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The entanglement entropy in one-dimensional critical systems with boundaries has been associated with the
noninteger ground-state degeneracy. This quantity, being a characteristic of boundary fixed points, decreases
under renormalization group flow, as predicted by the g theorem. Here, using conformal field theory methods,
we exactly calculate the entanglement entropy in the boundary Ising universality class. Our expression can be
separated into the well-known bulk term and a boundary entanglement term, displaying a universal flow between
two boundary conditions, in accordance with the g theorem. These results are obtained within the replica trick
approach, where we show that the associated twist field, a central object generating the geometry of an n-sheeted
Riemann surface, can be bosonized, giving simple analytic access to multiple quantities of interest. We argue
that our result applies to other models falling into the same universality class. This includes the vicinity of the
quantum critical point of the two-channel Kondo model, allowing one to track in real space the presence of a
region containing one-half of a qubit with entropy 1

2 log(2), associated with a free local Majorana fermion.
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I. INTRODUCTION

Boundary critical phenomena [1] have found innumerate
applications in condensed matter systems and string theory.
A key result in one-dimensional (1D) critical systems, known
as the g theorem [2], states that upon renormalization group
(RG) flow, the noninteger ground-state degeneracy g, as well as
the entropy associated with the boundary, log(g), necessarily
decrease, signaling a quenching of the boundary’s degrees of
freedom.

Entanglement entropy (EE), on the other hand, has recently
found multiple connections in high energy physics and black
holes [3–6], as well as in condensed matter, relating to quantum
phase transitions, topological phases, and developments of
numerical algorithms; for reviews see [7–11]. Moreover, first
measurements of entanglement have become possible using
twin many-body systems [12].

In critical 1D systems with a boundary, the universal
noninteger degeneracy has been identified by Calabrese and
Cardy, as a subleading term in the entanglement entropy [13],

SA(�) = c

6
log

2�

a
+ log(g) + c′

1. (1)

Here, c is the central charge, � defines the bipartition of the
system, a is a short distance scale, and c′

1 is a nonuniversal
constant. In general, there are boundary perturbations which
could be relevant or irrelevant. Then, log(g) is no longer a
constant but rather flows under RG [14–16],

log(g) → log(g(�)). (2)

For a relevant perturbation, log(g) decreases upon increasing
� according to the g theorem between two known universal
values; see Ref. [17] for a proof of the g theorem in the context
of entanglement and Refs. [18,19] for a holographic view in
the context of the Kondo effect. Several numerical efforts have
been carried in order to identify this noninteger ground-state
degeneracy in the subleading term of the EE, and its RG flow.
This was accomplished in various models, including Kondo

models [20,21] and the boundary Ising chain [22]; for a review
see Ref. [23].

Of central interest is the Ising universality class of boundary
critical phenomena, displaying a quenching of a ground-state
degeneracy of 1

2 log 2 at the boundary, i.e., that of half a qubit,
with applications to systems hosting Majorana fermions, spin
systems near phase transitions, or quantum impurity models;
see Fig. 1. A number of fruitful techniques had been applied
to the EE in this theory, either based on its simple free fermion
structure [17], or via the form-factor approach [16,17,24–26].
With an eye on possible generalizations to other theories,
finding additional convenient techniques for the Ising model
may be highly valuable.

In this paper we present a new method based on conformal
field theory, which allows us to obtain exact analytic results
describing the entire flow in real space of the entanglement
entropy in the boundary Ising universality class. As we show,
this result is applicable in the context of two-channel [21,27]
or two-impurity Kondo systems [28], and allows the real
space identification of the two-channel Kondo screening cloud
[20,29–31], which hosts a Majorana fermion half-qubit degree
of freedom.

Our exact analytic result nicely fits existing detailed numer-
ical results for the boundary Ising chain [22]. It also agrees
with a result for an equivalent model solved in Ref. [17] based
solely on free fermion techniques. Our fully analytic approach
is facilitated via a bosonization scheme for the so-called twist
field, an object in the field theory that realizes the n-sheeted
Riemann geometry and whose correlation function encodes
entanglement properties [13,24]. Our method is expected to
allow additional calculations in the boundary Ising universality
class, such as negativity [32–36] or entanglement of multiple
intervals [37–39].

II. ENTANGLEMENT ENTROPY

We briefly review the connection between entanglement
entropy and geometry [13,24]. The entanglement entropy,
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FIG. 1. (a) Quantum critical point of the boundary Ising univer-
sality class. A crossover length scale, ξ ∼ h−2, separates the free
boundary condition (BC) with finite entropy at short distances from
fixed BC with quenched entropy at long distances. Specific model
examples include (b) semi-infinite critical transverse field Ising chain,
where h corresponds to a magnetic field applied at the boundary spin,
or (c) two-channel Kondo model where an impurity spin couples to
two baths of conduction electrons with h ∝ JL − JR .

S = −trρA log ρA, of subsystem A with a reduced density
matrix ρA = trBρ, where ρ is the full density matrix, is a
limit case of the Rényi entropy Sn = 1

1−n
log trρn

A. A physical
way to interpret this relation, S = limn→1 Sn, is via the replica
trick explained herein. Consider a semi-infinite 1D system as
in Fig. 2(a). While trρ is the partition function that can be
expressed as a path integral over a semi-infinite plane, trρn

A

is the partition function of the same theory on the geometry
constructed from n copies of the semi-infinite plane, cut along
the segment t = 0, 0 � x � �, and glued together into an
n-sheeted Riemann surface structure; see Fig. 2(b).

