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SU(4) Kondo entanglement in double quantum dot devices
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We analyze, from a quantum information theory perspective, the possibility of realizing an SU(4) entangled
Kondo regime in semiconductor double quantum dot devices. We focus our analysis on the ground-state properties
and consider the general experimental situation where the coupling parameters of the two quantum dots differ.
We model each quantum dot with an Anderson-type Hamiltonian including an interdot Coulomb repulsion and
tunnel couplings for each quantum dot to independent fermionic baths. We find that the spin and pseudospin
entanglements can be made equal, and the SU(4) symmetry recovered, if the gate voltages are chosen in such a
way that the average charge occupancies of the two quantum dots are equal, and the double occupancy on the
double quantum dot is suppressed. We present density matrix renormalization group numerical results for the
spin and pseudospin entanglement entropies, and analytical results for a simplified model that captures the main

physics of the problem.
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I. INTRODUCTION

Quantum information theory has proved to be a powerful
tool to analyze many-body problems in condensed matter
physics, both providing new insights into strongly correlated
states and in the development of numerical tools [1-3]. En-
tanglement measures have been used to characterize quantum
phase transitions [4—7] and to analyze spatial correlations in
the Kondo problem [8—14], a paradigm example of many-body
physics.

In the Kondo problem, a spin-1/2 magnetic impurity
couples antiferromagnetically to a noninteracting Fermi sea.
As the temperature is lowered there is a crossover, at a
characteristic temperature Tk, from a free magnetic moment
regime to a fully screened regime. The Kondo temperature
Tk is the only relevant scale at low energies and all physical
properties are universal functions when properly scaled by
Tkx. The Kondo problem was first encountered for atomic
impurities in metallic hosts in the 1930s, remained unsolved for
more than 40 years and enjoyed arevival after 1998 when it was
realized in quantum-dot and in single-molecule devices [15].
The development of dynamical mean-field theory as a tool to
study the physics of strongly correlated electron systems in
the lattice spurred further interest on the Kondo problem and
other related multiorbital quantum impurity problems [16].

These and other related models present a rich variety of
phenomena as singular and non-Fermi liquid behavior and a
high sensitivity to external fields and may provide a road for the
understanding of strongly correlated materials. In particular,
the SU(4) Kondo model, which has been realized in carbon
nanotube devices [17-21], has an enhanced Kondo tempera-
ture and peculiar low-energy spectral properties that lead to
a large thermoelectric power at low temperatures [22,23]. It
has also been proposed as a means to build high-transmittance
spin-filtering devices [24-27].

The double-quantum-dot (DQD) device proposed in
Ref. [24] to observe the SU(4) Kondo effect was realized in
Ref. [28] and an excellent agreement in the transport properties
with an Anderson-like Hamiltonian was found. A scaling of
the conductance consistent with an SU(4) behavior was also
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reported. Nishikawa et al. in Ref. [29] showed, however, using
a renormalized perturbation theory treatment of the Anderson
model, that the low-energy effective Hamiltonian is not SU(4)-
symmetric unless the original model is SU(4)-symmetric or
the local interactions on the DQD are very large [29,30].
These conditions are not met in the experiments of
Ref. [28].

In this paper, we address this apparent contradiction using
quantum information theory tools. By analyzing the symmetry
of the entanglement of the ground-state wave function, we
show that charge fluctuations into doubly occupied states
must be vanishingly small or all doubly occupied states be
equally probable in order not to break the SU(4) symmetry.
Even for SU(4)-symmetric interactions and when the charge
symmetry between the quantum dots (QDs) is restored, the
fluctuations to doubly occupied states break the SU(4) symme-
try of the ground-state wave function when the electrode-QD
hybridizations of the two QDs differ. We show that it is
possible to reduce the size of SU(4) symmetry breaking in the
entanglement by reducing the DQD average occupancy to less
that one electron, therefore suppressing charge fluctuations
to the doubly occupied states. Interestingly, the results for
the SU(4) scaling presented by Keller et al. (Ref. [28]) are
precisely in a regime with less than a single electron on average
on the DQD.

The rest of the paper is organized as follows. The model
Hamiltonian and the methods are presented in Sec. II.
Numerical results for the entanglement entropy together with
analytical results for a toy model are presented in Sec. III.
Finally, a summary and the conclusions are presented in
Sec. IV.

