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Extensions of dynamical mean-field theory (DMFT) make use of quantum impurity models as nonperturbative
and exactly solvable reference systems which are essential to treat the strong electronic correlations. Through
the introduction of retarded interactions on the impurity, these approximations can be made two-particle self-
consistent. This is of interest for the Hubbard model because it allows to suppress the antiferromagnetic phase
transition in two dimensions in accordance with the Mermin-Wagner theorem, and to include the effects of
bosonic fluctuations. For a physically sound description of the latter, the approximation should be conserving.
In this paper, we show that the mutual requirements of two-particle self-consistency and conservation lead to
fundamental problems. For an approximation that is two-particle self-consistent in the charge and longitudinal
spin channels, the double occupancy of the lattice and the impurity is no longer consistent when computed from
single-particle properties. For the case of self-consistency in the charge and longitudinal as well as transversal
spin channels, these requirements are even mutually exclusive so that no conserving approximation can exist. We
illustrate these findings for a two-particle self-consistent and conserving DMFT approximation.
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Models for correlated electron systems, such as the Hubbard
model, count among the hardest problems of contemporary
condensed matter physics. At the same time, they are believed
to capture the physics of fascinating phenomena such as
high-temperature superconductivity [1] and the Mott transition
[2]. To understand the underlying physics, it is necessary to
develop methods which can capture these phenomena. Because
of unavoidable approximations, however, it is not always
possible to separate the physics from artifacts of the method.
It is therefore desirable to design methods which satisfy basic
requirements such as translational invariance, thermodynamic
consistency [3,4], local conservation laws of charge and spin
[5–7], and, in view of an application to high-temperature
superconductivity of layered cuprates [1], the Mermin-Wagner
theorem [8].

Dynamical mean-field theory (DMFT) [9] and its cluster
extensions [10] have been an important step towards the
understanding of correlated electron behavior, in particular
the Mott transition. From a theoretical perspective, DMFT
can be thought of as an approximation to the exact Luttinger-
Ward functional, where all propagators are replaced by the
corresponding local ones. An auxiliary problem subject to a
self-consistency condition, often an Anderson impurity model
(AIM), is used as a tool to sum the diagrams of this local
functional exactly. As a consequence, DMFT is conserving in
the Baym-Kadanoff sense [6,7,9,11].

The more recently introduced diagrammatic extensions
of DMFT such as D�A [12,13], the dual fermion (DF)
[14], one-particle irreducible (1PI) [15], TRILEX [16,17],
DMF2RG [18], and dual boson (DB) approaches [19] are
an active field of research. The AIM plays a central role in
these approaches. From a suitable dynamical vertex function
of the AIM, nonlocal approximations to the self-energy are
constructed by summing certain classes of diagrams. The

lattice self-energy is hence approximate, but incorporates
long-range correlations. The use of dynamical vertices allows
one to deal with strong correlations as opposed to approaches
based on the bare Hubbard interaction, such as the fluctuation
exchange approximation (FLEX) [20] or the two-particle self-
consistent approach (TPSC) [21]. Despite significant progress
in this field [22], a number of open questions remain. For
example, it is not always clear how to choose the diagrams
[23,24] or self-consistency conditions. More generally, the
question is how to optimally exploit the AIM, whose solution
we know (numerically) exactly, to construct approximations
that meet the above-mentioned basic requirements.

Extended dynamical mean-field theory (EDMFT) [25–31]
includes the effect of two-particle bosonic fluctuations through
a local retarded interaction in the impurity model that is
fixed by a corresponding self-consistency condition. As a
result, EDMFT, as well as its extensions, like (E)DMFT+GW

[32,33], are two-particle self-consistent. A consequence of
the EDMFT self-consistency condition is that the lattice
double occupancy equals that of the impurity model and
hence is bounded. As Vilk and Tremblay have shown [21],
any approximation which produces a bounded lattice double
occupancy will suppress magnetic phase transitions in two
dimensions, as required by the Mermin-Wagner theorem. This
property is indeed respected by the spin-DMFT [26] (which is
akin to EDMFT), while it is violated in DMFT.

A disadvantage of EDMFT is, however, that it breaks Ward
identities [7,26] and therefore violates local conservation laws.
This can lead to a qualitatively wrong description of the physics
of the collective excitations. For example, in presence of a
long-range interaction, the energy of the plasmon diverges
in the long-wavelength limit. In case of a local interaction,
one obtains a plasmonlike feature instead of a zero-sound
mode [7].
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In the dual boson (DB) approach [19,34], which is a
diagrammatic extension of EDMFT, conservation in the charge
channel can be restored by including certain ladder diagrams
into the bosonic propagator. This provides a physically sound
description of plasmons even in the correlated state [35].
Remarkably, global charge conservation is maintained in a
two-particle self-consistent version of the approach [36]. The
two-particle self-consistent theory also resolves an ambiguity
in the computation of the double occupancy present in DMFT
and yields results closer to benchmarks than either of the two
DMFT values [37].

In particular for an application to superconductivity, it is de-
sirable to include spin fluctuations as well, while maintaining
the conserving character of the theory and a sound description
of the collective modes. Self-consistent approaches based on
an impurity model including retarded spin-spin interactions
have been considered previously [25–27]. It seems appealing
to include diagrammatic corrections in order to make such a
theory conserving.

These considerations lead us to the following questions: Is
it possible to construct a two-particle self-consistent version
of DMFT which would be conserving and satisfy the Mermin-
Wagner theorem? Similarly, under which conditions can we
extend EDMFT and spin-DMFT to satisfy the conservation
laws? Quantum impurity models are at the heart of these ap-
proaches and serve as exactly solvable reference systems [38].
They allow to treat at least part of the strong electronic correla-
tions in a nonperturbative manner. Hence, more generally, the
question is whether it is possible to construct approximations
that exploit the nonperturbative starting point provided by
the impurity model while maintaining the desirable properties
mentioned above.

The aim of this paper is to show that one faces fundamental
difficulties in an attempt to construct such approximations.
In particular, we demonstrate that for a conserving approxi-
mation, imposing two-particle self-consistency in the charge
and one of the spin channels leads to an inconsistency in
the calculation of the potential energy due to the retarded
interactions. More importantly, we prove that if one attempts
to impose self-consistency in the charge and all three spin
channels, no conserving approximation can exist. In essence,
we find that the retarded spin interactions, introduced to make
the theory two-particle self-consistent, undermine the desired
feature of local conservation. We show that this limitation
is rooted in the fact that the Ward identities of the lattice
and of the impurity model are incompatible. As a concrete
example, we construct a two-particle self-consistent DMFT
which is conserving in the charge and one of the spin
channels.

The paper is organized as follows: We recollect the DMFT
approximation to the Hubbard model in Sec. I and examine
the thermodynamic consistency of the total energy in this
approximation. We introduce two-particle self-consistency in
Sec. II and perform a similar analysis. A conflict between
two-particle self-consistency and local conservation is related
to the Ward identities of the impurity model in Sec. III. We
present an application of a two-particle self-consistent DMFT
in Sec. IV. We interpret our main results in Sec. V and end
with conclusions. Derivations for several analytical results are
provided in the Appendices A–E.

I. DYNAMICAL MEAN-FIELD THEORY

To set the stage, we first discuss the familiar case of
DMFT. For concreteness, we focus on the two-dimensional
(2D) paramagnetic Hubbard model on the square lattice with
nearest-neighbor hopping given by the Hamiltonian

H = −t
∑
〈ij〉σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓. (1)

Here, i,j label lattice sites. The local Hubbard interaction has
strength U . We use the hopping t = 1 as the unit of energy
and denote Green’s function as Gij in real space and Gk in
momentum space, respectively (when it is not ambiguous, we
omit the frequency dependence for brevity).

DMFT is a local approximation to the exact Luttinger-Ward
functional �[Gij ] ≈ ∑

i φ[Gloc], which is therefore
conserving in the Baym-Kadanoff sense [6,9]. As a
result of the local approximation, the self-energy is
local: �ij = δ�[Gi ′j ′ ]/δGji = δφ[Gloc]/δGloc δji and
we note that the same holds for the irreducible vertex:
−�ijkl = δ2�[Gi ′j ′ ]/δGjiδGlk = δ2φ[Gloc]/δG2

loc δliδlj δlk .1

If we know the local Green’s function, the problem is solved:
in this case, we can evaluate the local functional and its
derivatives at the local Green’s function and hence compute
the self-energy. Since we do not know the local Green’s
function a priori and the self-energy is a functional of the
latter, we have to solve this problem self-consistently: we
vary Gloc until the local Green’s function computed from the
self-energy equals Gloc.

We can employ an auxiliary local model as a tool to
accomplish this and to sum the diagrams of this local
functional exactly. This means letting φ[Gloc] ≡ φimp[gimp]
and �[Gloc] ≡ �imp[gimp]. The desired solution is evidently
obtained when the DMFT self-consistency condition is satis-
fied,

gimp,ν = Gloc,ν . (2)

(Where unambiguous, we drop labels “imp” and “lat” in what
follows.)

In practice, an Anderson impurity model (AIM) is often
employed for this purpose, whose action reads as

SAIM = −
∑
νσ

c∗
νσ (ıν + μ − 	ν)cνσ + U

∑
ω

n−ω↑nω↓. (3)

Here, 	ν denotes the electronic hybridization, μ is the
chemical potential, and ν (ω) denote the discrete fermionic
(bosonic) Matsubara frequencies νn = (2n + 1)π/β and ωm =
2mπ/β, respectively. β = 1/T is the inverse temperature. The
AIM has the same local interaction U as the lattice model.

Let us now take a practical viewpoint. Assume we have a
nontrivial model that we can solve exactly, such as the AIM
described by the action (3). From this model we can obtain
the local impurity self-energy and irreducible vertex function.
We can now ask the question of how to construct a conserving
approximation given these quantities.

