybrid systems having strongly coupled quan-
tum dots at the end of the wire, which can be viewed as systems
with short-range potential inhomogeneities, generate ABSs
that, quite generically, tend to merge at zero energy with in-
creasing Zeeman field, but still within the topologically-trivial
regime. Second, ABSs with energies at VZ = 0 significantly
lower than the induced gap and low values of the merging
field V ∗

Z are likely to generate extremely robust topologically
trivial ZBCPs. Third, measuring a quantized (to 2e2/h) ZBCP
does not provide definitive evidence for Majorana zero modes
(although finding ZBCP quantization which is robust over
variations in many parameters, e.g., magnetic field, chemical
potential, tunnel barrier, carrier density, would be very strong
evidence for the existence of MZMsas emphasized already
in this paper). However, trivial conductance peaks generated
by merging ABSs having wave functions partially localized
outside the superconducting region are generally expected to
produce ZBCPs with heights between 0 and 4e2/h. In this
regime, an accidental quantized peak will not be robust against
small variations of the control parameters. By contrast, if the
wave function is entirely inside the proximitized region, the
ZBCP is (practically) quantized and cannot be distinguished
from a MZM-induced conduction peak by a local tunneling
measurement. In this case, a minimal requirement for the
Majorana scenario is to be able to reproduce the (robust)
ZBCP by performing a tunneling measurement at the opposite
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end of the wire, in the spirit of Ref. [50]. Finally, our
fourth conclusion is that very similar phenomenologies can
be generated using rather different effective potentials(i.e., the
effective “quantum dot” leading to the ABS could arise from
many different physical origins and could lie inside or outside
the nanowire). A better understanding of the profile of the
effective potential along the wire (which can be obtained,
for example, by performing detailed Poisson-Schrodinger
calculations) represents a critical task in this field.

VII. UNDERSTANDING NEAR-ZERO-ENERGY ANDREEV
BOUND STATES FROM REFLECTION MATRIX THEORY

The absence of level repulsion in symmetry class D
enhances the likelihood of a pair of levels sticking together
at zero energy as some parameter such as the Zeeman splitting
or the chemical potential is varied as discussed throughout
this manuscript. Despite this generic fact associated with
symmetry class D that describes systems containing Zeeman
splitting, spin-orbit coupling and superconductivity, the range
of Zeeman splitting over which the spectrum sticks is not
guaranteed to be large. In fact, the range of Zeeman field is
typically not large for most disordered Hamiltonian [29]. In the
experiment in Ref. [20] and in our simulations (with quantum
dots, but no disorder), however, the zero-sticking propensity
of trivial ABSs extends over a large range of Zeeman
splitting (VZ).

A more specific mechanism that provides a relatively robust
(compared to the usual disordered class D) near-zero-energy
states within symmetry class D involves the so-called smooth
confinement [34,36]. The essential idea is that large Zeeman
splitting (VZ) compared to SC pairing (�) suppresses conven-
tional s-wave pairing compared to p-wave pairing leading to
a tendency for the formation of Majorana states at the end of
the system for each spin-polarized channel in the nanowire.
However, the end potential typically scatters between the
different channels and gaps the Majorana fermions out, i.e., an
MZM splitting develops. If the interchannel scattering between
different channels is weak then this Majorana splitting is small
and there is a near-zero-energy state in such a potential. This
near-zero-energy mode is, however, nontopological as it is
arising from split Majorana modes at the wire end. Thus, the
ABS producing the ZBCP is a composite of two MZMs, only
one of which contributes to tunneling, leading to a robust
almost-zero mode in the trivial regime.

In Sec. VII A, we will first show the energy spectra
for the quantum dot-proximitized nanowire hybrid structure
using various parameters (e.g., chemical potential μ, nanowire
length L, dot length l, etc.) to show the trend of zero-energy
sticking in the parameter regime. Second in Sec. VII B, we
use reflection matrix theory to explain why such zero-sticking
bound states exist in the relevant parameter regime.