References [13,24] introduced a local twist field T , such
that any correlation function on the n-sheeted Riemann surface
Rn can be computed on n decoupled half planes Rn, as

〈O〉Rn
= 〈OT (w,w̄)〉Rn

〈T (w,w̄)〉Rn

. (3)

Here, (w,w̄) = (i�, − i�) is the source of the branch cut in
complex coordinates (z,z̄) = (t + ix,t − ix). The computa-
tion of trρn

A boils down to that of the one-point function
of the twist field generating the geometry of the n copies,
trρn

A ∝ 〈T (w,w̄)〉. To obtain the EE, this replica trick only be-
comes useful provided that analytic continuation to noninteger
n can be taken. For a conformal field theory in 1+1 dimensions,
the n-sheeted Riemann surface is related to the complex
plane by a conformal transformation; see below. These
observations lead to the conclusion that the twist field behaves
as a primary field with a scaling dimension [13,24,40,41]
hT = c

24 (n − 1/n), allowing the elegant derivation of the EE
scaling, Eq. (1), in conformal invariant systems.

III. ISING BOUNDARY UNIVERSALITY CLASS

The Ising model at the critical temperature admits a
Lagrangian description in terms of a c = 1/2 conformal field
theory (CFT) of free massless Majorana Fermi field (ψ,ψ̄). In
the presence of a boundary B, which is taken to be the line

x = 0 in Fig. 2, the action is [42]

Sh = 1

2π

∫
D

d2z[ψ∂z̄ψ + ψ̄∂zψ̄]

+
∫
B

dt

[
− i

4π
ψψ̄ + 1

2
aȧ

]
+ ih

∫
B

dt[a(ψ + ψ̄)],

(4)

where z = t + ix and ∂D = B. Here, a(t) is a local Majorana
fermion 〈a(t)a(t ′)〉 = 1

2 sgn(t − t ′) and h is a magnetic field
applied at the boundary which represents a relevant boundary
perturbation leading to an RG flow. The fermion correlation
function, 〈ψ(z)ψ(z′)〉 = 1

z−z′ , implies that the scaling dimen-
sion of this perturbation is 1/2. In turn, finite h leads to a finite
correlation length ξ ∼ h−2.

The crossover phase diagram of this model is shown in
Fig. 1(a) for small h. The y axis is the inverse distance from the
boundary (it can also be thought of as temperature). At small
length scales, 1/x � 1/ξ , the perturbation is weak and there
is a ground-state degeneracy of half a qubit, log(g) = 1

2 log(2),
associated with the Majorana fermion a. At large length scales,
1/x 	 1/ξ , this local Majorana fermion hybridizes with the
Majorana field ψ , hence quenching the boundary degeneracy,
log(g) = 0.

This field theory describes the long distance physics of a
class of problems falling into the same universality class. The
most directly connected lattice model is the boundary-Ising
chain; see Fig. 1(b),

H = −
∞∑

j=0

Sz
jS

z
j+1 + 1

2
· Sx

j + hbS
z
0. (5)

The bulk transverse field is tuned to its critical value, 1/2.
A weak longitudinal field hb is applied at the boundary spin,
j = 0. The boundary field hb maps to the relevant perturbation
h in the field theory. This implies an RG flow between the two
fixed points corresponding to a free boundary condition (BC),
hb = 0, and a fixed BC, hb = ±∞. The noninteger ground-
state degeneracies associated with these BCs, given by g = √

2
and g = 1, respectively, were identified in numerical studies
of the EE [22,23].

As the field theory implies, the entropy of 1
2 log(2) at the

free boundary condition is connected with unpaired Majorana
fermions which recently attracted considerable attention. Such
localized Majorana fermion zero energy states also arise
in the two-channel Kondo model [43], where an impurity
spin-1/2 antiferromagnetically couples to two channels of
electrons; see Fig. 1(c). This leads to frustration, and hence
to a partial screening of the impurity entropy from log(2),
corresponding to the decoupled spin-1/2 impurity, down to
1
2 log(2). This partial quenching of the boundary entropy has
been numerically identified in the EE [21,27]. The applicability
of the field theory Sh to the two-channel Kondo model has
been identified in Ref. [44], wherein h corresponds to one of
few perturbations of the model [45], e.g., channel anisotropy,
where one channel couples more strongly to the impurity
spin. At low temperatures, the weakly coupled channel fully
decouples, and the strongly coupled channel of spin-1/2
electrons fully screens the impurity spin into a spin singlet
state with log(g) = 0.
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FIG. 2. (a) A semi-infinite quantum chain x � 0 maps into a field theory in 1+1 dimensions with a line boundary parametrized by t .
Performing a cut at t = 0 for x � �, and introducing n replicas of the system allows one to construct (b) the n-sheeted Riemann surface Rn.
Computing the partition function on this geometry provides trρn

A, the essential ingredient for the EE. (c) Upon Fourier transforming over the
sheet index, one obtains n new semi-infinite planes. When a field crosses the cut it just picks up a phase of e2πik/n. (d) For the Ising model,
the theory on each plane is that of a free Majorana fermion. One can pair up the ±k Majorana sectors into a single plane and construct one
complex fermion ψk which can be bosonized along with the twist field Tk ∼ ei k

n (φ−φ̄).

In fact, many different quantum impurity models, such as
the two-impurity Kondo model [46–49], map to the same field
theory and share the same quenching of a half-qubit entropy.