II. MODEL AND METHODS

We consider a double-quantum-dot device DQD (see
Fig. 1), with a single relevant electronic level on each QD.
The device is described by the following Hamiltonian:

H=Hc+Hy+H,. (1)
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FIG. 1. Schematic representation of the double-quantum-dot
device. Each quantum dot (a and b) is tunnel coupled to a pair of
source (S, and S,) and drain (D, and D)) electrodes. The local (U,
and Up) and the interdot (U,;) electron-electron repulsion, and the
tunnel coupling of the quantum dots to the electrodes (Vj,, with
v = S,D, and ¢ = a,b) are indicated in the figure.

Here, H describes the electrostatic interaction on the QDs,

He= )"

{=a,b

> uohieg + Uitpritey | + Uapiafty,  (2)
o=14

where o = +1/2 indicates the electron spin projection along
the Z axis, figy = dgodg(, is the electron number operator of
the £th QD, 7ig = figy + #igy, U, is its charging energy, ., =
&¢ + ogupB, where B is the magnetic field Zeeman coupled
to the QDs’ spins, and &, = Uy — Cg¢ V¢ is controlled by a
gate voltage V,,, where Cg is the capacitance of QD £ with
its corresponding gate electrode,

v = Z Z Z(Vkvzdgacvm +H.c) 3)

v=S,D ¢=a,b k,o

describes the coupling between the QDs and their respective
source (S) and drain (D) electrodes, which are modeled by
noninteracting Fermi gases:

_ § : T
He[ - €vekCpro Cotko - (4)
v,l.k,o

This model was used in Ref. [28] and an excellent agreement
with the experimental results was obtained for the conductance
and low-energy spectral properties.

Each QD couples to a specific combination of states from
the source and drain electrodes ¢y ¢y = VL@ Dk 2 ViveCotkos

where Vy = /> . >, [Vinel?. For the study of equilibrium

properties, the coupling of the QDs to the electrodes can be de-
scribed using the hybridization functions I'y(w) = Vf pe(w),
where p¢(w) is the local density of states of the electrodes
associated with the operator ¢, , . For simplicity, we will
consider all asymmetries in the éoupling to the electrodes to
be described by the parameters V;, and take p;(w) = p(w) =
er2 D? — w? with support in the range [— D, D].

For the numerical calculations, the electrodes are described
using two one-dimensional tight-binding chains (one for each

QD):

L
Hy = —t Z Z Z(Cj,éacﬂrl,éa +H.c.), &)
i1 ¢ o
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FIG. 2. Schematic representation of the DQD model solved
numerically using DMRG for L values of up to a few hundred. The
L =1 case can be solved analytically in the large-interaction limit
(U, Up, Uy, — 00).

which leads to the required local density of states at site 1 for
L — oo and t = D/2. The tunnel coupling is given by

Hy =YY (Vid},cy 4 +He). ©)
14 o

This model (see Fig. 2 for an schematic description) can be
solved for finite L using the density matrix renormalization
group (DMRG) [31,32]. To avoid finite size effects, we
performed a finite size analysis for total systems sizes N =
2L + 2 ranging from 4 to 384. The case L = 1 including a
single site on each bath can be solved exactly in specific cases
and will guide us in the interpretation of the numerical results.

A. Low-energy Hamiltonian and SU(4) symmetry

For symmetric parameters: ¢, = ¢, = ¢,V, =V, = V,and
U, = U, = Uy, = U, the Hamiltonian of the system can be
written as

A~ U o A
Hyn=¢0+5Q0(Q-D+V Xa:(dlco,a +Hec)

— 1) Y (€]t +He), )

where « runs over the four combinations {a*,al,b*,b|}, and
0= > . fiq is the total charge operator of the DQD.

In the parameter regime where —U < ¢ < 0, and |¢|, ¢ +
U > mV?p(0), the average charge of the DQD in the ground
stateisn = (Q)gs ~ 1.Inthis case, it is instructive to associate
a pseudospin degree of freedom to the QD and to the nonin-
teracting chain indices a — 1}, b — . The fully symmetric
model of Eq. (7) is invariant under unitary transformations
that mix spin and pseudospin degrees of freedom on the DQD
and on each site of the noninteracting chain [the last term
on Eq. (7)]. A Schrieffer-Wolff transformation that decouples
the empty and multiple occupied states on the DQD leads
to an SU(4)-symmetric Kondo Hamiltonian with a single
exchange coupling for the four combinations of spin and
pseudospin degrees of freedom. The SU(4)-symmetric Kondo
Hamiltonian leads to an SU(4) Kondo effect leading to a
symmetric entanglement of spin and pseudospin degrees of
freedom.