A. Energy spectra for hybrid structures
with various parameters

We show the energy spectra for various hybrid structures
in Fig. 21. The few relevant parameters we focus on and
thus vary between panels are chemical potential μ, length
of the nanowire L, length of the quantum dot l, while all
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FIG. 21. Energy spectra for hybrid structures with various param-
eters. (a) μ = 4.5 meV, nanowire length L = 1.0 μm, dot length l =
0.3 μm. (b) μ = 12.0 meV, L = 1.0 μm, l = 0.3 μm. (c) μ = 12.0
meV, L = 4.0 μm, l = 0.3 μm. (d) μ = 12.0 meV, L = 4.0 μm,
l = 1.0 μm.

other parameters, e.g., pairing potential �0 = 0.9 meV, etc.,
are kept the same as the default values introduced in the
previous sections. Figure 21(a) shows the energy spectrum of
a typical hybrid structure discussed in the previous sections,
with the parameters conforming to the known values in the
realistic experimental setup. There is a finite range of Zeeman
splitting over which the energy of the topologically trivial
ABSs stick around zero. Through Figs. 21(b) to 21(d), we
step by step increase the chemical potential μ, the length of
the semiconductor-superconductor nanowire L, and the length
of the quantum dot l. Finally, with all the three parameters
μ, L, l large in Fig. 21(d), the energy of the trivial ABS
is even closer to zero energy, and even more strikingly, the
range of Zeeman splitting for such near-zero-energy ABSs
becomes extremely large, starting from a few times the pairing
potential up to the chemical potential. The trend of decreasing
ABS energy and increasing range of zero-energy sticking
shown by Figs. 21(a) to 21(d) indicates that Figs. 21(a)
and 21(d) are essentially adiabatically connected. In the
following subsection, we will discuss why there exist such
near-zero-energy ABSs over such a large range of Zeeman
field in large μ, L, l limit using reflection matrix theory.
Since realistic situation is adiabatically connected to this large
μ, L, l limit, our understanding will also apply to most of the
hybrid structures discussed in previous sections. Note that this
discussion also explains why the zero-sticking of ABSs mostly
arises in the large chemical potential regime.

B. Understanding zero-energy sticking
from reflection matrix theory

In the previous subsection, numerical simulations show
strong evidence that the energy of the ABSs approaches
zero energy and the range of such near-zero-energy stick-
ing increases with increasing chemical potential, increasing
nanowire length, and increasing quantum dot length. Thus,
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FIG. 22. A schematic for the NS junction setup. Although the
setup is exactly the same as that shown in Fig. 1, an imaginary
piece of semiconductor is added between the quantum dot and
the semiconductor-superconductor nanowire for the discussion of
reflection matrix theory.

here we try to understand this phenomenon using reflection
matrix theory. The setup is shown in Fig. 22. Although the
NS junction setup is exactly the same as that shown in Fig. 1,
an imaginary piece of semiconductor is added between the
quantum dot and the semiconductor-superconductor nanowire
for the discussion of the reflection matrix theory. This
imaginary semiconductor can also be regarded as a part of
the quantum dot but with nearly homogeneous potential. The
total reflection matrix from the hybrid structure is

r = rb + t ′(rSC + rSCrQDrSC + · · · )t

= rb + t ′(1 − rSCrQD)−1rSCt, (16)

where rb is the reflection matrix for the incoming modes in
the lead reflected by the barrier, t is the transmission matrix
for the lead modes transmitting to the semiconductor, rSC is
the reflection matrix for the semiconductor modes reflected by
the proximitized nanowire, rQD is the reflection matrix for the
semiconductor modes reflected by the quantum dot, and t ′ is
the is the transmission matrix for the semiconductor modes
transmitted to the lead. The near-zero-energy differential
conductance is

G = e2

h
Tr(1̂ − r†eeree + r

†
herhe) = 2e2

h
Tr(r†herhe), (17)

where rhe is the Andreev reflection matrix from the hybrid
structure. The last step holds due to the unitarity of the total
reflection matrix when bias voltage is below the supercon-
ducting gap. The Andreev reflection is contained in the second
term of Eq. (16), and the pole of (1 − rSCrQD)−1 corresponds
to the peak of the differential conductance. On the other hand,
the pole of the reflection matrix is also the condition for the
formation of a bound state, i.e., a bound state forms when