1A minus sign arises in the functional relation of � due to the
definitions chosen in this publication.
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We recall that local conservation of charge and spin means
that the following continuity equations for the charge (ρ0) and
spin densities (ρx,y,z) hold:

∂τρ
α = −[ρα,H ]. (4)

We have introduced the index α = 0,x,y,z to label the charge
and spin channels. The corresponding charge and spin density
operators are defined as ρα = ∑

σσ ′ c†σ sα
σσ ′cσ ′ with the Pauli

matrices sα , such that ρ0 = n = n↑ + n↓ and ρx,y,z = 2Sx,y,z.
On the lattice we can formulate the following Ward

identities (cf. Appendix A), which are the Green’s function
analogs of the continuity equations (4):

�k+q − �k = −
∑
k′

�α
kk′q[Gk′+q − Gk′]. (5)

Here, we have introduced four-vector notation k ≡ (k,ν)
and q ≡ (q,ω). Summations over frequencies and momenta
imply factors β−1 and N−1, respectively, with N being the
number of sites. � and G are the exact lattice self-energy and
Green’s function, respectively, and �α denotes the irreducible
(horizontal) particle-hole vertex. The irreducible vertices
in the charge and spin channels are explicitly defined as
�0 = �↑↑↑↑ + �↑↑↓↓, �z = �↑↑↑↑ − �↑↑↓↓, and �x = �y =
1
2 (�↑↓↓↑ + �↓↑↑↓) = �↑↓↓↑.

In a local approximation, �k ≡ �ν and �α
kk′q ≡ γ α

νν ′ω, such
as DMFT, all momentum dependence drops out of the Ward
identities (5) and we obtain2

�ν+ω − �ν = −
∑
ν ′

γ α
νν ′ω[Gloc,ν ′+ω − Gloc,ν ′ ]. (6)

An analogous Ward identity holds for the AIM (see
Appendix E):

�ν+ω − �ν = −
∑
ν ′

γ α
νν ′ω[gν ′+ω − gν ′], (7)

where �ν,gν and γ α
νν ′ω are the self-energy, Green’s function,

and the irreducible vertex of the AIM, respectively. Hence,
the DMFT approximation is apparently conserving when
the self-consistency condition (2) holds. Remarkably, DMFT
arises when we attempt to construct a locally conserving
approximation based on the AIM (3).

Let us consider further properties of the DMFT approxima-
tion. To this end, we introduce the (connected) susceptibilities

Xα
q = −〈

ρ̄α
−q ρ̄

α
q

〉 = 2
∑
kk′

Xα
kk′q, (8)

which are defined in terms of density fluctuations ρ̄α(τ ) =
ρα(τ ) − 〈ρα〉. Their local parts are given by Xα

loc = ∑
q Xα

q .
The generalized susceptibility Xα

kk′q is related to the irreducible
vertex function via the integral equation

Xα
kk′q = GkGk+q

[
βδkk′ −

∑
k′′

�α
kk′′qX

α
k′′k′q

]
. (9)

2In an earlier publication by Hettler et al., the right-hand side of
Eq. (6) was expressed in terms of the reducible vertex function [62].
In that form, one does not straightforwardly realize the momentum
independence of Eq. (6) which misled the authors to believe that
DMFT does not satisfy the Ward identities.

Now, consider the kinetic energy of the lattice. It is expressed
through single-particle quantities as Elat

kin = ∑
kσ εk〈nkσ 〉. In

Appendix B 1 we establish a relation that expresses the kinetic
energy in terms of a two-particle quantity, more precisely
the high-frequency behavior of the local susceptibility. The
relation follows directly from the Ward identities (5):

lim
ω→∞(ıω)2Xα

loc,ω = −2Elat
kin. (10)

As the Ward identities themselves, this relation connects
single- and two-particle quantities. The local impurity Ward
identities (7) imply an analogous relation (see Appendix E 2)

lim
ω→∞(ıω)2χα

ω = −2E
imp
kin , (11)

where χα
ω = −〈ρ̄α

−ωρ̄α
ω〉imp is the impurity susceptibility and

the kinetic energy of the impurity model is given by [39]

E
imp
kin = 2

∑
ν

	νgν. (12)

DMFT is not two-particle self-consistent. As a conse-
quence, the impurity and local lattice susceptibility differ in
general. Remarkably, however, their asymptotes are the same.
Decomposing the susceptibility into a contribution from the
impurity susceptibility and a momentum-dependent correction
[7], XDMFT

loc = χ + X′
loc, one can show that X′

loc decays at least
with ω−4. Therefore, lim

ω→∞(ıω)2Xloc,ω = lim
ω→∞(ıω)2χω. We

demonstrate this numerically in the left panel of Fig. 4 in the
section on numerical results. As a consequence, Elat

kin = E
imp
kin

and the kinetic energy can be determined from the impurity
model in DMFT.

Next, we consider the potential energy Epot = Udlat where
dlat = 〈n↑n↓〉 is the double occupancy of the lattice. As a
two-particle correlation function, d is naturally computed from
two-particle quantities. We denote this by a superscript “2P.”
We have the following relations:

X0
loc,τ=0 = −〈ρ̄0ρ̄0〉 = −(〈n〉 + 2d2P

lat − 〈n〉2
)
, (13)

Xz
loc,τ=0 = −〈ρ̄zρ̄z〉 = −(〈n〉 − 2d2P

lat

)
, (14)

where ρ0 = n = n↑ + n↓, ρz = m = n↑ − n↓, and 〈m〉 = 0.
Hence, the double occupancy can be expressed in terms of the
susceptibilities as

d2P
lat = − 1

4

[
X0

loc,τ=0 − Xz
loc,τ=0 − 〈n〉2

lat

]
. (15)

Similarly, d may be obtained from the impurity as

d2P
imp = − 1

4

[
χ0

τ=0 − χz
τ=0 − 〈n〉2

imp

]
. (16)

By virtue of the single-particle self-consistency condition
(2) we have 〈n〉lat = 〈n〉imp. Due to the missing two-particle
self-consistency in DMFT, however, the susceptibilities differ
and we have in general d2P

lat �= d2P
imp [37]. On the other hand,

we can compute the double occupancies from single-particle
quantities via the Migdal-Galitskii formula of the Hubbard
model [40]

d1P
lat = 1

U

∑
kν

Gkν�kν, (17)
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and its counterpart of the Anderson impurity model

d1P
imp = 1

U

∑
ν

gν�ν. (18)

Making use of the single-particle self-consistency condition
(2) and of the locality of the self-energy, �kν = �ν , we see
that lattice and impurity double occupancies computed in this
way are the same.

In summary, DMFT arises when one attempts to construct
a conserving, single-particle self-consistent approximation
based on the AIM. The kinetic energy of the lattice model
is equal to the kinetic energy of the impurity model. It can be
obtained from the asymptote of the local lattice susceptibility, a
general feature of conserving approximations, while in DMFT,
it may also be obtained from the impurity susceptibility. An
ambiguity arises in the calculation of the double occupancy
from single- and two-particle quantities: dimp = d1P

lat �= d2P
lat

in DMFT as a consequence of the lack of two-particle
self-consistency.

We speak of several thermodynamically consistent [4,41]
ways to obtain a quantity if these yield one and the same result.
That different ways of calculating a quantity yield the same
result is in general only true for an exact solution. The kinetic
energy and the f -sum rule (see, e.g., [21], see Appendix B 2)
are examples where thermodynamic consistency between one-
and two-particle levels is ensured through the Ward identities
(5). Obviously, the Ward identities are insufficient for consis-
tency in other cases, as we have seen for the double occupancy,
whose value is ambiguous in DMFT. Another important
example is the inconsistency of the Schwinger-Dyson equation
with the Ward identities when the reducible vertex is computed
from the irreducible one through the Bethe-Salpeter equation
[41]. The recently proposed QUADRILEX approach has been
reported to be free of this inconsistency [42].

We will examine in the following section to what extent
the deficiencies of DMFT can be cured by two-particle self-
consistency.

II. TWO-PARTICLE SELF-CONSISTENCY

Two-particle self-consistent approximations based on an
impurity model go back to extended dynamical mean-field
theory (EDMFT) and its precursors [25–31]. In these approx-
imations, a frequency-dependent interaction is introduced in
the impurity model, and its values are fixed through a self-
consistency condition on a two-particle (bosonic) correlation
function such as the susceptibility. In general, we can augment
the AIM of (3) by a dynamical interaction in all four (one
charge and three spin) channels as follows:

SBFK =SAIM + 1

2

∑
αω

ρ̄α
−ω�α

ωρ̄α
ω. (19)

We refer to this model as the Bose-Fermi-Kondo impurity
(BFK) model. �α

ω is a dynamical interaction which can be
viewed as a bosonic bath or hybridization. We consider
approximations to Green’s function G and to the susceptibility
X that are locally conserving and two-particle self-consistent.
In analogy to the single-particle self-consistency condition (2),
the retarded interactions in (19) are determined through the

following condition [36,43]:

χα
ω = Xα

loc,ω. (20)

This self-consistency condition provides a bounded double
occupancy by construction [cf. Eqs. (15) and (16)], which
is sufficient to suppress magnetic phase transitions in two
dimensions, as shown by Vilk and Tremblay [21].

The Ward identities (5) relate single-particle quantities
(Green’s function and self-energies) to two-particle quantities
(vertex functions and susceptibilities). We study the interplay
between the requirement of local conservation and the self-
consistency conditions (2) and (20).

We differentiate between two kinds of approaches: (i) the
case of Ising-type (Sz) coupling is characterized by a finite �z

ω

and �0
ω, while we set �

x,y
ω = 0. That is, we require self-

consistency (20) only in the charge and one of the spin
channels, i.e., for α = 0,z. (ii) For rotationally invariant
Heisenberg-type coupling, all retarded interactions �α

ω for
α = 0,x,y,z are finite and determined by (20). The retarded
interactions cause shifts in the Hubbard interaction and the
chemical potential which are discussed in Appendix C 1.

A. Ising-type coupling

In the discussion of the kinetic energy in the context of
DMFT we have shown that, assuming local conservation,
it can be expressed in terms of the asymptotic behavior
of the susceptibility. For the lattice we have by virtue of
local conservation lim

ω→∞(ıω)2X
0,z
loc,ω = −2Elat

kin, while on the

impurity, lim
ω→∞(ıω)2χ0,z

ω = −2E
imp
kin holds (cf. Appendix C 2).