IV. BOSONIZATION OF THE TWIST FIELD

One can trade the complicated n-sheeted Riemann ge-
ometry by a trivial semi-infinite plane geometry, in which
each field of the theory, such as the fermion field ψ , is
replaced by an n-component field (ψ1,ψ2, . . . ,ψn)T ; upon
crossing the cut, 0 � x � �, the fields satisfy a boundary
condition (ψ+)j = (ψ−)j−1; see Fig. 2(b). In other words, the
n-component field gets multiplied by a twist matrix T given
by Tij = δi−j+1 for even n and by a similar expression for
odd n [50]. This matrix can be diagonalized in Fourier basis,
ψk = 1√

n

∑
j e2πij (k−n/2)/nψj , with ψ∗

k (z) = ψ−k(z), yielding

T ψk = e2πik/nψk . The range of k values is given by

k = −(n − 1)/2, . . . ,(n − 1)/2. (6)

For even n, one may decompose the theory into n/2 complex
fermions (ψk ,ψ∗

k ) with k = 1/2, . . . ,(n − 1)/2. For odd n,
there is an unpaired Majorana fermion ψ0 and (n − 1)/2
complex fermions k = 1, . . . ,(n − 1)/2; see Fig. 2(c). Upon
crossing the cut, the kth fermion acquires a phase e2πik/n,
while the k = 0 unpaired Majorana fermion ψ0 for odd n is
insensitive to the cut.

The nontrivial phase factor, e2πik/n, picked up by the
fermions upon crossing the cut, originates from the twist field
located at the end of the cut, x = �, as in Eq. (3); see Fig. 2(d).
To extract the interplay between the twist field and the complex
fermions, in terms of their bulk operator product expansion
(OPE), we consider O = ψ∗

k (z)ψk (z′) in Eq. (3) and apply
the conformal transformation ξ (z) = ( z−w

z−w̄
)1/n, yielding the

correlation function,

〈ψ∗
k (z)ψk (z′)T (w,w̄)〉

〈T (w,w̄)〉 = 1

z − z′

(
(z − w)(z′ − w̄)

(z − w̄)(z′ − w)

)k/n

.

(7)

For a calculation see Appendix A. Interesting insights follow
from this result. First, upon taking ψk(z) around the twist
field at w, the correct factor of e2πik/n is recovered. Second,
from the diagonal operation of the twist on the paired Fourier
transformed complex fermion fields, (ψk ,ψ∗

k ), one may infer
a similar factorization of the twist field,

T (w,w̄) =
∏
k�0

Tk(w,w̄), (8)

where Tk is the part of the twist field acting on the ±k

Majorana components. While we know the total scaling
dimension hT = ∑

k�0 hk , what is the scaling dimension of
each component Tk? We can extract it from

〈Tk(z)T (w,w̄)〉
〈T (w,w̄)〉 = hk

(w − w̄)2

(z − w)2(z − w̄)2
. (9)

The stress-energy tensor Tk of the ±k sectors, being two
Ising theories, is given by that of a complex fermion the-
ory, Tk = − 1

2 (ψ∗
k ∂zψk − ∂zψ

∗
k ψk ), obtained from Eq. (7) by

applying 1
2πi

∮
dz′
z′−z

[− 1
2 (∂z′ − ∂z)], yielding

hk = k2

2n2
. (10)

For odd n, the k = 0 sector has hk = 0, i.e., this component
of the twist field acts as the identity field and hence does
not contribute to any calculation. For all n, Eq. (10) sums
up correctly to the total scaling dimension of the twist field
hT = ∑(n−1)/2

k>0 hk = 1
48 (n − 1/n).

Putting together the monodromy that follows from Eq. (7)
as well as the scaling dimension hk of the twist field Eq. (10),
we deduce that the twist field admits a bosonization formula.
By introducing a boson field φ for each sector ±k and writing
the complex fermion field as ψk = eiφ and ψ̄k = eiφ̄ we infer

Tk(w,w̄) = ei k
n

(φ(w)−φ̄(w̄)). (11)

By introducing the vertex operators Vα(w) = eiαφ(w),

V̄α(w̄) = eiαφ̄(w̄), the Fermi and twist fields take the form,
ψ = V1, ψ̄ = V̄1, and Tk(w,w̄) = Vk/n(w)V̄−k/n(w̄).
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Equations (8) and (11) are the central result of this section.
This procedure of pairing of ±k Majorana sectors followed
by bosonization, is related to the well-known two-copy
bosonization of the Ising CFT which allows the calculation
of all its critical correlations [51]. The Ising order parameter
σ also admits a bosonization formula σ 2 ∝ V 1

2
V̄− 1

2
+ V− 1

2
V̄ 1

2
.

Hence, the spin field and the twist field have a similar structure
in terms of vertex operators Vα . However, note that α = 1/2
is not contained in the set of k/n in Eq. (6). Thus, the spin
field is equivalent to a continuation of the twist field Tk to
k = n/2. We note that similar bosonization techniques were
used in Refs. [24,52].

We emphasize that while CFTs are well understood objects,
n copies of a CFT endowed with the twist field form a
more complicated object known as an orbifold [41]. The
OPEs of the twist fields with other fields [53] have been
extensively explored in many circumstances [35–37,39,54],
but nevertheless remain elusive in general. The bosonization
procedure which is known for orbifolds of free theories [41], as
applied here in the context of entanglement, leads to a number
of applications. For example, one may apply it to compute
the entanglement of multiple intervals, corresponding to an
insertion of multiple twist fields, which has been carried out
using other methods [37–39]. Hereafter, we demonstrate the
power of this method for the calculation of the entanglement
entropy in the presence of a boundary with a magnetic field.

V. DIFFERENTIAL EQUATION FOR THE
RÉNYI ENTROPY

Our goal is to obtain a differential equation for the
one-point function 〈T (w = i�,w̄ = −i�)〉λ in the presence
of the boundary field h, which breaks boundary conformal
invariance. Knowledge of this expectation value, analytically
in n, will give the desired entanglement entropy,

Sn(�)λ = 1

1 − n
ln trρn

A = 1

1 − n
ln〈T (i�, − i�)〉λ + const.

(12)

Here, ξ−1 = λ = 4πh2 is the inverse correlation length.