Det(1 − rSCrQD) = 0 (18)

is satisfied.
In the large Zeeman field limit, i.e., VZ 	 �, αR , the

spin-orbit-coupled nanowire can be thought of as two spin-
polarized bands with a large difference in chemical potential
and Fermi momenta. When considering the scattering process
between the effectively spin-polarized semiconductor and
the semi-infinite superconductor, the momentum must be
conserved in the limit of Andreev approximation � � μ. The
constraint of momentum conservation prohibits the normal
reflection between either the same or the other spinful channel
due to the large difference in Fermi momenta between two
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FIG. 23. Matrix elements for the reflection matrices from the
semiconductor-superconductor nanowire and the quantum dot, with
chemical potential μ = 12 meV, VZ = 8 meV. The upper panels are
the Andreev reflection between each spinful channel with in index 0
and 1 [i.e., the |eiα| in Eq. (19)] as a function of nanowire length. In
the long nanowire limit, the Andreev reflection becomes perfect. The
lower panels are the normal reflection between each spinful channel
[i.e., the |eiβ | in Eq. (20)] as a function of dot length.

channels. Thus, the scattering process between semiconductor
and the superconductor can be thought of as effectively two
independent perfect Andreev reflection processes among each
spin-polarized channel. So the reflection matrix for each
channel can be written as

rSC =
(

0 eiα

e−iα 0

)
. (19)

For the scattering process between the semiconductor and the
quantum dot, when the dot potential is smooth, the normal
reflection only connects the Fermi level within the same spinful
channel, and thus again the two spin-polarized bands of the
semiconductor can be thought of as independent of each other.
So the reflection matrix for each band can be written as

rQD =
(

eiβ 0
0 e−iβ

)
. (20)

The numerical evidence for the form of rSC and rQD are shown
in Fig. 23, which is consistent with our argument in the large
Zeeman field and Andreev approximation limit. It is easy to
see that such zero-bias reflection matrices satisfy the condition
for the formation of a bound state, i.e., Eq. (18). It indicates
that in the large Zeeman field and Andreev approximation
limit, the semiconductor-superconductor nanowire can be
seen as consisting of two nearly spin-polarized p-wave
superconductors, and each of them holds a MZM at the wire
end. Since the interchannel coupling between the two p-wave
superconductors is weak in the presence of a smooth dot
potential at the wire end, the two MZMs from two channels
do not gap out each other, they form a near-zero-energy ABS.

Although the above discussion assumes large chemical
potential, long semiconductor-superconductor nanowire, and
long quantum dot, the conclusion well applies to the realistic
situation with intermediate value of chemical potential, finite
length of the nanowire and quantum dot, since these two
situations are adiabatically connected with each other. This
conclusion is explicitly verified by the extensive numerical
results presented in this work.
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VIII. CONCLUSION

We have developed a non-interacting theory for the low-
lying energy spectra and the associated tunneling transport
properties of quantum dot-nanowire-superconductor hybrid
structures focusing on quantum dots strongly coupled to the
proximitized wire. The theory is motivated by a striking recent
experiment [20] reporting intriguing coalescence of Andreev
bound states into zero-energy states characterized by zero-bias
conductance peaks that mimic the predicted Majorana zero
mode behavior. The specific question we address in our work is
whether the midgap coalescence of Andreev bound states and
their sticking together propensity at zero energy necessarily
imply a metamorphosis of Andreev states into topological
Majorana modes in the presence of spin-orbit coupling and
Zeeman splitting. The topological Majorana bound states are
operationally defined as the pairs of well-separated Majorana
zero modes localized at the opposite ends of the wire, while
the Andreev bound states, which can be viewed as pairs of
overlapping (or partially overlapping) Majorana zero modes,
are localized near one end of the hybrid system. Our numerical
simulations produce essentially exact qualitative agreement
with the data of Ref. [20], reproducing the observed features
of the Andreev states as functions of Zeeman splitting and
chemical potential, although a quantitative comparison (and
hence, a definitive conclusion) is impossible because the
experimental parameters to be used in the theory are mostly
unknown.