In this case, the kinetic energies computed in the two ways
are equal by means of the two-particle self-consistency (20).
The kinetic energy can therefore be obtained from the impurity
model, as in DMFT. Note that Elat

kin = E
imp
kin may be determined

from the charge or spin susceptibility alike.
We saw previously that the double occupancy computed

from two-particle quantities d2P
lat and d2P

imp can be expressed in

terms of the local susceptibilities X
0,z
loc and χ0,z, respectively

[Eqs. (15) and (16)]. While these differ in DMFT in general,
the two-particle self-consistency ensures that d2P

lat = d2P
imp.

Using single-particle quantities, we can still compute it on
the lattice using the Migdal-Galitskii formula (17). In a
local approximation to the self-energy and with the single-
particle self-consistency condition (2), we can express the
double occupancy in terms of the impurity self-energy and
Green’s function d1P

lat = (1/U )
∑

ν gν�ν . In contrast to DMFT,
however, this expression is not equal to the impurity double
occupancy. Because the Migdal-Galitskii formula involves
the potential energy, it is comprehensible that the retarded
interactions will affect it. In Appendix D we derive the
double occupancy for the Bose-Fermi-Kondo model, with the
result

d1P
imp = 1

2Ũ

[
2
∑

ν

gν�ν +
∑
ω,α

�̃α
ω

(
χα

ω − β〈ρα〉2δω

)]
. (21)

Here, Ũ = U + �0
∞ − �z

∞ contains the asymptotic part of the
retarded interaction �α

ω = �α
∞ + �̃α

ω (cf. Appendix C 1). The
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summation in the second term in brackets in Eq. (21) in general
runs over all channels, α = 0,x,y,z. In the case of Ising-type
coupling, only the retarded interaction in the two channels
α = 0,z is nonzero.

Because we assume that we solve the impurity model
exactly, we have d1P

imp = d2P
imp ≡ dimp (so that we can drop

the superscript indices). While d2P
lat = dimp, the second term in

(21) will in general lead to d1P
lat �= dimp. The double occupancy

computed from two-particle quantities d2P is consistent with
that of the impurity (because of two-particle self-consistency),
while that obtained from single-particle quantities is not. This
situation is exactly opposite to DMFT, where d1P is consistent.
We see that while the retarded interactions allow us to
enforce consistency of d2P, they simultaneously undermine the
consistency of d1P. We demonstrate this numerically in Fig. 6
for the two-particle self-consistent approximation presented in
Sec. IV representative of Ising-type coupling and compare to
DMFT.

B. Heisenberg-type coupling

In the case of a Heisenberg-type coupling, all retarded
interactions �α

ω are in general nonzero. We fix their values
through the self-consistency condition (20), as before, and
consider the SU(2)-symmetric case with �x = �y = �z. We
further assume that the Ward identities hold. As a consequence,
the relation (cf. Appendix B 1)

lim
ω→∞(ıω)2Xα

loc,ω = −2Ekin (22)

holds in all channels α = 0,x,y,z.
On the impurity model, contrary to the case of Ising-type

coupling, we now have separate relations for the charge and
spin susceptibilities (Appendix C 2):

lim
ω→∞(ıω)2χ0

ω = −4
∑

ν

	νgν, (23)

lim
ω→∞(ıω)2χz

ω = −4
∑

ν

	νgν + 4
∑

ω′,α=x,y

�̃α
ω′χ

α
ω′ . (24)

The corresponding relations for χx,y are obtained by permut-
ing x,y,z in (24). We see that in presence of retarded spin
interactions, the asymptote of the impurity spin susceptibility
in Eq. (24) no longer equals the kinetic energy. In addition, the
asymptotes of the charge and spin channels are different. By
virtue of the self-consistency condition χα

ω = Xα
loc,ω, this must

also hold for the asymptote of Xα
loc,ω. Equation (22), on the

other hand, implies that the asymptote of the local suscepti-
bility must be equal in all channels. We therefore conclude
that there is no two-particle self-consistent approximation
employing the self-consistency condition (20), which at the
same time is locally conserving.3 We note that in the case
of Heisenberg-type coupling, the conclusions regarding the
potential energy remain the same as in the Ising-type coupling.
In particular, Eq. (21) still holds. We provide a numerical

3This only holds if
∑

ω′,α=x,y �̃α
ω′χ

α
ω′ is nonzero. The term does not

vanish in our calculations and can only do so for an unphysical �̃α
ω

which changes its sign for different ω [as χ does not, cf. Eq. (C5)].

example of Eqs. (23) and (24) in the right panel of Fig. 8 in
Appendix C 2.

III. WARD IDENTITIES AND RETARDED
SPIN-SPIN INTERACTIONS

In this section, we show that the Ward identities of the
Bose-Fermi-Kondo model are incompatible with the Ward
identities (5) of the Hubbard model. We identify this as the
root cause of our earlier finding in the previous section that no
locally conserving approximation can be obtained in case of a
Heisenberg-type coupling.

In the Hamiltonian formulation of the Bose-Fermi-Kondo
model (cf. Appendix (C2)), the retarded interactions enter
as density-boson couplings ∝ φαρα . Here, φ = b† + b are
bosonic operators which commute with all fermions. Integrat-
ing out the bosons in the functional integral yields the effective
impurity action (19).

Since the Ward identities are Green’s function equivalents
of the continuity equations, they describe conservation of the
charge and spin currents. These currents may be caused by
kinetic and interaction contributions.

Regarding the latter, we notice two properties: (i) none of
the retarded interactions contribute to the charge current, that
is, [ρ0,φαρα] = φα[n,ρα] = 0 for α = 0,x,y,z. (ii) The spin
current on the other hand has contributions from the retarded
spin-spin interactions �β due to noncommutativity of the spin
operators [ρα,φβρβ ] = 2ıφβ

∑
γ εαβγ ργ for α,β = x,y,z. We

show in Appendix E that the resulting Ward identities contain
an additional term that couples the retarded spin interaction to
a three-particle correlation function [45]. As a consequence,
they cannot be brought into the form of the local Ward
identities (7). We emphasize that this does not imply a violation
of spin conservation in the Bose-Fermi-Kondo model. The
issue is instead that the Ward identities accounting for spin
conservation simply have a form different from Eq. (7). It
therefore seems plausible that conservation on the level of the
BFK model does not imply that the local Ward identities (7) are
fulfilled. That they are indeed violated in general is illustrated
numerically in Fig. 1 by plotting the left- and right-hand sides
of Eq. (7) for finite �̃x,y,z.

In order to understand the consequences for constructing
conserving approximations based on an impurity model, we
recall that in a local approximation to the self-energy and
irreducible vertex function the local Ward identities (6) are
sufficient to guarantee that the approximation is conserving.
In the case of DMFT, with the self-consistency condition
Gloc = g, they coincide with the Ward identities of the AIM,
so that DMFT is conserving. In presence of retarded spin-spin
interactions this is no longer the case and, as we have seen
numerically, this equation in general is violated. This can
be seen as follows: Eq. (7) implies that the tails of the
local susceptibilities must be identical independent of the
channel index α. We show this in Appendices B 1 and E 2.
In the previous section, we have seen, however, that for the
Heisenberg-type coupling they are different because of the
retarded interaction [cf. Eqs. (23) and (24)]. Equation (7) must
therefore be violated and the approximation is not conserving.

In the case of Ising-type coupling, the retarded interaction
�z in the longitudinal spin channel contributes to the currents
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FIG. 1. Test of Eq. (7) for an isotropic retarded spin-spin
interaction �̃x = �̃y = �̃z and a retarded charge-charge interaction
�̃0. The imaginary part of the left-hand side (dashed black lines)
and of the right-hand side (symbols) of Eq. (7) is drawn at the first
two bosonic Matsubara frequencies ωm=1,2. Equation (7) holds in
the charge channel (open green symbols) but is violated in the spin
channels (filled blue symbols). This test was performed at β = 2 and
U = 6 with a conducting bath 	. The violation of Eq. (7) in the
spin channels depends on the magnitude of �̃x,y,z, which was chosen
large for demonstration purposes. The data shown in this figure were
produced with the CTQMC solver presented in Ref. [44].

in the transversal spin channels of the impurity. The violation
of the local Ward identites (7) thus affects only the transversal
spin channels, while the longitudinal spin channel itself
remains unaffected. That the Ward identity in the longitudinal
spin channel indeed holds under these circumstances is
demonstrated in Fig. 2.

IV. AN EXAMPLE: TWO-PARTICLE
SELF-CONSISTENT DMFT

We have discussed the general conditions for a conserving
and two-particle self-consistent approximation in Sec. II.
Here, we construct a concrete example. As we have seen, an
approximation that satisfies the two-particle self-consistency
condition (20) can be conserving in the charge and at most one
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FIG. 2. Test of Eq. (7) for a retarded spin-spin interaction �̃z

in the z channel and a retarded charge-charge interaction �̃0.
Equation (7) holds in the channels α = 0,z. Parameters as in Fig. 1,
except �̃x = �̃y = 0.

of the spin channels. One may refer to this approximation as
two-particle self-consistent DMFT.

We compute the lattice susceptibility in this approach
according to

Xα
qω = [(

XDMFT,α
qω

)−1 + �α
ω

]−1
. (25)

The particular form (25) of the susceptibility can be motivated
in the DB approach [19]. In this form, the retarded interaction
is reminiscent of the Moriya � correction employed in D�A.
Here �, however, depends on frequency, while in D�A it
is instantaneous. We emphasize that the way of calculating
the susceptibility and its particular form do not change the
conserving character of the theory (see Sec. II A and results in
Sec. IV A below), but will of course affect the results.

In the above, XDMFT,α denotes the susceptibility computed
as in DMFT in the standard way [9], including vertex
corrections. This amounts to approximating the irreducible
vertex function of the lattice with its local counterpart on the
impurity �α

kk′q ≡ γ α
νν ′ω in the channels α = 0,z. We compute

the generalized susceptibility from the integral equation
Xα

kk′q = GkGk+q[βδkk′ − ∑
k′′ γ

α
νν ′′ωXα

k′′k′q]. The susceptibili-
ties are obtained from the latter by tracing out k,k′: XDMFT,α

q =
2
∑

kk′ X
α
kk′q . We emphasize that the label “DMFT” merely

indicates that XDMFT,α is computed as in DMFT. Its value
will differ from the DMFT susceptibility because the impurity
model is different.