In the usual experimental situation, however, the parameters
are not symmetric. In the experiments of Ref. [28] the interdot
coupling U,, is an order of magnitude smaller than the
intradot couplings U, and U;, and the hybridizations are not
symmetric. Performing a Schrieffer-Wolff transformation in
the general case does not lead to an SU(4)-symmetric Kondo
Hamiltonian. However, it was shown in Ref. [24], using
renormalization group arguments and numerical results, that
an SU(4)-symmetric effective Kondo Hamiltonian is obtained
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at low energies. The charge fluctuations that are eliminated
from the Hamiltonian after a Schrieffer-Wolff transformation
do, however, change the low-energy physics and need to be
included in the analysis [29,30].

Using renormalized perturbation theory for identical QDs
, = U,, V, = V), Nishikawa et al. found that if the interdot
Coulomb repulsion Uy, is lower than the intradot repulsions
U,,U,, the SU(4) symmetry is not obtained for the low-energy
quasiparticle Hamiltonian, unless these interaction parameters
are larger than the bandwidth D of the conduction band of the
electrodes [29]. The spectral properties of a DQD device model
with asymmetric QDs (V, # V},) were studied in Ref. [30] in
the limit of large Coulomb repulsion U,,U,,U,;, — 00, where
it was shown that the spectral densities of the two QDs could
be made very similar by tunning the average charge on the
QDs to be equal. These results were confirmed in Ref. [33]
through numerical renormalization group calculations which
also indicate that U,; must be larger or of the order of D for
the symmetry to be restored. In the experiments presented in
Ref. [28], the hybridizations of the two QDs with the electrodes
are different and the interdot interaction is ten times smaller
than the intradot interaction, which in turn is not larger than the
electrode’s bandwidth. In what follows, we revisit this problem
and study the possibility of observing an SU(4)-symmetric
Kondo effect in a DQD device by analyzing the entanglement
entropy of the ground-state wave function.

B. Von Neumann entropy

For a system described by the density matrix p, the Von
Neumann entropy reads

S(p) = —Tr(p log, p). ®)

If the Hilbert space can be written as product of two subspaces
A and B: 'H = Ha ® Hp, the density matrix for subsystem A
is given by

PA :TI'B/). (9)

For a system in a pure state p = |W)(W¥|, we can measure the
entanglement between subsystems A and B using

Sa = S(pa) = S(pp)- (10)

In this work, we analyze the ground-state properties (p =
|[Was) (Wgs|) and we will be mainly interested in the partitions
of the total system Hy ® H; and H4 ® H which define the
entropies Sy and Sy, respectively.

A necessary condition for the ground state to be SU(4)-
symmetric is that S; = S;. In the next section we use this
condition to explore where in the parameter space an SU(4)-
symmetric ground state could be obtained. As we will see
below, many important features of the entanglement entropy
can be understood by analyzing a toy model having a single
site on each fermionic bath, i.e., L = 1 in Eq. (5).

C. Spin and pseudospin susceptibilities
Following Ref. [29], we define the zero-temperature spin
susceptibility
dmg

= 11
X . (1D
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TABLE I. Notation for the relevant toy model states of the
subchain including QD a and its associated fermionic bath site (see
Fig. 2). The notation is analogous for the subchain containing QD b.

State Configuration
10)a [t =)
—_— =
la a
1S)a ZU ) =111
|2)a | ] T\J/)

which measures the change in the spin polarization of the QDs
in the ground state m; = ()_,(figy — figy))/2 when a Zeeman
energy splitting 2h; = gup B is applied. In analogy with the
spin susceptibility,

_dmy, (12)
Xps dh s s
defines the pseudospin susceptibility, where m ), =

<Zg(ﬁaa — Ape))/2 and h g = (g — €4)/2. In the numerical
calculations presented below, the parameters are fixed in order
to obtain an unpolarized ground state (m; = m,; = 0) and a
small enough energy splitting 84,/ is applied, such that the
response is linear.!