Our conclusion is that in strongly-coupled dot-nanowire
hybrid structures (and in the presence of superconductivity,
Zeeman splitting, and spin-orbit coupling) Andreev states
generically coalesce around zero energy producing zero-bias
tunneling conductance values that mimic Majorana properties,
although the physics is non-topological. In fact, the transport
properties of such “accidental” almost zero-energy trivial
Andreev states in class D systems are (locally) difficult to
distinguish from the conductance behavior of topological
Majorana zero modes. We show that this zero-energy-sticking
behavior of trivial Andreev bound states (superficially mim-
icking topological Majorana behavior) persists all the way
from an isolated (i.e., nonsuperconducting) quantum dot at the
end of the nanowire to a quantum dot completely immersed
inside the nanowire (i.e., superconducting) as long as finite
Zeeman splitting and spin-orbit coupling are present. Our
theory thus connects the recent observations of Deng et al.
[20] to the earlier observations of Lee et al. [32], who studied
Andreev bound states in a superconducting dot (not attached
to a long nanowire), establishing that the physics in these
two situations interpolates smoothly. In both these cases,
zero-bias conductance peaks may arise from trivial Andreev
bound states in the presence of superconductivity, spin-orbit
coupling, and Zeeman splitting. Of course, in a small quantum
dot, the concept of MZMs does not apply because of strong
overlap between the two ends, whereas in the Deng et al.
experiment (i.e., in a dot-nanowire hybrid system), the ZBCP
may arise from either trivial ABS or topological MZM. We
establish, however, that in both cases the ABS can be thought
of as overlapping MZMs, and hence the generic zero-sticking
property of the ABS arises from the combination of spin-orbit
coupling, spin splitting, and superconductivity. An immediate

(and distressing) conclusion of our work is that the observation
of a zero-bias conductance peak (even if the conductance
value is close to the expected 2e2/h quantization) cannot by
itself be construed as evidence supporting the existence of
topological Majorana zero modes. In particular, both trivial
Andreev bound states and topological Majorana bound states
may give rise to zero-bias peaks, and there is no simple way of
distinguishing them just by looking at the tunneling spectra.
Since the possibility that a given experimental nanowire may
contain inside it some kind of accidental quantum dot can
never be ruled out, the tunneling conductance exhibiting
zero-bias peaks in any nanowire may simply be the result
of the existence of almost-zero-energy Andreev bound states
in the system. Our work shows this generic trivial situation
to be a compelling scenario, bringing into question whether
any of the observed zero-bias conductance peaks in various
experiments by themselves can be taken as strong evidence
in favor of the existence of Majorana zero modes since the
possibility that these ZBCPs arising from accidental trivial
ABSs cannot a priori be ruled out. Consequently, a zero-bias
conductance peak obtained by tunneling from one end of the
wire cannot be accepted as a compelling topological Majorana
signature (even when the height of the peak is quantized at
2e2/h), since a likely alternative scenario is that the zero-bias
peak is, in fact, a signature of a trivial Andreev bound state
associated with a strongly coupled quantum dot or other
type of inhomogeneity (unintentionally) present in the system.
One must carry out careful additional consistency checks on
the observed ZBCPs to carefully distinguish between ABS and
MZM.

Therefore, to be more decisive, transport experiments must
demonstrate the robustness of the quantization to all possible
variations in the barrier. One possibility is to study avoided
crossings between levels in the quantum dot and a potential
Majorana state [40,41] that essentially eliminate the quantum
dot. This can be done for example by extending the normal
region in the semiconductor wire in between the metallic and
superconducting lead shown in Fig. 1. By such an extension,
one can enhance gate control so as to be able to create a
single-channel quantum point contact. The quantization of
the conductance (at low enough temperature compared to
the transmission of the point contact) is still a topological
invariant [55]. In addition, one should always check (by using
suitable externally controlled gate potentials) the stability of
any observed ZBCP to variations in the tunnel barrier as well
as the electrostatic environment near the wire ends (as in
Sec. V). This test is absolutely essential in our opinion since
the ABS-induced trivial ZBCP should manifest splitting as
the dot potential is tuned strongly. Despite these checks, it is
still likely that transport measurements will need to include
additional consistency tests to confirm the nonlocal nature of
the Majorana modes (e.g., observing the ZBCPs from both
ends of the wire, measuring nonlocal correlations) and their
robustness (e.g., robustness of the ZBCP quantization against
variations of the barrier height, Zeeman splitting, chemical
potential, and other variables). Any type of hybrid structure
that is not capable of passing these relatively straightforward
tests of ZBCP robustness would not be suitable for more
complex experiments involving interferometry, fusion, or
braiding. In short, a ZBCP is only a necessary condition
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for an MZM, and could easily arise also for non-topological
zero-energy ABSs in class D systems.