A. Method of Chatterjee and Zamolodchikov

In order to compute the one-point function of the twist field
in the boundary Ising model, we use the method of Chatterjee
and Zamolodchikov (CZ) [55]. The method is based on the
property that the boundary condition for any h is simple in
terms of the Fermi fields (ψ,ψ̄). Consider first the conformal
cases h = 0 or h = ∞. CFT of the Ising model in the presence
of boundary (along with more general conformal field theories)
had been studied in Refs. [56,57] and it was shown that there
are two conformal invariant boundary conditions,

[ψ − ψ̄]B = 0,(free), [ψ + ψ̄]B = 0, (fixed). (13)

Such boundary conditions allow one to move from the semi-
infinite half plane x > 0 to the infinite plane, and regard ψ̄

as the analytic continuation of ±ψ at the x < 0 half plane;
the ± signs correspond to the two boundary conditions. Next,
consider the action Eq. (4) at finite h. From the equations of

motion, one finds [55](
d

dt
+ iλ

)
ψ(t) =

(
d

dt
− iλ

)
ψ̄(t), λ = 4πh2. (14)

Equivalently, (∂z + iλ)ψ(z) = (∂z̄ − iλ)ψ̄(z̄). This form of the
boundary condition makes it explicit that the fields,

χ (z) = (∂z + iλ)ψ(z), χ̄ (z̄) = (∂z̄ − iλ)ψ̄(z̄), (15)

enjoy the desired property that χ̄ (z̄) coincides with the analytic
continuation of χ (z) to the x < 0 half plane.

CZ used this property to derive differential equations for
the magnetization 〈σ (x)〉 at distance x from the boundary. This
requires one to identify an OPE of the fermion field with some
other field that results in the desired operator σ . Indeed, one
can use the known OPE, ψ × μ = σ , with known coefficients,

ψ(z)μ(w,w̄) = e−iπ/4

√
2

(z − w)−1/2σ (w,w̄) + . . . . (16)

It is subsequently straightforward to obtain the coefficients
in the OPEs, χ × μ = σ and χ̄ × μ = σ . We emphasize that
these OPE coefficients are bulk properties, insensitive to the
boundary.

Finally, CZ introduced the following meromorphic func-
tion: Consider the expectation values, 〈χ (z)μ(w,w̄)〉λ or
〈χ̄ (z̄)μ(w,w̄)〉λ, in the presence of the boundary field. Using
the boundary condition [χ − χ̄ ]B = 0, one can extend to the
full z plane and view this correlation function as an analytic
function with two branch-cut points at z = w and z = w̄.
Taking into account Eq. (16) and the asymptotic behavior,

χ (z) ∼ z−1, z → ∞, (17)

one can write

〈χ (z)μ(w,w̄)〉 = 1

(z − w)1/2(z − w̄)1/2

×
(

A(w,w̄)

z − w
+ Ā(w,w̄)

z − w
+ B(w,w̄)

)
.

(18)

Using the explicitly known OPE coefficients of χ × μ, one
can linearly relate the functions A,Ā,B, to 〈σ (w,w̄)〉 and
its derivatives, and attain a differential equation that fully
determines the magnetization [55].

Since our bosonization scheme allows the tracking of the
OPE of T with all other fields in the theory using the known
OPE of vertex operators, we can now employ the above CZ
procedure for the twist field.

B. Generalized CZ method for the twist field

We use the decomposition of the twist field Eq. (8) and
the bosonization formula Eq. (11). For λ = 0 or λ = ∞,
i.e., conformal invariant boundary conditions, the correlation
of the vertex operators Vk/n and V̄k/n depends solely on
their holomorphic scaling dimension, hk = k2/(2n2), giving
a power-law decay,

〈Tk(i�, − i�)〉λ=0,∞ ∝ 1

(2�)k2/n2 , (19)
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so that

(n−1)/2∏
k>0

〈Tk(i�, − i�)〉λ=0,∞ ∝ 1

(2�)(n−1/n)/24
, (20)

reproducing the formula, S1(�) = 1
12 log 2�

a
+ const, for λ =

0,∞.
We wish to find the nonlogarithmic corrections to the

entanglement entropy Sn; hence, it will be productive to
introduce the normalized dimensionless twist tk/n, and the
boundary entropy sn,

tk/n(λ�) = 〈T (i�, − i�)〉λ
〈T (i�, − i�)〉λ=∞

, (21)

sn(�) = Sn(�)λ − Sn(�)λ=∞ = 1

1 − n
ln

(n−1)/2∏
k>0

tk/n(λ�), (22)

such that tk/n|λ�→∞ = 1. This boundary entropy directly
relates to the ground-state degeneracy, ln(g(�)) = s1(�), and
trivially satisfies ln(g)|λ→∞ = 0.

To treat the nonconformal invariant case with finite λ, we
return to the CZ method. We make use of the known OPE of
vertex operators in the free-boson theory Vα × Vβ = Vα+β ,

Vα(z)Vβ(w) = (z − w)αβVα+β (w) + . . . . (23)

Equipped with the bosonization rules, Tk = Vk/nV̄−k/n and
ψ = V1, the basic OPE that produces the desired k component
of the twist field from the fermion field is

ψ × Vk/n−1V̄−k/n = Tk. (24)

Upon crossing the boundary line x = 0 to x < 0, the fermion
field becomes the antiholomorphic fermion ψ̄ = V̄1. We
therefore also encounter the OPE whereby the fermion hits
the antiholomorphic part of the twist field,

ψ̄ × Vk/n−1V̄−k/n = Tk−n. (25)

Since the leading singularities are (z − w)k/n−1 and
(z − w̄)−k/n, we write a meromorphic function of the form,

〈χ (z)Vk/n−1(w)V̄−k/n(w̄)〉

= 1

(z − w)1−k/n(z − w̄)k/n

×
(

A(w,w̄)

z − w
+ Ā(w,w̄)

z − w̄
+ B(w,w̄)

)
. (26)

This has both the correct singular behavior, and the appropriate
decay at infinity of z−1. For k = n/2, where the twist field
obtains the scaling dimension of the spin field, this equation
coincides with Eq. (18).