In the SU(4) Kondo regime, these two susceptibilities
are expected to be equal x; = x,s = x, and the low-energy
properties of the system to be universal functions when
properly scaled by the Kondo energy kpTx o< 1/x [34].
When the SU(4) symmetry is broken, we may define a spin
(pseudospin) Kondo energy ks Tp" o 1/ xy(ps) and quantify
the degree of symmetry breaking using the ratio §x = |Tg —
le(ml/min(Ts aT1€S) =[xy — X[).Y'/maX(XSaXpS)' For ok 5 1,
we do not expect SU(4)-Kondo-like physics to be observed.
For §x < 1, however, there is an energy regime [e.g., the range
of temperatures between | T3 — T4 | and min(T},T}")] where
a single parameter SU(4)-Kondo scaling could be obtained.

III. RESULTS

We first analyze the entanglement entropies in the case
where the Hamiltonian is given by Eq. (7) and has SU(4)
symmetry. The ground-state wave function preserves the
SU(4) symmetry and the associated entanglement entropies
S4 and Sy are identical. The toy model [i.e., L = 1 in Eq. (5)]
can be solved analytically in the U — oo limit. The ground
state is in a charge sector with a total of four electrons in the
system of which 2 electrons of opposite spin projection are on
each QD-bath site combination. For n < 1, the wave function
has the form

|Wgs) = al0)a ® |0}, + %(ISM ®10)p + 10)a @ |S)s),
(13)
where |0); corresponds to QD i devoid of electrons and its
associated fermionic bath site doubly occupied (see Table I),

! An energy shift 8/,,,; = 0.0001D proved to be appropriate in the
whole parameter regime studied.
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and |S); represents a singlet state between QD i and the
reservoir site coupled to it. The entanglement entropy of the
toy model can be written as a function of the DQD occupancy

n=p%
tm tm 1 1 P
S = sy =h( 5+ 5V1-m ) a4

where h(x) = —x log, x — (I — x)log,(1 — x) is the Shannon
binary entropy. For n — 0, the DQD is empty (|Wgs) —
[0}, ® 10)5, which is separable) and the interaction is not
effective creating correlations. As n increases, S increases
monotonically to reach its maximum value S = 1 that cor-
responds to a maximally entangled state (# = 0 and 8 = 1),
which is a superposition of spin singlets on the left and right
electrodes. This state can also be rewritten as a superposition
of two pseudospin singlets making explicit the symmetry
between spin and pseudospin degrees of freedom.

For 1 < n < 2, and large U, the wave function takes the
form

Was) = B(S)a @ 10)s + 10)a @ |S))

+ %(zma ® 1) + 12)a ® [0} + [0)q ® [2)).

s)

where the second term is a symmetric combination of six Fock
states with double occupancy on the DQD. It is also possible
to obtain an analytic expression for the entanglement entropy
in this case, but the expression is more complicated than in the
n < 1 case. In the n ~ 1 regime, we find

. 1-— kl)g_—('z’) ifn <1
S"n—>1)= Lo 2 x (16)
+ Sz N>

The asymmetry between n <1 and n > 1[S™(1 —§) >
S™M(1 + §) for § > 0] is due to the fact that while the state
|0}, ® |0); is clearly separable both in the spin and pseudospin
sectors, the combination of states with a double occupancy on
the QD [second term in Eq. (13)] is not.

For finite values of U, the toy model can be solved
numerically and the entropy as a function of the DQD
occupancy has a behavior as a function of n similar to the
U — oo case. While the entanglement entropy for a given n
decreases with decreasing U, it continues to be asymmetric
and presents a maximum near n = 1.

The numerical results obtained using DMRG? are presented
in Fig. 3 as a function of the DQD occupancy n for different
values of the interaction U. The behavior of S§;(n) follows
qualitatively the toy model results. Namely, S4(n) has an
asymmetric shape with a maximum at n ~ 1 and for a given