The obvious consistency test is of course the robustness
of the ZBCP to variations in all controllable experimental
parameters. The topological MZM-induced ZBCP should
show stable robustness, whereas the ABS-induced ZBCP will
not. In particular, we discuss in Sec. V that varying the dot
potential will lead to splitting or possibly even disappearance
of the trivial ABS-induced ZBCP, but the MZM-induced ZBCP
should be relatively stable. This, in principle, enables a unique
distinction between the two cases, but in reality this may not
be as simple. Since the “quantum dot” is often not obvious, it
is not clear how to vary its potential. Perhaps the most obvious
check is to use additional gates with varying gate voltage to
ensure a complete stability of the observed ZBCP. Another
possible test is rotating the magnetic field, but here both trivial
and topological MZMs go away as the field is rotated toward
the spin-orbit direction in the wire (and is unaffected by any
rotation in the plane perpendicular to the spin-orbit direction).
Although there are quantitative differences between the two
cases, it may not be easy to be definitive. Seeing correlations
in the ZBCP while tunneling from the two ends of the wire
separately may be quite definitive since it is unlikely that the
same ABS can be operational at both ends of the wire (as it
requires identical quantum dot confinements at the two ends),
but this kind of correlated tunneling measurements from both
wire ends have not yet been successfully performed in the
laboratory.

We find that generically the ABS-induced ZBCPs require
high values of chemical potential, μ > �, and for μ 	 �,
the trivial zero-sticking region could extend over a very large
Zeeman field range from VZ = � to μ, with the eventual
topological phase emerging at a still higher field

√
�2 + μ2.

But, some nonuniversal beating or apparent oscillation of the
ZBCP around zero energy is likely since the ABSs do not stick
precisely to zero energy as there is no exponential protection
here unlike the corresponding MZM case in the long-wire
limit. On the other hand, the MZM-induced ZBCPs also
manifest an apparent beating around zero energy due to MZM
splitting oscillations arising from Majorana overlap invariably
present in any finite wire. (We note that the exponentially
small MZM splitting can only happen in very long wires since
at high magnetic field the induced gap is small making the SC
coherence length very large.) The question, therefore, arises
if the oscillatory behaviors of the two situations (the ABS
beating around zero energy in the trivial phase because of
the zero-sticking in D class SC versus the MZM oscillating
around zero energy in the topological phase due to the
Majorana overlap from the two ends) can somehow be used
to distinguish trivial and topological zeros. This question was
addressed in a related, but somewhat different, context by Chiu
et al. [37] in trying to understand the experiment of Albrecht
et al. [17]. In fact, Chiu et al. showed [37] that the data
of Albrecht et al. claiming exponential Majorana protection
[17] can be understood entirely by invoking ABS physics,
consistent with our findings in the current work. We show in
Appendix F our calculated low-lying energy spectra for both
trivial ABS and topological MZM approximate zero-modes in
simple nanowire and hybrid (i.e., nanowire + dot) structures
respectively, keeping all the other parameters very similar. It is

clear that the oscillatory or beating structures in the two cases
are superficially similar except that the ABS oscillations are
nonuniversal, whereas the MZM oscillations always manifest
increasing amplitude with increasing VZ by virtue of the
decreasing induced gap with increasing VZ .

We mention that although we have used the terminology
“class D” to describe the system and the physics studied in the
current work, the standard terminology for class D systems
[29–31,52,53] specifically invokes disorder and discusses
random or chaotic systems whereas we are discussing clean
systems with no disorder. We only mean the simultaneous
presence of spin-orbit coupling, Zeeman splitting, and su-
perconductivity when we mention “class D,” and as such
our ABS-induced ZBCP is fundamentally distinct from those
discussed in Refs. [29–31,53].