One may expand this meromorphic function in powers of
z − w, and compare with the OPE coefficients. We thereby
obtain a closed set of coupled differential equations for both
〈Tk〉 and 〈Tk−n〉 as well as 〈L−2Tk〉 and 〈L−2Tk−n〉. As
expected, these equations depend only on the dimensionless
distance from the edge λ�. Moreover, by doing some alge-

braic manipulations, these equations may be brought to the
canonical form of a generalized hypergeometric 2F3 equation,

{
d

dζ

(
ζ

d

dζ
− 1

2

)3

−
(

ζ
d

dζ
− 1

2
+ k

n

)(
ζ

d

dζ
− 1

2
− k

n

)}
e−2ζ1/2

tk/n(ζ 1/2) = 0,

(27)

with ζ = λ2�2; for derivation see Appendix B. This equation
has a unique solution [58] satisfying the boundary conditions,
tk/n|λ�→∞ = 1, which is

tk/n(λ�) = e2λ�

π5/2

{
π2G

2,2
2,4

(
1
2 + k

n
, 1

2 − k
n

0 , 1
2 , 1

2 , 1
2

∣∣∣∣∣λ2�2

)

− sin2

(
πk

n

)
G

4,2
2,4

(
1
2 + k

n
, 1

2 − k
n

0 , 1
2 , 1

2 , 1
2

∣∣∣∣∣λ2�2

)}
, (28)

where Gm,n
p,q (a1, . . . ,ap

b1, . . . ,bq
|z) is the Meijer G function. The properties

and consequences of this solution is discussed in detail in the
following section.

VI. ANALYTIC RESULTS

Equation (28) is an analytic universal result for the
entanglemenet entropy. We now discuss the properties of the
solution and compare with earlier numerics on lattice models.
In the last section we will use it to predict the behavior of other
models. Plugging into Eq. (22), we find an analytic expression
for the Rényi entropy,

sn(�) = 1

1 − n
ln

(n−1)/2∏
k>0

tk/n(λ�). (29)

The function tk/n satisfies t0(λ�) = 1 as it should, since
T0 is the identity field. It also possesses the nice property,
tk/n(0) = cos(πk/n), which, using the trigonometric identity,∏(n−1)/2

k>0 cos (πk
n

) = 2−(n−1)/2, leads to the remarkable conclu-
sion,

sn(0) = 1

1 − n
ln

(n−1)/2∏
k>0

cos

(
πk

n

)
= 1

2
ln 2, (30)

capturing analytically the half-qubit entropy for any n.
So far, the parameter k was treated as either integer or half

integer. Below, we consider two opposite limits by employing
the analytic structure of the obtained functions in Eq. (28),
treating β = k/n as a real number.

The min-entropy is a relatively simple limit, n → ∞, which
directly follows from the definition of the Riemann integral,
s∞(�) = − ∫ 1/2

0 ln(tβ(λ�))dβ.
The main analytical result of this section is the ground-

state degeneracy g(�), which corresponds to the limit of n →
1. Using a useful summation lemma proved in Appendix C,
which follows from analyticity [59] and the Euler-Maclaurin
formula, we arrive at the following expression for the boundary
entanglement entropy,

s1(�) = log[g(�)] =
∑

β>0:tβ (λ�)=0

(
ln(β) − ψ (0)(β) − 1

2β

)
.

(31)
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FIG. 3. Exact result for the universal RG flow of the boundary
term of the entanglement entropy sn(�)/ log 2 in the boundary Ising
theory. Plotted are the boundary Rényi entropies in Eq. (29) for
n = 2,5,∞, the ground-state degeneracy g(�) limit n → 1 in Eq. (31),
and its asymptotics in Eq. (32).

Here, ψ (0)(z) = �′(z)/�(z) is the Digamma function. This
expression can be computed by finding the zeros {β} of the
function tβ . The analytic nature of this result allows one to
study various entanglement properties such as its asymptotic
behaviors,

s1(�) ∼ 1

2
ln(2) − 1

4
λ� ln2(λ�), λ� → 0,

s1(�) ∼ 1

12λ�
, λ� → ∞. (32)

Details and further subleading asymptotics are given in
Appendix D. Indeed, at short distances one can apply
perturbation theory with respect to free boundary condi-
tions, h = 0. The leading term arises from second-order
perturbation theory, which involves the correlation function∫

dt1
∫

dt2〈T (w,w̄)ψ(t1)a(t1)ψ(t2)a(t2)〉. From dimensional
analysis, one arrives at a linear � dependence, consistent with
Eq. (32), which contains additional logarithmic corrections.
Both the form-factors approach [16,25] and the free fermion
solution [17] have demonstrated notable accuracy, however,
neither have captured the precise form of this asymptotic
behavior. This emphasizes the powerful analytic structure of
the present solution. At long distances, the system is near
the fixed boundary condition, h = ∞. The leading boundary
irrelevant operator in the boundary Ising model is known
to take the form (ψ∂zψ)x=0 with scaling dimension 2. This
dictates [14] that the EE decays as �−1 consistent with Eq. (32).
All the results for sn(�) are plotted in Fig. 3.