The BFK model can be solved accurately using a suitably
generalized continuous-time quantum Monte Carlo (CTQMC)
algorithm. In weak-coupling CTQMC, the inclusion of these
terms is straightforward [46]. In strong-coupling CTQMC the
impurity model can be solved in the segment representation
when only �0 or �z are included [47–49]. For the general
case of a vector bosonic field (not considered in the numerical
results of this section), the algorithm simultaneously performs
a hybridization expansion and an interaction expansion with
respect to the spin-off-diagonal interactions �x,y [44]. Here,
we compute the correlation functions gν and χα

ω , the self-
energy �ν , and the irreducible vertex function γ α

νν ′ω for α =
0,z using a strong coupling quantum Monte Carlo solver [49]
based on the ALPS libraries [50] with improved estimators
adapted to treat the retarded interactions [51,52].

The calculation procedure is as follows: We start from initial
values for the hybridization 	ν and retarded interactions �α

ω,
which specify the BFK impurity model (19). After solving the
model, we evaluate the lattice susceptibility (25). The Green’s
function is computed from the impurity self-energy in the same
way as in DMFT:

G−1
kν = iν + μ − εk − �imp

ν . (26)

The local parts of Gkν and Xα
qω will in general be different from

the impurity quantities gν and χα
ω . We update the hybridization

	ν and retarded interactions �0
ω, �z

ω simultaneously and
iteratively, until the conditions Gloc,ν = gν and Xα

loc,ω = χα
ω

for α = 0,z are satisfied.

A. Numerical results

Let us now turn to the discussion of numerical results of the
two-particle self-consistent DMFT. In the following, we use
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FIG. 3. Susceptibility at the first Matsubara frequency in the two-
particle self-consistent DMFT. Shown is a momentum cross section
at qy = 0 for different values of U (β = 2). The vanishing of the
susceptibility for q → 0 with X ∼ |q|2 is a necessary condition for
global conservation (see text).

parameters U = 6, T = 0.5 (in units of t), which is somewhat
above the DMFT Néel temperature T ≈ 0.35.

In Fig. 2 we illustrate numerically that contrary to
Heisenberg-type coupling (cf. Fig. 1), the local Ward identities
(7) hold in the considered channels, α = 0,z. As shown in
Appendix B 1, this implies X

DMFT,α
q=0,ω �=0 = 0. Inserting this into

Eq. (25) it follows that Xα
q=0,ω �=0 = 0, which is a necessary

condition for conservation of the total density, i.e., ωρq=0,ω =
0. Thus, X0 and Xz are at least globally conserving.

Figure 3 illustrates that X0 and Xz indeed vanish in the limit
|q| → 0 for finite frequencies (ωm=1 in this case). We note that
due to the retarded spin interaction �̃z this approximation is
not conserving in the x and y channels (cf. discussion in Sec. III
and Appendix E).

The right panel of Fig. 4 demonstrates the equivalence of
the impurity and local lattice susceptibility in two-particle self-
consistent DMFT. In this approximation, the charge and the
longitudinal spin susceptibility approach the same asymptote.
This is required by the conservation laws and also satisfied in
DMFT (see left panel, cf. Secs. I and II A).

In the top left panel of Fig. 5 we compare the static spin
susceptibility XQ,ω=0 at Q = (π,π ) in DMFT, two-particle
self-consistent DMFT, and the quantity XDMFT

Q,ω=0 in (25) at
and near half-filling. The increase of XDMFT

Q,ω=0 compared to its
value in standard DMFT is consistent with an enhanced local
interaction on the impurity model Ũ − U = �0

∞ − �z
∞ > 0 as

seen in the bottom right panel of Fig. 5. Concomitantly, we also
find a larger leading eigenvalue of the Bethe-Salpeter equation
in the two-particle self-consistent DMFT (not shown).

In the top right panel, we see that the local susceptibility of
the converged solution lies between the two values of DMFT.
The effect of the two-particle self-consistency is larger close to
half-filling, where antiferromagnetic fluctuations are strongest.
Compared to DMFT, the increase of χω=0 in the two-particle
self-consistent method correlates with the large enhancement
U → Ũ of the onsite interaction in the impurity model.

Finally, we see in the top left panel of Fig. 5 that Xz
Q,ω=0

is significantly reduced compared to XDMFT due to � which
acts as a cutoff. This reduction (marked by downward arrows)

10-2

10-1

 1  10

n

|χ
ω

n
|

 1  10

n

χ0

χz

X0
loc

Xz
loc

FIG. 4. High-frequency behavior of χ (open triangles, bold lines)
and Xloc (filled triangles, dashed lines) in DMFT (left) and in the
two-particle self-consistent DMFT (right). The dashed black lines
indicate the asymptotes −2Ekin/ω

2 computed from (11). The charge
(green) and spin (blue) susceptibilities approach the same asymptote
in both approximations.

becomes larger with a larger absolute value of the cutoff �ω=0,
as can be seen in the bottom left panel.

While the lattice susceptibility (25) can in principle be
defined without the dynamical cutoff �, this solution gives
results closer to benchmarks: The double occupancy computed
from the susceptibilities according to Eq. (15) or (16) gives a
result that is closer to DCA benchmarks than either of the
two values that are obtained in DMFT [37]. Despite two-
particle self-consistency, the double occupancy is nevertheless
inconsistent between one- and two-particle levels, as discussed
in Sec. II A and demonstrated in Fig. 6.

We note that this approximation has several issues: The
dynamic part of the retarded interaction in the spin channel
�̃ω = �ω − �∞ is positive. This corresponds to negative
energies of the bosons [cf. (C5)] and is unphysical. The
impurity model can nevertheless be solved in the QMC solver
in the segment picture. Second, the asymptotic behavior of the
self-energy is modified due to the retarded interactions [52].
Since DMFT produces the correct asymptotic behavior [13],
the high-frequency tail of the self-energy in this approximation
is no longer exact. Finally, even though the approximation
suppresses a magnetic phase transition in two dimensions, the
momentum-independent cutoff leads to an unphysical plateau
of the susceptibility Xq,ω=0 = �−1

ω=0 for all momenta q in the
vicinity of Q for which XDMFT

q,ω=0 diverges when approaching the
DMFT Néel temperature.
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FIG. 5. Top: static susceptibilities of the Hubbard model (1) at
U = 6, β = 2 in DMFT (triangles) and in the 2P self-consistent
approximation (25) (circles) as a function of the density 〈n〉. Left:
lattice susceptibility Xz
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the local susceptibility Xz
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than the impurity susceptibility χz (open triangles, bold lines). They
coincide in the 2P self-consistent approximation (open and filled
circles). Bottom, left: static component of the retarded spin-spin
interaction �z

ω=0. Bottom, right: effective Hubbard repulsion Ũ .

V. DISCUSSION

We have discussed the conservation of charge and spin
in two-particle self-consistent extensions of DMFT for the
Hubbard model. For large interaction, the Hubbard model
approximately maps to the Heisenberg model and is hence
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FIG. 6. Double occupancy as a function of filling. The figure
illustrates the inconsistency of dimp and d2P

lat in DMFT and of dimp

and d1P
lat in 2PSC. The impurity double occupancy computed from the

susceptibilities (16) and the Migdal-Galitskii formula (21) yield the
same result because we solve the impurity model exactly.

TABLE I. A summary of the main results for DMFT and 2PSC
methods, respectively. The second column indicates which retarded
interactions �α act on the impurity. The third and fourth columns
show if the double occupancy d is consistent between impurity and
lattice on the 1P and 2P levels, respectively (see Secs. I and II). The
remaining columns list the channels in which local conservation is
satisfied [see Eqs. (5)–(7) for DMFT, and Secs. II B and III for 2PSC].

� d1P d2P Charge Spin z Spin x,y

DMFT � � � �
Ising 0,z � � �
Heisenberg 0,x,y,z � �

dominated by spin fluctuations. The motivation for including
a retarded spin-spin interaction into the impurity model is to
account for these fluctuations.

As we have seen, however, introducing a retarded inter-
action in the longitudinal spin channel leads to a violation
of conservation in the transversal spin channels of the lattice
approximation. Moreover, a retarded interaction in all three
spin channels violates conservation on the lattice in all spin
channels (cf. Table I).

We have argued that this is related to the fact that the Ward
identities of the lattice and impurity are incompatible. To make
sense of this physically, we recall that an interaction only
conserves the local charge or spin density if it commutes with
the corresponding observable. The retarded charge-charge
interaction commutes with the charge density and therefore
preserves charge on the impurity. In other words, the bosons
that mediate the retarded interaction do not carry a charge. On
the other hand, the transversal components of the retarded spin-
spin interaction do not commute with the longitudinal spin
density operator. Consequently, the spin bosons carry spin:
acting with the operator S+ or S− on the impurity flips the
spin of an electron by one quantum, which is carried by the
boson. This leads to spin currents onto and off the impurity,
which manifest themselves in the impurity Ward identities.
These currents have no analog in the Hubbard model, where
the motion of spin inevitably involves motion of charge.
The latter is accounted for by the fermionic hybridization
function. In essence, the introduction of the retarded spin-spin
interactions in order to achieve two-particle self-consistency
causes a “spin leak” in the lattice approximation. One may
speculate that if the interaction of a lattice model conserves a
local density, the local reference system should have the same
property.

Even though the Hubbard model maps to a Heisenberg
model for strong coupling, spin conservation is violated due to
the exchange interaction on the impurity. This is no contradic-
tion because the Heisenberg model is an effective low-energy
model. The Ward identities, however, imply the equivalence
of the charge and spin susceptibilities and excitations at high
energies for any finite value of U [cf. Eq. (10) in Sec. I].
Indeed, the effective exchange coupling J = −4t2/U involves
two hopping processes and thus virtual high-energy charge
excitations.

In the t-J model, on the other hand, part of the spin currents
is caused by the exchange interaction on the lattice. This part
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is decoupled from the charge current. Contrary to the Hubbard
model, a spin current on the impurity that is decoupled from the
charge current a priori poses no problem and is even necessary.
However, there remains the problem of finding a two-particle
self-consistency condition which satisfies the Ward identities
of the t-J model.