Before concluding, we point out that, although Ref. [20]
contains some of the most compelling experimental evidence
for the existence of stable almost-zero-energy Andreev bound
states in quantum dot-nanowire hybrid structures, there have
been several earlier experiments hinting at the underlying
Andreev physics discussed in our work. The foremost in this
group is, of course, the experiment by Lee et al. [32] who
studied zero-bias peaks induced by Andreev bound states in
quantum dots in the presence of spin-orbit coupling, Zeeman
splitting, and superconductivity. But a reevaluation of the
experimental data in the InAs-Al system by Das et al. [13],
where the nanowires were typically very short (i.e., almost
dot-like), indicates that the zero-bias peak in this experiment
is most likely a precursor of the Deng et al. experiment
with Andreev bound states coming together and coalescing
around midgap with increasing Zeeman splitting. Of course,
in a very short nanowire the midgap state is an operational
Andreev bound state by construction, since the condition of
“well separated” Majorana bound states cannot be satisfied
due to the short wire length. By contrast, in long wires with
quantum dots (engineered or unintentional) and other types
of inhomogeneities, the emergence of topological Majorana
modes is possible (and may very well have happened for
some of the ZBCPs observed in Ref. [20]), but the observation
of a robust zero-bias peak does not guarantee their presence
(since trivial coalescing Andreev bound states are a likely
alternative). Recent theoretical work by Chiu et al. [37]
provides support to the idea that the experimental observation
of Coulomb blockaded zero-bias peaks by Albrecht et al.
[17] in a quantum dot-nanowire hybrid structure most likely
arises from the presence of Andreev bound states in the
system(in combination with MZMs). Finally, very recent
unpublished work from Delft and Copenhagen [56,57] hint at
the possibility that zero-bias conductance peaks manifesting
conductance values 2e2/h may have now been observed in
nanowire systems. The peaks could be Majorana-induced,
but (trivial) Andreev bound states generated by unintentional
quantum dots present in these structures represent a likely
alternative scenario that a priori cannot be ruled out without a
systematic study of the barrier dependence as discussed in the
last paragraph. To understand these brand new experiments in
high-quality epitaxial semiconductor-superconductor hybrid
structures, more work is necessary involving both experiment
(i.e., performing the consistency tests) and theory (e.g., mod-
eling the effective potential profiles). In particular, robustness
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of the ZBCP to variations in parameters (e.g., magnetic field,
chemical potential, tunnel barrier, dot confinement) is essential
before MZM claims can be taken seriously even when the
ZBCP is quantized at 2e2/h.

The key message of our work is that Andreev bound
states could coalesce in the trivial superconducting regime of
nanowires producing surprisingly stable almost-zero-energy
modes mimicking Majorana zero mode behavior even in
completely clean disorder-free systems, thus making it difficult
to differentiate between Andreev bound states and Majorana
zero modes in some situations. Thus, the existence of a
zero-bias conductance peak is at best a necessary condition
for the existence of Majorana zero modes.
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APPENDIX A: CONDUCTANCE OF TWO-SUBBAND
SIMPLE NANOWIRE MODEL

For a quasi-one-dimensional nanowire with small cross
section, a second subband may appear. We model the second
band using the same Hamiltonian as Eq. (1) but with a higher
chemical potential μ′ = 5 meV such that the second band is
always nontopological within the range of Zeeman field of
our interest. The total conductance through this two-subband
model is approximately the sum of the individual conductance
through each band. The differential conductance for two such
nanowires are shown in Fig. 24. The most significant features
are the kF peaks from the second band, in addition to all
the other features already existing in the one-band model. In
Fig. 24(a), the proximity superconducting effect is introduced
by a constant s-wave pairing �0τx . In Fig. 24(b), proximity
effect is introduced by a self-energy term in Eq. (4) with a

Zeeman-dependent bulk gap �(VZ) as in Eq. (6). Thus the
crucial difference between the two cases is that in Fig. 24(b),
there is an edge of quasiparticle continuum above which
conductance becomes smeared and featureless.

APPENDIX B: CONDUCTANCE OF HYBRID STRUCTURE
WITH CONSTANT S-WAVE PAIRING

The differential conductance for one-band and two-band
hybrid structures with constant s-wave pairing are shown in
Fig. 25. In Fig. 25(a), low-energy (small-bias) behavior of
conductance is quite similar to the case with self-energy in the
main text shown in Fig. 4(a), while high-energy (large-bias)
behavior of conductance is quite different because there is no
quasiparticle continuum in this case, leading to clear patterns
in conductance. For two-band model with a second band with
larger chemical potential μ′ = 10 meV, the total conductance
is approximated as the sum of the conductance of each band
separately. The differential conductance is shown as Fig. 25(b).
In addition to almost the same behavior as the one-band model,
a significant new feature is that the conductance from the
lowest few eigenstates from the second band is much larger and
broader than the first band. This is because a higher chemical
potential is effectively lowering the tunneling barrier, thus
enhancing conductance.