Interestingly, earlier attempts have been made to numeri-
cally tackle this crossover in the boundary term in the EE. Zhou
et al. [22] computed via DMRG the EE in the boundary Ising
chain Eq. (5) for L = 800 sites for various values of magnetic
field hb applied at both boundaries [second boundary not
included in Eq. (5)]. Our field theory calculation is restricted
to a semi-infinite 1D system. It thus should describe the long
distance physics solely in the limit, where the entanglement cut
is far from the second boundary compared to the correlation
length ξ . This corresponds to the numerical data S(�) for

FIG. 4. Base 2 von Neumann entanglement entropy S1(�) as a
function of the block size T (�) = 1

2 log2 ( 2L

π
sin ( π�

L
)); data taken with

permission from the work of Zhou et al. [22] is fitted to analytic result
Eq. (31).

1 	 � 	 L (in units where the lattice constant a = 1). We
compare in Fig. 4 the numerical data S(�) for 5 � � � 90.
All points are fitted to Eq. (31) with two fitting parameters:
(i) A nonuniversal constant shift of the EE. This constant
is fixed from fitting the curves at h = 0 and h = ∞. (ii) A
regularization constant relating the magnetic field hb in the
lattice model Eq. (5) and h in the field theory Eq. (4). We
can see that for any given h (or hb), in this restricted regime
1 	 � 	 L where comparison to field theory is possible, the
numerical data does not provide a full crossover from free
to fixed boundary condition. This is due to the finite size
of the studied system (L = 800). However, we can see that
remarkably our single universal function fit all the numerical
points which show this entire crossover upon increasing h. We
note that similar methods [60,61] could be used in the future
to extend the field theory results to finite temperature or finite
systems with two boundaries, as was simulated numerically.

We have confirmed that Eq. (31) is equivalent to half the
corresponding result in Ref. [17] which studied a field theory
of the form Eq. (4) but with Dirac fermions instead of Majorana
fermions and computed s1(�) using free fermion methods. Our
methods are based on conformal symmetry and hence should
have generalizations beyond the free fermion case.

VII. CONCLUSIONS AND OUTLOOK

In this article we have explored the scaling of the en-
tanglement entropy of critical 1D systems with boundaries.
Nontrivial renormalization group flow at the boundary is
expressed in a universal scaling function in the entanglement
entropy. We have combined CFT techniques [41] in order to
arrive at an analytic form of this universal crossover function
for the boundary Ising model.

Previous results on the entanglement of two-channel Kondo
models successfully identified the quenching of the entropy
of the spin-1/2 impurity from log(2) down to 1

2 log(2) [27].
Specifically, this universal function was extracted numerically
[21] on a length scale ξK—the Kondo screening cloud [20,29–
31]. It will be interesting to explore in the future the EE
at the vicinity of the two-channel Kondo quantum critical
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point. For this purpose we propose to either (i) apply a
small channel anisotropy, or (ii) apply a magnetic field at
the SU (2) symmetric impurity spin. Any combination of
these perturbations quenches the ground-state degeneracy.
We predict that as long as these perturbations are small, the
quenching of the residual half-qubit entropy occurs at a larger
length scale ξ � ξK , and is described by the universal formula
obtained here.

Our analytic results may be extended with further elab-
oration to a number of directions. This includes extensions
to finite temperature, following Refs. [60,61] which extended
the method of Chatterjee and Zamolodchikov [55] by changing
geometry to a semi-infinite cylinder; similarly, one may tackle
finite size systems. The method can also be tested in excited
states [62,63]. The method is fully analytic and allows the
treatment of other measures of entanglement such as negativity
[32–36] corresponding to an analytic continuation to n → 1/2.
An interesting question is whether additional critical theories
beyond the Ising model can be treated using the methods
described here.
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APPENDIX A: THREE-POINT FUNCTION

In this appendix we derive the three-point function in Eq. (7)
using standard boundary CFT methods.

Using the image method [1] for conformal boundary
conditions, we convert the correlators on the half plane R
to correlators on the complex plane C,

〈ψ∗
k (z)ψk (z′)〉Rn

= 〈ψ∗
k (z)ψk (z′)T (w,w̄)〉Rn

〈T (w,w̄)〉Rn

= 〈ψ∗
k (z)ψk (z′)T (w)T̃ (w̄)〉Cn

〈T (w)T̃ (w̄)〉Cn

, (A1)

where T (w) is the holomorphic part of T (w,w̄), and T̃ (w) is
the holomorphic part of the antitwist field [13] rotating in the
opposite direction. The calculation of correlators in Cn can be
performed using the uniformizing conformal transformation,

ξj (z) = ξ (z)ej =
(

z − w

z − w̄

)1/n

e2πij/n. (A2)

It maps the j th copy the complex plane in Cn into a wedge of angle 2π/n in C,

〈ψ∗
k (z)ψk (z′)T (w)T̃ (w̄)〉Cn

〈T (w)T̃ (w̄)〉Cn

= 1

n

∑
jj ′

e
−k+n/2
j e

k−n/2
j ′

〈ψ∗
j (z)ψj ′(z′)T (w)T̃ (w̄)〉Cn

〈T (w)T̃ (w̄)〉Cn

= 1

n

∑
jj ′

e
−k+n/2
j e

k−n/2
j ′ (ξ ′

j (z)ξ ′
j ′(z′))1/2〈ψ∗

j (ξj (z))ψj ′(ξj ′(z′))〉C

= 1

n

∑
jj ′

e
−k+n/2
j e

k−n/2
j ′

(ej ξ
′(z)ej ′ξ ′(z′))1/2

ej ξ (z) − ej ′ξ (z′)
. (A3)

To evaluate the Fourier transform we expand to a power series and then resum the resulting expression,

1

n

∑
jj ′

e
−k+n/2
j e

k−n/2
j ′

(ej ξ
′(z)ej ′ξ ′(z′))1/2

ej ξ (z) − ej ′ξ (z′)
= 1

n

(
ξ ′(z)ξ ′(z′)

ξ (z)2

)1/2 ∑
jj ′

∞∑
p=0

e
−k+(n−1)/2
j e

k−(n−1)/2
j ′

(
ej ′ξ (z′)
ej ξ (z)