This brings us to a last point, namely, a possible way out
of this dilemma. We recall that our conclusions about the
conserving character of the considered approximations follow
from the two-particle self-consistency condition χα

ω = Xα
loc,ω,

which seems like a natural choice. We can therefore not rule
out the possibility that a different prescription exists, such
that conservation is satisfied. In view of the above arguments,
this seems unlikely in case of the Hubbard model, but more
promising for the t-J model.

VI. CONCLUSIONS

We have investigated the interplay between the requirement
of conservation of an approximation and two-particle self-
consistency. Retarded interactions are required to enforce
two-particle self-consistency, but their presence leads to
problems. While the ambiguity in computing the DMFT
double occupancy from two-particle quantities is resolved,
the retarded interaction instead introduces an ambiguity in
the calculation of the double occupancy from single-particle
quantities.

More importantly, the Ward identities of the resulting
impurity model are no longer compatible with the lattice
Ward identities. As a consequence, we found that it is
impossible to construct a two-particle self-consistent ap-
proximation to the Hubbard model which simultaneously
fulfills the lattice Ward identities in the charge and all spin
channels.

A conserving two-particle self-consistent approximation
can be obtained when restricting self-consistency to the charge
and one of the spin channels. We have used this to construct a
two-particle self-consistent version of DMFT, which provably
obeys global conservation laws and which resolves the ambi-
guity in the calculation of the double occupancy on the two-
particle level. While this approximation suppresses a magnetic
phase transition in two dimensions and yields results for the
double occupancy which are closer to benchmarks than either
of the two DMFT values, it however has several issues which
make it impractical, in particular at low temperature. Our
results imply constraints for the construction of two-particle
self-consistent diagrammatic extensions.

Finally, we have seen that DMFT arises naturally when
constructing a conserving approximation based on the An-
derson impurity model. It may be possible to derive the
cellular DMFT from the Ward identities, avoiding the cavity
construction.
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APPENDIX A: LATTICE WARD IDENTITIES

In this appendix, we detail the derivation of the Ward
identities of a quantum lattice model with Hamiltonian H =
H0 + Hint, where H0 = ∑

kσ εkc
†
kσ ckσ is the noninteracting

Hamiltonian and Hint is the interaction part. The Ward
identities for the continuum can be found in textbooks [53,54].
Derivations for quantum lattice systems have been given in,
e.g., [55–60] or [7]. The first steps of the following derivation
were also done in [57], avoiding the introduction of a current
operator. This makes the resulting Ward identities independent
of the particular form of the dispersion εk. More importantly,
this allows us to derive analogous Ward identities for quantum
impurity models in Appendix E.

The Ward identities can be viewed as sum rules for the
four-point correlation function

G
(2),α
kk′q (τ1,τ2,τ3,τ4)

= −1

2

∑
σ1σ

′
1σ2σ

′
2

sα
σ ′

1σ1
sα
σ ′

2σ2

× 〈
Tτ ckσ1

(τ1)c†k+q,σ ′
1
(τ2)ck′+q,σ2

(τ3)c†k′σ ′
2
(τ4)

〉
, (A1)

which relate it to single-particle quantities. To obtain them,
we examine the time derivative of this correlation function
at equal times τ3 = τ4 = τ , which allows us to express the
result in terms of the time derivative of the density operators
ρα

q = ∑
kσσ ′ c

†
kσ sα

σσ ′ck+q,σ ′ :

∂τ

∑
k′

G
(2),α
kk′q (τ1,τ2,τ,τ )

= ∂τ

1

2

∑
σσ ′

sα
σ ′σ

〈
Tτ ckσ (τ1)c†k+q,σ ′ (τ2)ρα

q (τ )
〉

= 1

2

∑
σσ ′

sα
σ ′σ

{〈
Tτ ckσ (τ1)

[
ρα

q (τ ),c†k+q,σ ′ (τ )
]〉
δτ,τ2

+ 〈
Tτ c

†
k+q,σ ′ (τ2)

[
ckσ (τ ),ρα

q (τ )
]〉
δτ,τ1

−〈
Tτ ckσ (τ1)c†k+q,σ ′(τ2)

[
ρα

q (τ ),H
]〉}

. (A2)

The δ functions arise because the time derivative does not
commute with the time-ordering operator Tτ . In the last
line we have replaced the time derivative of the density
operators using the continuity equation ∂τρ

α = −[ρα,H ]. The
commutators give [ρα

q ,c
†
k+q,σ ] = ∑

σ ′ s
α
σ ′σ c

†
k,σ ′ and [ckσ ,ρα

q ] =∑
σ ′ s

α
σσ ′ck+q,σ ′ . We identify Green’s function Gkσ (τ −

τ ′)δσσ ′ = −〈Tτ ckσ (τ )c†kσ ′(τ ′)〉 and bring the last term in
Eq. (A2) to the left-hand side (LHS) to obtain the intermediate
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result

∂τ

∑
k′

G
(2),α
kk′q (τ1,τ2,τ,τ )

+ 1

2

∑
σσ ′

sα
σ ′σ

〈
Tτ ckσ (τ1)c†k+q,σ ′(τ2)

[
ρα

q (τ ),H
]〉

= 1

2

∑
σσ ′

sα
σσ ′s

α
σ ′σ [Gk+q,σ ′(τ−τ2)δτ,τ1−Gkσ (τ1−τ )δτ,τ2 ].

(A3)

Assuming paramagnetism, G↑ = G↓ ≡ G, we can use∑
σσ ′ s

α
σσ ′s

α
σ ′σ = 2. We further use [ρα

q ,H0] = ∑
k′σσ ′(εk′+q −

εk′ )c†k′σ sα
σσ ′ck′+q,σ ′ to separate the noninteracting from the

interacting Hamiltonian:∑
k′

(∂τ + εk′+q − εk′ )G(2),α
kk′q (τ1,τ2,τ,τ )

+ 1

2

∑
σσ ′

sα
σ ′σ

〈
Tτ ckσ (τ1)c†k+q,σ ′(τ2)

[
ρα

q (τ ),Hint
]〉

= Gk+q(τ − τ2)δτ,τ1 − Gk(τ1 − τ )δτ,τ2 . (A4)

In the last step, we make use of the Fourier transform

G(2)(τ1,τ2,τ3,τ4)

=
∑
νν ′ω

G
(2)
νν ′ωe−ı[ντ1−(ν+ω)τ2+(ν ′+ω)τ3−ν ′τ4], (A5)

introduce the short notation k = (k,ν), q = (q,ω), and
substitute the generalized susceptibility Xα

kk′q = G
(2),α
kk′q +

2βGkGk′δqδα to obtain the Ward identities4

Gk+q − Gk =
∑
k′

Xα
kk′q[εk′+q − εk′ − ıω]

+ 1

2

∑
σσ ′

sα
σ ′σ

〈
ckσ c

†
k+q,σ ′

[
ρα

q ,Hint
]〉
. (A6)

The first term on the right-hand side (RHS) can be recognized
as the contribution from the noninteracting Hamiltonian,
whereas the second contribution originates from the interac-
tion.

In the Hubbard model, the interaction conserves the
densities ρα , that is [ρα,Un↑n↓] = 0 for α = 0,x,y,z. Hence,
the contribution of the interaction to the current in the Ward
identities, the second line of (A6), vanishes. This allows to
recast Eq. (A6) into a relation between the irreducible vertex � ,
Green’s function G, and the self-energy �: the generalized sus-
ceptibility Xα

kk′q is related to the irreducible vertex �α
kk′q via the

integral equation Xα
kk′q = GkGk+q[βδkk′ − ∑

k′′ �
α
kk′′qX

α
k′′k′q].

We insert this relation into Eq. (A6) and divide by GkGk+q .
Using εk+q − εk − ıω = [G0

k]−1 − [G0
k+q]−1 and [G0

k]−1 −
G−1

k = �k one has

�k+q − �k = −
∑
k′

�α
kk′q

∑
k′′

Xα
k′k′′q[εk′′+q − εk′′ − ıω].

4The term ∝ δq=(q,ω),(0,0) does not contribute to the Ward identities.

Since [ρα,Hint] = 0, one can in turn insert the Ward identities
(A6) on the RHS to obtain the desired relation

�k+q − �k = −
∑
k′

�α
kk′q[Gk′+q − Gk′]. (A7)

APPENDIX B: SUSCEPTIBILITY ASYMPTOTE
AND f -SUM RULE

Assuming that the interaction does not contribute to the
currents, i.e., letting [ρα,Hint] = 0 in the Ward identities (A6),
we derive the (ıω)−2 coefficient of the lattice susceptibility of
locally conserving approximations. We prove that in this case
local conservation implies the f -sum rule.

1. Susceptibility asymptote

We recognize that the second line of (A6) vanishes due to
[ρα,Hint] = 0. Summing over k yields zero on the LHS and
we are left with

0 =
∑
kk′

Xα
kk′q[εk′+q − εk′ − ıω]. (B1)

We use Xα
q = 2

∑
kk′ X

α
kk′q to arrive at an exact expression for

the susceptibility

ıωXα
q = 2

∑
kk′

Xα
kk′q[εk′+q − εk′]. (B2)

This implies for the homogeneous limit q → 0 for finite
frequency that

Xα
q=0,ω �=0 = −〈(

ρα
q=0,ω �=0

)2〉 = 0. (B3)

ρα
q=0 = ∑

i ρ
α
i is the operator of total charge (spin) which

is conserved if the continuity equations hold globally, that
is, ∂τρ

α
q=0,τ = 0. Thus, ωρα

q=0,ω = 0 or (B3) reflects that
the approximation to Xα

qω conserves the total charge or
spin, respectively. Therefore, as expected, local conservation
implies global conservation.