APPENDIX C: ENERGY SPECTRA WITH AND WITHOUT
SPIN SPLITTING AND SPIN-ORBIT COUPLING

Here we show the calculated energy spectra of hybrid
structures with and without Zeeman spin splitting and spin-
orbit coupling in Figs. 26 and 27. As shown in the lower
panels of Fig. 26, spectra have no zero-energy states when
the Zeeman splitting is turned off. On the other hand, as
shown in the lower panels of Fig. 27, the low-energy spectra
without spin-orbit coupling are composed of straight lines.
In these cases the energy spectra have a simple analytic
form E = VZ ± √

ε2 + �2, where ε is the eigen-energy of
nanowire without Zeeman splitting and spin-orbit coupling,

FIG. 24. Differential conductance through simple two-subband Majorana nanowires with chemical potential μ = 0 meV, μ′ = 5.0 meV,
and length L = 1.3 μm. (a) The proximity superconducting effect is introduced by a constant s-wave pairing �0τx . (b) The proximity effect is
introduced by a self-energy term in Eq. (4) with a Zeeman-dependent bulk gap �(VZ) as in Eq. (6).
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FIG. 25. Differential conductance for hybrid structures with constant s-wave pairing. (a) One-band model with μ = 0 meV. (b) Two-band
model with a second band of larger chemical potential μ′ = 10 meV.

and the energy scales linearly with Zeeman field. It is clear
that superconductivity along with both Zeeman splitting and
spin-orbit coupling are necessary for obtaining low-energy
Andreev bound states sticking to the midgap.

APPENDIX D: EXPANSION OF PROJECTED
SELF-ENERGY TERM IN QUANTUM DOT SUBSPACE

We can constrain the form of the projected self-energy F (ω)
making use of the particle-hole symmetry in the nanowire:

P −1HNWP = −HNW, (D1)

where P = σy ⊗ τyK . Thus, for any eigenstate |ψa〉 with
eigenenergy E, there must be another state |ψā〉 = P |ψa〉 with

eigenenergy −E. So applying particle-hole symmetry onto the
projected self-energy F (ω) in the quantum dot subspace, we
have

Fab(ω) = 〈ψa|u 1

ω − HNW
u†|ψb〉

= 〈ψa|P −1Pu
1

ω − HNW
u†P −1P |ψb〉

= 〈ψā|u 1

ω + HNW
u†|ψb̄〉

= −Fāb̄(−ω). (D2)

µ (meV )µ (meV ) µ (meV )µ (meV )

µ (meV )µ (meV ) µ (meV )µ (meV )

E
(m

eV
)

E
(m

eV
)

FIG. 26. Energy spectra of hybrid structures with and without Zeeman spin splitting. The four panels in the upper row (a–d) show energy
spectra as function of chemical potential at finite Zeeman spin splitting VZ = 1.5 meV. The spectra generically cross zero energy. The four
panels in the lower row (e–h) show energy spectra without Zeeman spin splitting, i.e., VZ = 0. The spectra have no zero energy states.
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FIG. 27. Energy spectra of hybrid structures with and without spin-orbit coupling. The four panels in the upper row (a–d) show energy
spectra as function of Zeeman field with SOC αR = 0.5 eV Å. Chemical potential is μ = 3 meV except that in (d) and (h) μ = 5 meV. The
four panels in the lower row (e–h) show energy spectra without SOC, i.e., αR = 0.

If we expand the 2 × 2 matrix of F (ω) by Pauli matrices,

F (ω) = f0(ω)γ0 + fx(ω)γx + fz(ω)γz, (D3)

and it is easy to see that f0,x are odd functions of ω, while fz is
an even function of ω based on Eq. (D2). The absence of γy is
due to the fact that the Hamiltonian HNW is accidentally real.