)p

= n

(
ξ ′(z)ξ ′(z′)
ξ (z)ξ (z′)

)1/2(
ξ (z′)
ξ (z)

)1/2 ∞∑
q=0

(
ξ (z′)
ξ (z)

)nq−k+(n−1)/2

= n

(
ξ ′(z)ξ ′(z′)
ξ (z)ξ (z′)

)1/2
ξ (z)k+n/2ξ (z)−k+n/2

ξ (z)n − ξ (z′)n
= 1

z − z′

(
(z − w)(z′ − w̄)

(z − w̄)(z′ − w)

)k/n

. (A4)

For nonconformal finite λ, this is expected to hold far from the boundary Im(w) = 0 where the correlators are only sensitive to
the bulk properties, i.e., for |z − z′|,|z − w|,|z − w̄|,|z′ − w|,|z′ − w̄| 	 |w − w̄|.

APPENDIX B: GENERALIZED CZ EQUATIONS

In this appendix we show and solve the complete set of differential equations for the Rényi boundary entropies that follow
from Sec. V B.
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We expand the meromorphic function of Eq. (26) in powers of z − w and z − w̄, and compare with the known OPE coefficients
of vertex operators in the free-boson theory,

Vα(z)Vβ(w) = (z − w)αβ

(
1 + α

α + β
(z − w)L−1 + (z − w)2 αβ

2(α + β)2 − 1
L−2

+ (z − w)2 α(2α(α + β) − 1)

2(α + β)(2(α + β)2 − 1)
L2

−1 + . . .

)
Vα+β (w). (B1)

We thus obtain a closed set of coupled differential equations for both Tk, Tk−n (and L−2 acting on them). These lengthy equations
are given by

A = − (n − k)(w − w̄)k/n〈Tk〉
n

, (B2)

B + Ā

w − w̄
= − (w − w̄)

k
n
−1(kn − k2 − iλn2(w − w̄))

n2
〈Tk〉 + (w − w̄)k/n∂w〈Tk〉, (B3)

Ā = −n(n − 2k)(k + n)(w − w̄)k/n+2

2k(n2 − 2k2)
∂2
w〈Tk〉 − (w − w̄)

k
n
+1(k2 + iλn2(w − w̄))

kn
∂w〈Tk〉

− k(w − w̄)
k
n ((k − n)2 + 2iλn2(w − w̄))

2n3
〈Tk〉 − (n2 − k2)(w − w̄)k/n+2

n2 − 2k2
〈L−2Tk〉, (B4)

Ā = k(w − w̄)1− k
n 〈Tk−n〉

n
, (B5)

B − A

w − w̄
= − (w − w̄)−

k
n (kn − k2 − iλn2(w − w̄))

n2
〈Tk−n〉 + (w − w̄)1− k

n ∂w〈Tk−n〉, (B6)

A = n(n − 2k)(2n − k)(w − w̄)3− k
n

2(n − k)(2k2 − 4kn + n2)
∂2
w〈Tk−n〉 − (w − w̄)2− k

n ((n − k)2 + iλn2(w − w̄))

n(n − k)
∂w〈Tk−n〉

+ (n − k)(w − w̄)1− k
n (k2 + 2iλn2(w − w̄))

2n3
〈Tk−n〉 − k(2n − k)(w − w̄)3− k

n

2k2 − 4kn + n2
〈L−2Tk−n〉. (B7)

Note that this is an infinite set of equations that involves all
k’s. While the twist field is a product of Tk for a finite range of
values of k Eq. (6), the theory contains infinitely many such
vertex operators as predicted by their OPE relation Eq. (B1).
Luckily, these equations can be solved.

First, we algebraically solve for A,Ā,B; next, by shifting
the index k → k + n in the last equation we can algebraically
remove the dependence on 〈L−2Tk−n〉. We are then left with
two differential equations for 〈Tk−n〉,〈Tk〉,〈Tk+n〉. To proceed,
we define the ratio β = k

n
and the dimensionless distance,

X = −i(w − w̄)λ = 2λ�. (B8)

As a consequence of the above equations, one then gets that the
normalized dimensionless twist, tβ(X) ∝ Xβ2〈Tk〉, of Eq. (21)
satisfies

β2(tβ+1 + 2tβ + tβ−1) − 2X2t′β + X2t′′β = 0, (B9)

(1 − 2β)(tβ + tβ−1) − X(tβ − tβ−1) + X(t′β − t′β−1) = 0.

(B10)

Interestingly, one may form three closed equations by using
the last equation for β → β + 1, giving

(1 + 2β)(tβ + tβ+1) − X(tβ − tβ+1) + X(t′β − t′β+1) = 0.

(B11)

This set of equations can be iterated to eliminate tβ±1 and
yields the fourth-order differential equation,

X2t′′′′β + (3X − 4X2)t′′′β + (5X2 − 9X + 1)t′′β

+ (−2X2 + 6X − 2)t′β + 4β2tβ = 0. (B12)

This equation can be identified after exchanging X = 2
√

ζ ,
and tβ(X) = eXfβ(ζ ), whereby{

d
dζ

(
ζ d

dζ
− 1

2

)3
−

(
ζ d

dζ
− 1

2 + β
)(

ζ d
dζ

− 1
2 − β

)}
fβ(ζ ) = 0.

(B13)

This is the canonical generalized hypergeometric 2F3 equation
of Eq. (27).

APPENDIX C: A SUMMATION LEMMA

We present here the proof and application of a useful
summation lemma which is essential for the calculation of
the ground-state degeneracy in Eq. (31).