To obtain the (ıω)−2 coefficient of Xα
q , we expand Xα

kk′q =
GkGk+q[βδkk′ − ∑

k′′ �
α
kk′′qX

α
k′′k′q] on the RHS of Eq. (B2)

to order O(ω−1): According to the following Eq. (B4), the
interacting bubble GkGk+q decays at least as ω−1. Since we
can treat � as a constant at ω → ∞, vertex corrections to Xα

kk′q
are negligible at order O(ω−1) and one is left with

Xα
kk′q = βGkGk+qδkk′ + O(ω−2)

= β

ıω

Gk−Gk+q

1 + (εk−εk+q + �k−�k+q)/ıω
δkk′ + O(ω−2)

= β

ıω
(Gk − Gk+q)δkk′ + O(ω−2). (B4)

The Green’s function Gk+q in the last line contributes since the
term can be of order O(1) for k ≈ −q. We return to the usual
frequency and momentum notation k = (k,ν), q = (q,ω), and
insert (B4) into the RHS of (B2). This yields the asymptotic
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FIG. 7. Convergence of (ıωm)2X0
qωm

to the RHS of the f -sum
rule (B8). The figure shows the charge susceptibility in DMFT
(blue) and two-particle self-consistent DMFT (red). Darker colors
indicate a larger Matsubara index m � 20. Solid black curves mark
the analytical expression for m → ∞, Eq. (B7). Dashed lines indicate
the value −4Ekin (half-filling, U = 6, β = 2).

coefficient of Xα
qω at order O(ω−2):

lim
ω→∞(ıω)2Xα

qω = lim
ω→∞ 2

∑
νk

(Gkν − Gk+q,ν+ω)[εk+q − εk]

= 2
∑
νk

(Gkνεk+q + Gk+q,νεk − 2Gkνεk)

=
∑
kσ

〈nkσ 〉(εk+q + εk−q − 2εk). (B5)

Here, we have used
∑

ν Gkνσ eıν0+ = 〈nkσ 〉.5 We show below
that this equation is in fact the f -sum rule. For the local
susceptibility Xα

loc,ω = ∑
q Xα

qω it follows using
∑

k εk = 0
and Ekin = ∑

kσ 〈nkσ 〉εk, that

lim
ω→∞(ıω)2Xα

loc,ω = −2Ekin, (B6)

which is used several times in the main text.
Lastly, we simplify the asymptotic coefficient on the

RHS of Eq. (B5) for a square lattice with nearest-neighbor
hopping εk = −2t[cos kx + cos ky]. In this case one can use
goniometric equalities to extract the dependence on q from
Eq. (B5) as

lim
ω→∞(ıω)2Xα

qω

= 2
∑
kσ

〈nkσ 〉(εk+q − εk)

= −4t
∑
kσ

〈nkσ 〉
∑
i=x,y

[cos ki(cos qi − 1) − sin ki sin qi]

= −4t
∑
i=x,y

(cos qi − 1)
∑
kσ

〈nkσ 〉 cos ki

=
∑
i=x,y

(cos qi − 1)
∑
kσ

〈nkσ 〉εk

= (cos qx + cos qy − 2) Ekin. (B7)

5The factor eıν0+
was left out for readability. It needs to be inserted

in (A6) before summation over k.

It was used in the first line that ε−k = εk, in the second line that∑
k 〈nk〉 sin ki = 0, and in the third line that

∑
k〈nk〉 cos kx =∑

k〈nk〉 cos ky , all valid by symmetry of the lattice.
Figure 7 numerically illustrates the validity of Eqs. (B5)

and (B7) by plotting both sides of the equation (for the LHS,
we take large but finite values of ω) in DMFT and two-particle
self-consistent DMFT (cf. Sec. IV). At the M point, the RHS
equals −4Ekin, which is marked by dashed horizontal lines.
This value is larger in DMFT and given by −8

∑
ν 	νgν

since the kinetic energy can be computed from the impurity
(cf. Secs. I and II A).

2. f -sum rule

The so-called f -sum rule (see, for example, [21])

−4 lim
η→0

1

β

∞∑
n>0

ωn sin(ηωn)Xα
qωn

=
∑
kσ

〈nkσ 〉(εk+q + εk−q − 2εk) (B8)

is a relation between the 2P response (LHS) and 1P quantities
(RHS). To avoid confusion, we write the factor β−1 in front of
the sum explicitly.

The Ward identities of the Hubbard model imply the f -sum
rule [21]. It was also mentioned in [21] that the LHS of Eq. (B8)
is entirely determined by the leading (ıω)−2 coefficient of Xα

qω.
We can see this directly by comparing (B5) with the RHS of
Eq. (B8). Here, we show that the sum on the LHS of (B8)
indeed singles out the leading coefficient in the high-frequency
expansion of the susceptibility.

The limit η → 0 of every summand on the LHS of Eq. (B8)
is zero, whereas the limit of the sum is not. The LHS is
convergent but not necessarily absolutely convergent. We drop
the labels α and q temporarily and expand Xα

qω for large
frequencies. Since X(ωn) = X(−ωn), only even powers of ωn

appear in the expansion X(ωn) = ∑∞
k=1 a2kω

−2k
n . Inserting this

expression into the f -sum rule (B8), one has on the LHS

−4
∞∑

k=1

a2k lim
η→0

1

β

∞∑
n=1

sin(ηωn)

ω2k−1
n

. (B9)

We hence need to evaluate

lim
η→0

∞∑
n=1

sin(ηn)

n2k−1
=

{
limη→0

π−η

2 = π
2 if k = 1,

0 if k > 1.
(B10)

For k = 1, the limit η → 0 and the summation over n

must not be interchanged since
∑∞

n=1 |sin(ηn)|/n diverges
for 0 < η < π . For the higher-order coefficients, the sum in
Eq. (B10) is absolutely convergent, the limit and the sum can
be interchanged, leading to zero. Correspondingly, the LHS of
(B8) becomes

−4a2 lim
η→0

1

β

∞∑
n=1

sin(ηn)

2πn/β
= −a2. (B11)

As expected, only the (iω)−2 coefficient −a2 =
lim

ω→∞(ıω)2X(ıω) determines the LHS of the f -sum rule.

As we have seen in the last paragraph, the f -sum rule follows
from local conservation.
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The above result is useful because a straightforward
numerical evaluation of the f -sum rule (B8) suffers from
oscillatory behavior of the LHS with the cutoff frequency.
On the other hand, (ıω)2Xα

qω approaches the limit ω → ∞
smoothly, which is illustrated in Fig. 7. For an accurate
extrapolation to this limit, one needs to account for the effect
of finite-frequency cutoffs in the vertex corrections to Xα

qω.

APPENDIX C: ASYMPTOTE OF THE
IMPURITY SUSCEPTIBILITY

We determine the (ıω)−2 asymptote of the impurity suscep-
tibility χα . It can be shown from the Lehmann representation
of χα that under paramagnetism its asymptote takes on the
following form:

lim
ω→∞(ıω)2χα

ω = 〈[[ρ̄α,Himp],ρ̄α]〉. (C1)

1. Impurity Hamiltonian

In order to evaluate (C1) in the Bose-Fermi-Kondo model
(19), we need to use its Hamiltonian formulation

Himp = Hat + H 0
	 + H	 + H 0

� + H�. (C2)

The first three components

Hat = −μ̃n + Ũn↑n↓,

H 0
	 =

∑
kσ

εkf
†
kσ fkσ ,

H	 =
∑
kσ

(vkc
†
σ fkσ + v∗

kf
†
kσ cσ ) (C3)

are the constituents of the Anderson impurity model, where
a correlated impurity Hat is coupled to a noninteracting bath
H 0

	 via the hybridization H	. In the BFK we further have the
bosonic contributions

H 0
� =

∑
α

H
0,α
� , H� =

∑
α

Hα
�,

H
0,α
� =

∑
q

�α
q

(
bα

q

)†
bα

q ,

Hα
� =

∑
q

wα
q ρ̄αφα

q , φα
q = [(

bα
q

)† + bα
q

]
,

these couple the correlated site to bosonic baths H 0
� via the

density-boson interactions H�. Labeling the quantum numbers
of the fermionic and bosonic baths with k and q, respectively,
the situation described by the BFK is summarized as follows:
The matrix elements vk (wα

q ) couple the correlated fermions
c†,c (density ρα) to a bath of noninteracting fermions f †,f
(bosons φα) with the spectrum εk (�α

q ).
Integrating out the baths in the path-integral formalism

yields the effective action of the BFK (3), with the hybridiza-
tion functions

	νσ =
∑

k

|vk|2Gkσν, (C4)

�̃α
ω =

∑
q

(
wα

q

)2Dα
qω. (C5)

Here, Gkν = 1/(ıν − εk) and Dα
qω = −2�α

q/[ω2 + (�α
q )2] de-

note the bath Green’s functions. The self-consistent interaction
�α = �α

∞ + �̃α
ω has a constant part �α

∞ and a dynamic
part �̃α

ω, which has to vanish at ω → ∞ [cf. (C5)]. The
constant parts are absorbed into the Hubbard interaction Ũ =
U + �0

∞ − f �z
∞ where f = 1 in the Ising-type coupling

and f = 3 in the Heisenberg-type coupling (cf. Sec. II). The
interactions �α change the chemical potential μ̃ = μ + μshift,
which is shifted such that half-filling is obtained at μ̃ = Ũ/2.

2. Susceptibility asymptotes

To determine the asymptotic coefficient (C1), we need to
calculate

Cα =〈[[ρ̄α,Himp],ρ̄α]〉.
Only the operators H	,H� contribute to this expression:

Cα =C	 + C̃α
�, (C6)

C	 =〈[[ρ̄α,H	],ρ̄α]〉 = −〈H	〉, (C7)

C̃α
� =

∑
γ

〈[[
ρ̄α,H

γ

�

]
,ρ̄α

]〉 =
{

0 if α = 0,∑
γ �=α C

γ

� if α = x,y,z,

C
γ

� = −4
〈
H

γ

�

〉
. (C8)

We calculate these expectation values from the impurity
action. To this end, we denote the action of the Hamiltonian
H 0

imp = Hat + H 0
	 + H 0

� as S0 and add sources J,J α to the
actions corresponding to the operators H	 and H� = ∑

α Hα
�,

respectively:

S	(J ) =
∫ β

0
dτ

{∑
kσ

[vk + Jkστ ]c∗
στ fkστ + v∗

kf
∗
kστ cστ

}
,

S�(J α) =
∫ β

0
dτ

∑
qα

[
wα

q + J α
qτ

]
ρ̄α

τ φα
qτ .