2The DMRG results were obtained for chains of up to 384 sites,
with open boundary conditions and half-filled conduction electron
bands, which allowed us to work in a subspace with zero total spin
projection along the z axis (SZ, = 0). The largest truncation error in
the calculations, keeping up to 256 states per block and performing
six sweeps in the finite-size algorithm, was p < 107>. Such an error
translates to an entropy defined at least with two decimals (relative
error lower than 1%).
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FIG. 3. The upper panel presents the entanglement entropy S for
systems with different values of U =5, 8, 10 and V, =V}, = 0.45.
The entanglement in the spin S, and pseudospin S sectors is identical
for a given value of U . The finite size behavior of S(n) for U = 8and a
total number of DMRG calculation sites N = 2L 4 2ranging from 48
to 384 is presented for ¢, = ¢, = ¢ = —2.2 (solid triangles), ¢ = —4
(solid disks), and ¢ = —5.5 (solid squares). The inset presents the
behavior of S as a function of 1/N for the values of ¢ indicated above.
The lower panel presents the spin susceptibility (which is identical to
the pseudospin susceptibility) for the same set of parameters.

value of n it increases monotonically with increasing U. The
most significant difference is that S4(n) becomes larger than
1 for large enough values of U and n ~ 1. Interestingly, these
values of S exceeding 1 are due to correlations that cannot
be understood using a variational wave function approach
with a Varma-Yafet ansatz [35]. The spin susceptibility (see
lower panel of Fig. 3), which is identical to the pseudospin
susceptibility in this fully symmetric case, presents a maxi-
mum for n ~ 1. As expected, the susceptibility increases for
n ~ 1 much faster with increasing U than predicted by the toy
model, which does not capture the Kondo renormalization of
the parameters [29].

A. Broken interaction symmetry (U, = U, > U,;)

‘We now consider a more realistic parameter regime where
the symmetry of the interaction is broken, U,, < U,,U,. In
this case, the different states with double occupancy in the
DQD are expected to have a differing participation on the
GS wave function. In particular, the state [S,;) = [S)y ® |S)s,
which has an associated interaction energy Uy, is expected
to have a larger amplitude in the GS wave function than the
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states having two electrons on a single QD (which have a
larger interaction energy U, associated). This breaking of
the symmetry for the amplitude in the GS wave function
of states having a doubly occupancy in the DQD leads to
a breaking of the spin-pseudospin symmetry and therefore
of the SU(4) symmetry. This effect can be understood by
analyzing the structure of the ground-state wave function, and
the entanglement entropy of the toy model. To simplify the
analysis, we consider the limit U,,U;, — oo that captures the
main features of the entropy behavior. The GS wave function
has the form

Wes) = al0)a ® |0)s + %(IS)LI ®10)y + 10)a ® [S)5)

+718)a @ 1S)s, (17)

where the double occupancy on each QD is completely sup-
pressed and a? + B2 4 y2 = 1. The pseudospin entanglement
entropy has the form

S—hl—i—l 1-C2 (18)
T="2"2 ’

where C = |B? — 2ay| is Wootters’ concurrence [36] in the
pseudospin sector. For y <« 1 (which is the case for n <
1 and V/U « 1), we find Sy(n,y) < S3(n,0) = S4(n,0) <
Sp(n,y).

For large U, > t, « is strongly suppressed for n > 1. In
this regime, we obtain C =n forn < 1 and C =2 —n for
n > 1, which leads to a mirror symmetric S; (n) with respect
ton = 1. The origin of this symmetry is that the states |0) and
|Sap) are both separable in pseudospin. The spin entanglement
entropy, however, increases monotonically with n for n > 1
and can be roughly approximated by Sy(n > 1) ~ n.

Figure 4 presents results for the entanglement entropy in
systems with Uy, < U, = U, = U < oo. The entanglement
in the spin partition is larger than in the pseudospin one
for all values of the DQD occupancy. While S4(n) has a
maximum at n 2~ 1 and is nearly symmetric Sy(n) ~ S4(2 —
n) around this point, S4(n) increases monotonically with 7.
The most important observed feature is that while for n < 1
the symmetry breaking is suppressed for large enough values
of Uy, for n > 1, the asymmetry in the entanglement entropy
persists and increases with n. As a consequence, in order
to observe properties associated with an SU(4)-symmetric
GS, the DQD occupancy would need to be smaller than 1
to minimize symmetry breaking effects. Interestingly, in the
experiments of Keller er al. [28], the results presented for
the conductance as a function of the temperature which are
compatible with an SU(4) Kondo behavior are with the gate
voltages shifted towards a n < 1 regime and not in the middle
of the Coulomb blockade valley. The conclusions drawn from
the analysis of the entanglement entropy are confirmed by the
susceptibility results (see lower panel in Fig. 4), which show
a much smaller SU(4) symmetry breaking, as measured by
the ratio dg, for n < 1 than for n > 1. This ratio is also more
strongly suppressed with increasing U,;, forn < 1.