APPENDIX E: SPECTRA OF ABSS AND THEIR
WAVE-FUNCTIONS

We show spectra of hybrid structures with unproximitized
quantum dot (dot length l � 0.3 μm) as a function of the
dot depth VD and the corresponding wave-functions of these
ABSs in Fig. 28. The upper panels are spectra, for which

Spectrum of hybrid structure Spectrum of hybrid structure Spectrum of hybrid structureSpectrum of hybrid structure

E
(m

eV
)

Ψ
2

VD (meV ) VD (meV ) VD (meV ) VD (meV )

wavefunction of ABSwavefunction of ABS wavefunction of ABSwavefunction of ABS

FIG. 28. Spectra of hybrid structures with unproximitized quantum dot (dot length l � 0.3 μm) as a function of the dot depth VD and the
corresponding wave-functions of these ABSs. The upper panels are the spectra of increasing chemical potential (from left to right). The lower
panels are the corresponding wave-functions.
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Spectrum of simple nanowire (a) Spectrum of simple nanowire (b) Spectrum of hybrid structure (c) Spectrum of hybrid structure (d)

Spectrum of simple nanowire (e) Spectrum of simple nanowire (f) Spectrum of hybrid structure (g) Spectrum of hybrid structure (h)

VZ (meV ) VZ (meV )VZ (meV ) VZ (meV )

VZ (meV ) VZ (meV )VZ (meV ) VZ (meV )

E
(m

eV
)

E
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)

FIG. 29. Comparison of the energy spectra in simple nanowire and hybrid structure: the left four panels (a), (b), (e), (f) are energy spectra
for simple nanowires and the right panels (c), (d), (g), (h) are energy spectra for hybrid structures with a quantum dot outside the SC nanowire.
In all cases, topological MZM-induced ZBCPs form when VZ >

√
�2 + μ2, with μ = 0 for panels (a), (c), (e), (g), while μ = 4 meV for

panels (b), (d), (f), (h). Upper panels (a–d) have shorter nanowire length L = 1 μm, so we can see apparent Majorana oscillations due to
Majorana overlap in contrast with lower panels (e–h) with longer wires L = 4 μm and thus less Majorana overlap. For hybrid structures with
large chemical potential (d, f), we also see beating or oscillation patterns in the nontopological regime arising from Andreev bound states (e.g.,
VZ < μ). But these patterns are non-universal while the amplitude of Majorana oscillations has a universal trend of increasing with increasing
VZ (a–d). All parameters in the two systems (nanowire and hybrid) are the same except for the presence of a quantum dot outside the nanowire
in the hybrid structure.

we focus on the spectra of ABSs within the induced SC
gap. The trend is that at low chemical potential (upper
left panels), the spectra of ABSs are quite sensitive to the
depth of quantum dot, while at high chemical potential
(upper right panels), the spectra of ABSs are insensitive
to the depth of quantum dot. This can be understood by
looking at the corresponding wave functions, as shown in
the lower panels. When the chemical potential is small, the
wave function (lower left panels) is quite localized inside
the quantum dot, and therefore the ABS is easily affected
by the dot depth. When the chemical potential is large, the
wave function becomes more extended, leaking well into the
nanowire (lower right panels) due to a larger Fermi wave
vector. Thus, a variation of dot depth affects only a fraction
of the wave function, leading to a minor change in the
spectra.

APPENDIX F: MAJORANA OSCILLATIONS
AND ABS OSCILLATIONS

We show here in Fig. 29 the calculated results for topologi-
cal MZM and trivial ABS oscillations in simple nanowire and
nanowire + dot hybrid systems for two different wire lengths.
In both cases, TQPT point is at VZc = 0.9 meV for μ = 0 and
at VZc � 4.1 meV for μ = 4.0 meV. For hybrid structures with
large chemical potential [Figs. 29(d) and 29(f)] we see beating
or oscillation patterns in the nontopological regime arising
from Andreev bound states (e.g., VZ < μ). But these patterns
are nonuniversal while the amplitude of Majorana oscillations
[Figs. 29(a)–29(d)] has a universal trend of increasing with
increasing VZ . All parameters in the two systems (nanowire
and hybrid) are the same except for the presence of a quantum
dot outside the nanowire in the hybrid structure.
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