The expectation values can then be obtained as functional
derivatives (S	,�

imp = S0 + S	 + S�)

−〈H	〉 = −
∑
kσ

{vk〈c†σ fkσ 〉 + v∗
k〈f †

kσ cσ 〉},

〈c†σ fkσ 〉 = − 1

Z
δ

δJkστ=0

∣∣∣∣
J=0

∫
D[c,f,b]e−S	,�

imp , (C9)

where Z is the grand partition sum, and

−〈
H

γ

�

〉 = −
∑

q

wγ
q

〈
ρ̄γ φγ

q

〉
,

〈
ρ̄γ φγ

q

〉 = − 1

Z
δ

δJ
γ

qτ=0

∣∣∣∣
J γ =0

∫
D[c,f,b]e−S	,�

imp . (C10)

The next step is to integrate out the fermionic and bosonic
baths

∫
D[c,f,b]e−S	,�

imp = Zf,b

∫
D[c]e−S ′

imp . This gives rise
to retarded couplings of c∗

τ ,cτ ′ and ρα
τ ,ρα

τ ′ via the respective

075155-12



CONSERVATION IN TWO-PARTICLE SELF-CONSISTENT . . . PHYSICAL REVIEW B 96, 075155 (2017)

bath Green’s functions Gτ−τ ′ and Dτ−τ ′ [see below (C5)6]:

S ′
imp(J,J α)

=
∫ β

0
dτ {c∗

στ (∂τ − μ̃)cστ + Un↑τ n↓τ }

+
∫ β

0
dτ dτ ′ ∑

kσ

[vk + Jkστ ]c∗
στGkσ,τ−τ ′cστ ′v

∗
k

+ 1

2

∫ β

0
dτ dτ ′ ∑

qα

[
wα

q +J α
qτ

]
ρ̄α

τ Dα
q,τ−τ ′ ρ̄

α
τ ′
[
wα

q +J α
qτ ′

]
.

Performing the derivatives with respect to the sources J,J α

relates the desired expectation values 〈c†σ fkσ 〉 and 〈ρ̄γ φ
γ
q 〉 to

the correlation functions g and χ :

〈c†σ fkσ 〉 = v∗
k

∫ β

0
dτ ′Gkσ,0−τ ′ 〈c∗

στ=0cστ ′ 〉

= v∗
k

∑
ν

Gkσνgνσ , (C11)

〈
ρ̄γ φγ

q

〉 = wγ
q

∫ β

0
dτ ′Dγ

q,0−τ ′
〈
ρ̄

γ

τ=0ρ̄
γ

τ ′
〉

= −wγ
q

∑
ω

Dγ
q,ωχγ

ω . (C12)

Here, we have identified −〈cστ ′c
∗
στ=0〉 = gστ ′ and

−〈ρ̄γ

τ ′ ρ̄
γ

τ=0〉 = χ
γ

τ ′ . Similarly,

〈f †
σ ckσ 〉 = vk

∫ β

0
dτ Gkσ,τ−0〈c∗

στ cστ ′=0〉

= vk

∑
ν

Gkσνgνσ .

Inserting the expectation values into Eqs. (C9) and (C10), we
finally determine the asymptotic coefficients

C	 = −〈H	〉 = −2
∑
kσν

|vk|2Gkσνgνσ ,

C
γ

� = −4
〈
H

γ

�

〉 = 4
∑
qω

(
wγ

q

)2Dγ
q,ωχγ

ω .

Using the definitions of the bath Green’s functions [Eqs. (C4)
and (C5)], we conclude

C	 = −2
∑
νσ

	νσ gνσ , (C13)

C
γ

� = 4
∑

ω

�̃γ
ωχγ

ω . (C14)

We examine this result for the Bose-Fermi-Kondo model
(C2) in two cases: (i) Ising-type coupling: finite retarded
interactions �̃0,�̃z in the density-type channels and �̃x =
�̃y = 0 in the transversal spin channels. Collecting Eqs. (C6),
(C8), (C13), and (C14), we find that the susceptibilities of the

6For readability, expectation values are still marked with the same
brackets after integrating out the baths.

10-2

10-1

 1  10

 

 

n

|χ
ω

n
|

χ0

χz

 1  10

n

FIG. 8. Impurity susceptibility χα of the Bose-Fermi-Kondo
model (symbols) and its exact high-frequency asymptote (dashed
lines, see text). Left panel: Ising-type coupling, χ0 (green) and χz

(blue) approach the same asymptote (triangles: 〈n〉 = 0.54, circles:
〈n〉 = 0.17). Right panel: Heisenberg-type coupling, χ0 and χz

approach different asymptotes. (Colors as in the left panel. β = 2,
U = 6 in both panels.)

BFK assume the following asymptotic behavior for large ω:

lim
ω→∞(ıω)2χ0,z

ω =−2
∑
νσ

	νσ gνσ , (C15)

lim
ω→∞(ıω)2χx,y

ω =−2
∑
νσ

	νσ gνσ + 4
∑
ω′

�̃z
ω′χ

z
ω′ . (C16)

The Ising-type coupling is used in the two-particle self-
consistent DMFT in Sec. IV. Hence, in this approximation
χ0 and χz approach the asymptote given in Eq. (C15), which
is demonstrated in the left panel of Fig. 8. Results for two
different fillings 〈n〉 are shown. Heisenberg-type coupling:
Finite retarded interactions in all channels, �̃0,�̃x = �̃y =
�̃z = �̃′:

lim
ω→∞(ıω)2χ0

ω =−2
∑
νσ

	νσ gνσ , (C17)

lim
ω→∞(ıω)2χz

ω =−2
∑
νσ

	νσ gνσ + 4
∑

ω′,α=x,y

�̃α
ω′χ

α
ω′ . (C18)

The asymptotes of χx and χy may be obtained by permuting
the labels x,y,z in Eq. (C18).

We compare Eqs. (C17) and (C18) with numerical results
in the right panel of Fig. 8. We used the CTQMC solver
presented in [44] to calculate the impurity susceptibility χα
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in the Bose-Fermi-Kondo model in Heisenberg-type coupling,
�̃′ �= 0, with a conducting bath 	 at half-filling.

APPENDIX D: MIGDAL FORMULA
FOR THE DOUBLE OCCUPANCY

In the Hubbard model, the Migdal formula d = 〈n↑n↓〉 =
Tr(G�)/2U can be used to calculate the double occupancy
from the potential energy Ud [40]. In the Bose-Fermi-
Kondo model (C2), the potential energy is modified due to
retarded interactions �ω = �∞ + �̃ω. Their constant parts
cause a shift U → Ũ = U + �0

∞ − f �z
∞. In the following,

we determine the effect of the dynamic part �̃ω. We start
from the equation of motion (EOM) of the impurity Green’s
function g−τ = −〈Tτ c−τσ c†σ 〉:

−∂τg−τσ = −δ(τ )〈(cσ ,c†σ )〉 + 〈Tτ [c−τ,σ ,Himp]c†σ 〉

⇔
∑

ν

(−ıν)gνσ eıντ = −δ(τ ) + 〈Tτ [c−τ,σ ,Himp]c†σ 〉. (D1)

The time derivative in the EOM is taken from the left (−τ � 0).
This is done in order to approach the equal-time limit τ → 0
without a jump in g(τ ). To evaluate the RHS, we need to
build the commutator [cσ ,Hi] with all the components of the
impurity Hamiltonian (C2). For this, we need the commutators

[cσ ,c
†
σ ′ ] = δσ,σ ′ − 2c

†
σ ′cσ ,

[cσ ,cσ ′ ] = −2cσ ′cσ ,

[cσ ,n↑n↓] = (n↑δσ↓ + n↓δσ↑)cσ ,

[cσ ,ρ̄α] = [cσ ,ρα] =
∑
σ ′

sα
σσ ′cσ ′ .

Then, the commutators on the RHS of the EOM (D1) become

[cσ ,Hat] = −μ̃cσ + Ũ (n↑δσ↓ + n↓δσ↑)cσ ,

[cσ ,H	] =
∑
kσ ′

(vk[cσ ,c
†
σ ′fkσ ′] + v∗

k[cσ ,f
†
kσ ′cσ ′ ])

=
∑

k

vkfkσ ,

[
cσ ,Hα

�

] =
∑

q

wα
q φα

q

∑
σ ′

sα
σσ ′cσ ′ .

The other components of Himp commute with cσ . We insert
these results into (D1) and sum over σ on both sides:∑

σ

(−∂τ )g−τσ

= −2δ(τ ) − μ̃
∑

σ

〈Tτ c−τ,σ c†σ 〉

+ Ũ
∑

σ

〈Tτn−τ,−σ c−τσ c†σ 〉 +
∑
kσ

vk〈Tτf−τ kσ c†σ 〉

+
∑
αq

wα
q

〈
Tτφ

α
−τq

∑
σσ ′

sα
σσ ′c−τσ ′c†σ

〉
. (D2)

We identify the impurity Green’s function g−τσ =
−〈Tτ c−τ,σ c†σ 〉 on the RHS and order the remaining expectation
values by time (−τ < 0):

∑
σ

(−∂τ − μ̃)g−τσ

= −2δ(τ ) − Ũ
∑

σ

〈Tτ c
†
σ n−σ c−τσ 〉 −

∑
kσ

vk〈Tτ c
†
σ f−τ kσ 〉

−
∑
αq

wα
q

〈
Tτφ

α
−τq

∑
σσ ′

sα
σσ ′c

†
σ c−τσ ′

〉
. (D3)

The aim is to take the EOM at τ = 0, we insert 0+ in places
where the limit is dubious. Time-ordered products sort creation
operators to the left of annihilators at equal time. Since we
approach this point from −τ < 0, the order of operators in
Eq. (D3) remains unchanged in the limit, avoiding jumps in
the expectation values. At equal time, we recognize the double
occupancy 〈c†σ n−σ cσ 〉 = 〈n−σ nσ 〉 = d and the density op-
erators

∑
σσ ′ s

α
σσ ′c†σ cσ ′ = ρα . The averages

∑
k vk〈c†σ fkσ 〉 =∑

ν 	νσ gνσ and
∑

q wα
q 〈φα

q ρ̄α〉 = −∑
ω �̃α

ωχα
ω have been

obtained from functional derivatives in the previous section. To
use the latter in Eq. (D3), one has to account for the difference
in ρ and ρ̄ = ρ − 〈ρ〉. Back in Eq. (D3) we have

−
∑
νσ

(ıν + μ̃ − 	νσ )gνσ eıν0+

= −2δ(0+) − 2Ũd +
∑
αω

�̃α
ωχα

ω − �̃α
ω=0〈ρα〉2. (D4)

We recognize g0 = [ıν + μ̃ − 	]−1 on the LHS and use
Dyson’s equation g/g0 = 1 + �g.