B. Broken hybridization symmetry (V, # Vj)

When the hybridization symmetry is broken (V, # V)
the diagonal energies e, need to be adjusted in order to
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FIG. 4. The upper panel presents the entanglement entropy in the
thermodynamic limit for systems with different values of U,, = 5, 8
(black and red lines, respectively) and U, = U, = 20. The results
for the entanglement in the spin S; and pseudospin sectors S,
for symmetrically coupled devices (V, = V,, = 0.45), are presented
using dashed and solid lines, respectively. The lower panel presents
the susceptibilities for the same set of parameters. The SU(4)
symmetry breaking, as measured by the ratio §x (see Sec. IIC)
presented in the inset, increases with increasing n and decreases
with increasing U,,.

recover a symmetric occupancy in the two QDs, which is
a necessary condition to obtain an SU(4)-symmetric GS.
As we will see below, this is not, however, a sufficient
condition even for symmetric interactions (U, = U, = Uy, =
U). To simplify the discussion and focus of the effect of
an hybridization asymmetry, we consider in what follows
symmetric interactions. The main conclusions do, however,
apply for a more general situation with U,,Up, > Uy.

For the toy model with U — oo, and fixed ¢, V,, and V},
it is always possible to obtain an g, such that the two QDs are
equally charged (see Appendix). The GS wave function has
the same form as in the case V, =V}, [see Eq. (13)] and is
SU(4)-symmetric. For a finite but large U > V,,V},, a simple
1/U first-order perturbation theory analysis of the toy model
shows that the double occupancy probabilities for QD a, QD
b, and for a single electron on each QD are, respectively,
~cVZ/U? ~ thz/Uz, and ¢(V, + V,)?/4U?. This breaking
of the symmetry of the double occupied states in the ground-
state wave function breaks the spin-pseudospin symmetry.
This can be observed in the entanglement entropies in Fig. 5,
calculated using DMRG, where the difference between S;
and S increases with increasing n. For n < 1, however, the
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FIG. 5. Entanglement entropy in the thermodynamic limit for
systems with SU(4)-symmetric interactions (U = 5), V, = 0.45, and
different values of V), = 0.25, 0.35 (black and red lines, respectively).
The results for the entanglement in the spin S; and pseudospin sectors
S, are presented with dashed and solid lines, respectively. The lower
panel presents the susceptibilities for the same set of parameters. The
SU(4) symmetry breaking, as measured by the ratio 5 (see Sec. II C)
presented in the inset, increases with increasing n.

double occupancy probability is strongly suppressed and the
entanglement asymmetry is smaller.

IV. SUMMARY AND CONCLUSIONS

We explored the possibility of obtaining SU(4) Kondo
behavior in DQD devices where the interactions and the
hybridizations are in general nonsymmetric. To that aim,
we analyzed the symmetry of the entanglement entropy for
the ground state of a model Anderson Hamiltonian in a wide
regime of parameters. We obtained both analytical results for
a toy model in the narrow-band limit and for the full model
using numerically exact DMRG calculations.

We find that for nonsymmetric interactions or hybridiza-
tions, the charge fluctuations to doubly occupied states need
to be strongly suppressed in order to avoid breaking the
SU(4) symmetry. While it has been shown that for a non-
SU(4)-symmetric Kondo model the low-energy properties
of the system are described by an SU(4)-symmetric Kondo
Hamiltonian, real systems do present charge fluctuations,
which can change this picture. We find that the double
occupancy probability is set primarily by the bare model pa-
rameters and essentially unaffected by the Kondo correlations.
As the double occupancy probability increases so does the
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spin-pseudospin symmetry breaking in the ground-state wave
function. This is nicely illustrated by the toy model which,
as such, does not present a Kondo-like renormalization of the
parameters, but quantitatively reproduces both the behavior of
the charge fluctuations and of the entanglement entropy in the
thermodynamic limit.

We have also calculated the spin and pseudospin suscep-
tibilities. The results are consistent with the entanglement
entropy analysis, namely that the SU(4) symmetry breaking
can be reduced by suppressing the DQD double occupancy
probability. The results suggests that by appropriately setting
the parameters a regime with a finite range of temperatures
where an SU(4) Kondo scaling could be obtained.

Although the SU(4) symmetry of the ground-state wave
function is in general broken, the participation of double
occupied states, and the degree of symmetry breaking, can be
reduced by shifting the level energies of the QDs (experimen-
tally using gate voltages) in such a way that the average charge
on the DQD is smaller than 1. Even in systems where the in-
teractions are the largest energy scale, the level energies would
need to be setin aregime such that the DQD average occupancy
isn < 1, to suppress significantly the symmetry breaking.

It is interesting to point out that in the experiments of Keller
et al. the results for the conductance as a function of the
temperature, which show a scaling behavior compatible with
an SU(4)-symmetric Kondo entanglement, are in a regime
where the occupancy of the DQD is expected to be smaller
than 1. A detailed analysis of the conductance as a function
of the temperature for different regimes of DQD occupancy
would be in order to determine how the degree of SU(4)
symmetry breaking in the ground-state wave function affects
the conductance scaling.
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APPENDIX: TOY MODEL (NARROW-BAND LIMIT)

We present here a more detailed analysis of the toy model
described in the main text. This simplified model takes into
account a single site for each reservoir [i.e., L = 1 in Eq. (5)],
which can be interpreted as the narrow conduction band
limit [37,38] of the full model (L — 00).

As already pointed out, the ground state of this model can be
obtained analytically for a restricted, but physically relevant,
set of parameters. We first consider the U,,U, — 0o case
where the double occupation on either QD is suppressed. The
Hamiltonian matrix for the ground-state subspace reads

0 V2V, V2V, 0
Hy — V2V, e 0 V2V,
V2V, 0 €p V2V, ’
0 V2V, V2V, e t+e+Unp

in the {|04), |Sa), |Ss), |Sap)} basis. Here the state |0gp)
corresponds to the DQD devoid of electrons and four electrons
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TABLE II. Notation for the relevant states for the toy model (see Fig. 2).

State Description
[0as) 0 @10}y =11, — , — , 1)
—_— = = ——
la a b 1b

Sa) [$)e ®10), = %(IT L= =1t =)
1S5) [0), ® [S), = f(lN N Rl N )]
|Sab) |S>a ® |S>b - E('TNLaT?Jr) - |T7¢7¢7T) + I‘L?T"LaT) - |\L’T7T7\L>)
12.) 2)e ® 10), =111, — M)
125) 0)s ®12)p = =, 1, — 1)
located at the reservoir sites, |S;) corresponds to a singlet state ~ reads
between the QD i and the reservoir site coupled to it, and no B + v _B ( 4+ ) _Br

. . . . . . 2 4 NG 2 22
electrons in the remaining QD (with the associated reservoir 8 Y B 32 ay
site doubly occupied), and |S,;) is a direct product of two pr = _Tz(a + 7) =5 - 72 0
singlet states formed between each QD and its associated —% % VT 0
electron bath site. Table II presents a description of these 2

. ) . . 0 0 0 L
states which are in a charge sector with four electrons in the 4
system and a zero total spin projection along the z axis. Inwhat ~ in the basis {|S}), |04), |24), |T4)}, which is described in

follows, we consider that the site energies (¢, and ;) are tuned
to balance the occupancy of the QDs in the ground state |Wgs)
(i.e., (Woslia|Wes) = (Waslip|Wes))- Inthe Uy — oo limit,
this can be done setting

() V, n 8(V2+Vy)+e . v, AD
Ea = — _ —_——
2 Vi 2 Vi

while for finite U, the condition for charge balance can be
numerically obtained. The ground-state wave function in the
U,,U, — oo limit and for a balanced occupancy in the QDs
has the form

B
+ \/_§(|Sﬂ) +185)) + ¥ Sab)-
The entanglement entropy for partition Hy ® Hy can be
readily calculated as the system can be regarded as composed
by two two-level systems [36],

11
Se=h(=4+=-v1-c?),
f <2+2 )

where h(x) = —xlog, x — (1 — x)log,(1 — x) is Shannon bi-
nary entropy and C is Wootters concurrence for the state | WVgs),
which equals |82 — 2ay|. The entanglement entropy for the
partition H4 ® H is more complicated as the dimension of the
subspace associated with each spin is no longer 2. The reduced
density matrix for the spin partition o4 := Tr |Wgs)(Wgs]

[Was) = a|0up) (A2)

(A3)

TABLE III. Notation for the relevant states for the toy model,
for 1-spin sector, written in terms of pseudospin degrees of freedom.
Notation for | -spin sector is analogous.