∑
νσ eıν0+ = 2δ(0+) on the

LHS cancels, leaving us with a modified Migdal-Galitzkii
formula

d = 1

2Ũ

∑
νσ

gνσ�νσ eıν0+ + 1

2Ũ

∑
αω

�̃α
ω

(
χα

ω − β〈ραt〉2δω

)
.

(D5)

The factor β on the RHS accounts for the factor β−1 implied
in the frequency summation. The above formula does not
express the double occupancy d in terms of 1P quantities, due
to the contribution of χ on the RHS. However, bringing this
contribution to the LHS, one still obtains a relation between
2P and 1P quantities, which justifies the label d1P

imp used in the
main text.

To accurately calculate the sum
∑

νσ gνσ�νσ eıν0+
, one

needs to separate the constant Hartree part from the self-energy
�ν = �′

ν + �H and to treat the asymptotes of gν = 1/ıν + . . .

and �′
ν = c1/ıν + . . . analytically. Then, the equal-time limit

can be taken safely:

∑
νσ

gνσ�νσ eıν0+ =
∑
νσ

gνσ (�′
νσ + �H)eıν0+

(D6)

=
∑
νσ

[gνσ�′
νσ − c1/(ıν)2] − c1β/2 + 〈n〉�H. (D7)
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APPENDIX E: WARD IDENTITIES AND ASYMPTOTES
IN THE BOSE-FERMI-KONDO MODEL

We derive the Ward identities of the Bose-Fermi-Kondo
model (C2) and establish a relation to the susceptibility
asymptotes derived in Appendix C 2.

1. Ward identities

We can follow the derivation for the Ward identities on
the lattice in Appendix A which led to (A3). Omitting
momentum indices, and inserting impurity instead of lattice
quantities, Gk → gν , G(2),α

kk′q → g
(2),α
νν ′ω , Xα

kk′q → χα
νν ′ω, �α

kk′q →
γ α

νν ′ω, H → Himp, we obtain in frequency space
1

2

∑
σσ ′

sα
σ ′σ

{−ıω
〈
cνσ c

†
ν+ω,σ ′ρ

α
ω

〉 + 〈
cνσ c

†
ν+ω,σ ′

[
ρα

ω,Himp
]〉}

= gν+ω − gν. (E1)
The impurity Hamiltonian Himp is defined in (C2), where
[ρα

ω,Hat] = [ρα
ω,H 0

	] = [ρα
ω,H 0

�] = 0. We treat the remaining
contributions from H	 and Hα

� separately using [ρα,H	] =∑
kσσ ′ s

α
σ ′σ (vkc

†
σ ′fkσ − v∗

kf
†
kσ ′cσ ). We need to calculate the

following correlation function in Eq. (E1):
1

2

∑
σσ ′

sα
σ ′σ

〈
cνσ c

†
ν+ω,σ ′

[
ρα

ω,H	

]〉

= 1

2

∑
σ1σ

′
1σ2σ

′
2

sα
σ ′

1σ1
sα
σ ′

2σ2

{ ∑
kν ′

vk
〈
cνσ1

c
†
ν+ω,σ ′

1
c
†
ν ′σ ′

2
fkν ′+ω,σ2

〉

−
∑
kν ′

v∗
k

〈
cνσ1

c
†
ν+ω,σ ′

1
f

†
kν ′σ ′

2
cν ′+ωσ2

〉}
. (E2)

As demonstrated in Appendices C 2 and D, the bath operators
in the impurity averages can be transferred to Grassmann
numbers in the path-integral formalism and can then be
integrated out. This leaves convolutions with the hybridization
function 	νσ = ∑

k |vk|2Gkσν [cf. (C4)]. We ascertain that
the following replacements are valid: “

∑
k vkfνσ → 	νσ cνσ ”

and “
∑

k v∗
kf

∗
νσ → 	νσ c∗

νσ .” Performing these replacements
in Eq. (E2) and identifying the four-point correlation function

g
(2),α
νν ′ω = −1

2

∑
σ1σ

′
1σ2σ

′
2

sα
σ ′

1σ1
sα
σ ′

2σ2
〈cνσ1

c
†
ν+ω,σ ′

1
cν ′+ω,σ2

c
†
ν ′σ ′

2
〉

and the generalized susceptibility χα
νν ′ω = g

(2),α
νν ′ω +

2βgνgν ′δωδα of the impurity, one can separate the
noninteracting part of (E1) as

gν+ω − gν =
∑
ν ′

χα
νν ′ω[	ν ′+ω − 	ν ′ − ıω]

+ 1

2

∑
σσ ′

sα
σ ′σ

〈
cνσ c

†
ν+ω,σ ′

[
ρα

ω,H�

]〉
. (E3)

We are left with the commutator [ρα,H�] on the RHS with
the retarded interactions H� = ∑

α Hα
�. We recall that H� =∑

αq wα
q ρ̄αφα

q and recognize that [ρ0,H�] = 0, that is, the
retarded interactions do not contribute to the charge current.
�x,y,z on the other hand do contribute to the spin currents
due to the commutation relations for spin operators [ρα,ρβ ] =
2ı

∑
γ εαβγ ργ ,

[ρα,H�] = 2ı
∑
βγ

εαβγ ργ
∑

q

wβ
q φβ

q . (E4)

ıεαβγΛ̃β

γ

α

β

FIG. 9. Symbolic representation of the second line of Eq. (E5).
One obtains a representation of the RHS of Eq. (E6) by tapering the
open Green’s function lines (implying summation over α = x,y,z).

Inserting this relation into Eq. (E3), one can transfer the
bosonic operators φβ into complex variables in the path
integral and integrate these out. As exercised in Appendix C 2,
this leads to a replacement rule “

∑
q w

β
q φβ

ω → �̃β
ωρβ

ω ,” and
hence φβ give rise to the retarded spin-spin interaction �̃β . We
obtain a six-point correlation function on the RHS of Eq. (E3),
leaving us with the Ward identities of the BFK:

gν+ω−gν =
∑
ν ′

χα
νν ′ω[	ν ′+ω − 	ν ′ − ıω]

+ 1

2

∑
σσ ′

sα
σ ′σ

∑
ω′βγ

2ıεαβγ �̃
β

ω′ 〈cνσ c
†
ν+ω,σ ′ρ

β

ω′ρ
γ

ω−ω′ 〉.

(E5)

The six-point correlation function in the second line of Eq. (E5)
contains essentially three-particle-irreducible contributions
(which cannot be broken up into parts by cutting one, two,
or three fermion lines) (see Fig. 9). Hence, the Ward identities
of the BFK (E5) cannot be recast into a relation which features
only the one- and two-particle-irreducible vertices � and γ α .

Assuming an isotropic retarded interaction �̃x,y,z = �̃′, we
can sum the impurity Ward identities (E5) over ν and α, use
the definition of the spin-density operators ρx,y,z = 2Sx,y,z =∑

σσ ′ c†σ sα
σσ ′cσ ′ , and the definition of the vector product

(A × B)α = ∑
βγ εαβγ AβBγ to see that �̃′ couples to the

time-dependent spin chirality [61]∑
νν ′α

χα
νν ′ω[	ν ′+ω − 	ν ′ − ıω]

= 8ı
∑
ω′

�̃′
ω′ 〈S−ω(Sω′ × Sω−ω′ )〉. (E6)

Writing the RHS in imaginary time,
∫ β

0 �̃′
τ2−τ3

〈Tτ [Sτ1 (Sτ2 ×
Sτ3 )]〉dτ2, the spin chirality obviously vanishes when two of
its time indices are equal. Hence, this contribution arises exclu-
sively in presence of a time-dependent spin-spin interaction.

In the Anderson impurity model, we have � = 0 and the
interaction Un↑n↓ does not contribute to the currents. In this
case, the six-point correlation function drops out of the impu-
rity Ward identities (E5). Then, analogous to the lattice Ward
identities (A7), one can recast the impurity Ward identities into
the form �ν+ω − �ν = −∑

ν ′ γ
α
νν ′ω[gν ′+ω − gν ′], i.e., Eq. (7)

in the main text.

2. Relation to susceptibility asymptotes

We prove that the Ward identities of the AIM (7) determine
the (ıω)−2 coefficient of the impurity susceptibility. Conse-
quently, finding a different coefficient proves a violation of
Eq. (7), which is used in Sec. III. In the AIM we have
�̃ = 0. Then, similar considerations as in Appendix B 1

075155-15



FRIEDRICH KRIEN et al. PHYSICAL REVIEW B 96, 075155 (2017)

[cf. Eq. (B5)] show that the impurity Ward identities (E5) imply
the following high-frequency asymptote of the susceptibility:

lim
ω→∞(ıω)2χα

ω = lim
ω→∞ 2

∑
ν

(gν − gν+ω)[	ν+ω − 	ν]

= −4
∑

ν

gν	ν. (E7)

In the last step it was used that gν+ω,	ν+ω vanish at ω → ∞.
Equation (E7) is in agreement with the asymptotes of χ in
the BFK for �̃x,y,z = 0 [see Eq. (C18)]. For �̃ �= 0 we find
by comparison of Eq. (E7) with the asymptote of the exact
solution (C18) that the six-point correlation function in the
impurity Ward identities (E5) contributes to the asymptote of
the spin susceptibility χα=x,y,z with 4

∑
ω′,β �=α �̃

β

ω′χ
β

ω′ .
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