State Configuration
104) . =)
—_ =
5 t
1S+) ZUr. O =140,
IT}) ZAT B +18, 1)
124) [—. )

Table II1.

No simple expression could be obtained in this case for
the entropy of entanglement in terms of the GS wave function
coefficients.

Figure 6 presents the entanglement entropy for the two
partitions considered in the limit of large interaction. For
symmetric interactions (U, = U, = U,, = U — 00) and hy-
bridizations (V, = V), we trivially have Sy = S;. The entan-
glement entropy is asymmetric with respect to the n = 1 axis 3
where it presents a cusp [see Eq. (16)]. For finite values of U
(not shown), the cusp is rounded and S(n) presents a maximum
at n~1 as in the L — oo case. In the large-interaction
limit, the entropy preserves the spin-pseudospin symmetry
for n < 1 when the symmetry of the parameters is broken
U,,U, > U,y [see Fig. 6(a)] or V, # V), [see Fig. 6(b)]. This
can be readily seen analyzing the entanglement entropy of
the ground-state wave function of Eq. (A2) when the double
occupation is suppressed and y = 0. For n > 1 in the same
limit, the different doubly occupied states have a different
amplitude in the ground-state wave function, which breaks the
spin-pseudospin symmetry.

In order to analyze the symmetry of the ground-state wave
function, it is instructive to consider what happens to the states
when transformed according to a map P, which exchanges spin
and pseudospin degrees of freedom, i.e., P ) < M.
We detail the procedure for the singlet state in QD a (), | S,):

o | i
— Tt Togt oyt
PIS,) = P%(cmdLﬂ — ¢ pdrgeyycylvac)

PRI R S SR B
= T(Cmdru = cpydpge ey lvac)
f( chocladlyely + el pdiyel el ivacy

\/5 ’T"L>_|\L’T7_

D

3To obtain occupations larger that 1, the limit ¢, — —oo needs to
be taken together with the U — oo limit.
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FIG. 6. Entropy of entanglement in the U — oo limit for the
toy model. (a) Symmetric model (U, = U, = U,, = U — o0).
(b) Asymmetric interactions U,, < U,,U,. (c) Asymmetric hy-
bridizations V, = 0.45 and V,, = 0.25.

We use ¢ to denote electron-creation operators for the bath
sites, dropping the subindex 0 as there is only one for each QD.
In the second step above, we reorder creation operators so as

PHYSICAL REVIEW B 96, 075157 (2017)

| —sector J} — sector

G0 o Ak o o A

(a){} — sector (b) T — sector
— ——

FIG. 7. Schemes showing the different interaction channels for
the electrons in the DQD system. The outermost levels represent bath
electrons, while innermost ones represent DQD electrons.

to have all {} ones to the left. Performing a similar operation
on each of the other relevant states, we get

P104) = —10a),

N 1
P|Sp) = EUN’ =1 =

1
= _§(|T7\L’T7\L> + |\L’T7\L’T>
+| - vT\L» - ’T»L) + |T~L’ - vT\L3_>)

The state with no electrons in the DQD is trivially invariant
(it only changes sign), whereas |S,), |S,) and |S,;) are not.
However, it is straightforward to realize that the combination
IS.) + |S,) is indeed invariant: P(|S,) + |Sp)) = —(|S,) +
|Sp)). As a consequence, a finite amplitude of the state |S,)
in the ground state will lead to a spin-pseudospin symmetry
breaking, unless the states with a double occupancy on a single
QD have the same amplitude.

Finally, in Fig. 7, we present the interaction and coupling
channels of the DQD for a partition in spin [Fig. 7 (a)]
and pseudospin [Fig. 7 (b)] sectors. In the case where U; >
U,p, electrons in the DQD can be thought as interacting
through a symmetric coulombian interaction Uy, plus an
antiferromagnetic-like term between the pseudospin degrees
of freedom with coupling constant U; — U,;,, which increases
correlations and thus entanglement for the H4y ® H | partition.

|T’\Lf - 7T\l’>)v
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