1. Lemma

Let h(z) : C → C be an analytic function of z such that
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(1) h(z) is an entire function of order strictly lesser
than 2,

(2) h(R) ⊆ R,
(3) h(z) = h(−z),
(4) h(0) = 1,
(5) {z : h(z) = 0} ⊂ R,
(6) ∀z ∈ (− 1

2 , 1
2 ),h(z) > 0.

Under these conditions,

�[h] ≡ − lim
m→0

1

2m
ln

m∏
k=0

h

(
k

2m + 1

)

=
∑

z>0:h(z)=0

Nz ·
(

ln(z) − ψ (0)(z) − 1

2z

)
, (C1)

where Nz is the multiplicity of the zero z, and
ψ (0)(z) = �′(z)/�(z) is the Digamma function.

2. Proof

We start by using the Euler-Maclaurin formula for a
function f (k,m),

m∑
k=0

f (k,m) =
∫ m

0
f (k,m)dk + f (m,m) + f (0,m)

2

+
∞∑

p=1

B2p

(2p)!

[
∂

2p−1
k f (k,m)

]k=m

k=0 , (C2)

where Bp are the Bernoulli numbers. By taking the derivative
with respect to m, and reusing the Euler-Maclaurin formula
for ∂kf (k,m) and ∂mf (k,m), one gets

∂m

m∑
k=0

f (k,m) =
m∑

k=0

(∂k + ∂m)f (k,m)

+
∞∑

p=0

Bp

p!
∂

p

k f (k,m)
∣∣
k=0. (C3)

By setting f (k,m) = ln(h( k
2m+1 )), we can use the properties

h(0) = 1 and ∂
2p−1
z h(z)|z=0 = 0 to get

�[h] = −1

2
lim
m→0

∂m

m∑
k=0

ln

(
h

(
k

2m + 1

))

= −1

2

∞∑
p=1

B2p

(2p)!
∂2p
z ln(h(z))

∣∣
z=0. (C4)

To evaluate the derivatives we first use Cauchy’s integral
formula; next, since h(z) is even, we may invert the integral,
integrate over its positive zeros Z+

0 ≡ {z > 0 : h(z) = 0}, and
utilize the generalized argument principle,

�[h] = −1

2

∞∑
p=1

B2p

(2p)!

(2p − 1)!

2πi

∮
z=0

h′(z)dz

h(z)z2p

=
∮

z∈Z+
0

dz

2πi

∞∑
p=1

B2p

2pz2p

h′(z)

h(z)
=

∑
z∈Z+

0

Nz

∞∑
p=1

B2p

2pz2p
.

(C5)

We now recall the asymptotic expansion of the Digamma
function ψ (0)(z) = �′(z)/�(z),

ψ (0)(z) = ln(z) − 1

2z
−

∞∑
p=1

B2p

2pz2p
. (C6)

And thus

�[h] =
∑

z>0:h(z)=0

Nz

(
ln(z) − ψ (0)(z) − 1

2z

)
. (C7)

All that is left is to prove convergence of this sum.
We have demanded h to be of an analytic function of order

strictly lesser than 2, therefore, it is known [59] that the sum∑
z:h(z)=0 Nz|z|−2 converges. Since for large zeros one has

ln(z) − ψ (0)(z) − 1

2z
= 1

12z2
+ O(z−4), (C8)

we immediately find that the sum in Eq. (C7) is
convergent. �

3. Application

Using this lemma we may now evaluate the boundary
entropy s1(X) from Eq. (29) by setting h(z) = tz(X) and
n = 2m + 1. It is fairly straightforward to show that t follows
the conditions of the lemma. Therefore, since tz(X) has but
simple zeros in z, we have

s1(X) = − lim
n→1

1

n − 1

(n−1)/2∑
k>0

ln(tk/n(X))

=
∑

β>0:tβ (X)=0

(
ln(β) − ψ (0)(β) − 1

2β

)
. (C9)

Much like the limit case, tβ(0) = cos(πβ), the function
tβ(X) is entire of order 1 in β, and for every X its
zeros, {βj }∞j=0 = {β > 0 : tβ(X) = 0}, are simple and satisfy

βj = O(j ) for large j ; e.g., for X = 0 one has βj = j + 1
2 .

Using Eq. (C8), this property allows for the evaluation of the
asymptotic behavior of the summand and of the partial sums,

ln(βj ) − ψ (0)(βj ) − 1

2βj

= O(j−2),

s1(X) −
j∑

j ′=0

(
ln(βj ′ ) − ψ (0)(βj ′) − 1

2βj ′

)
= O(j−1).

(C10)

This slow but very predictable asymptotic behavior allows
one to evaluate the infinite sum to a satisfying accuracy using
a relatively small number of zeros, and makes its calculation
very efficient using acceleration methods such as the rational
function extrapolation.

APPENDIX D: ASYMPTOTIC EXPANSION

In this appendix we derive the asymptotic expansions of the
ground-state degeneracy given in Eq. (32). These expansions,
especially for large X, also provide a computationally efficient
way to find s1(X).
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1. Long distance expansion

Either by applying the Frobenius method over the ordinary
differential equation of Eq. (27), or directly from the analytic
expression for tβ(X) of Eq. (28), we first calculate the
asymptotic power series,

− ln(tβ(X)) ∼ 2β2

X
− 2β2

X2
+

10
3 β2 + 10

3 β4

X3
− 8β2 + 20β4

X4

+
128
5 β2 + 108β4 + 84

5 β6

X5
+ . . .

≡
∞∑

p=1

�p/2�∑
q=1

ap,q

β2q

Xp
. (D1)

Next, we may utilize the nice identity,

lim
n→1

1

n − 1

(n−1)/2∑
k>0

(
k

n

)2q

= lim
n→1

1

n − 1
· B2q+1

(
n+1

2

) − B2q+1
(

1−n
2

)
2(2q + 1)

= 1

2
B2q, (D2)

where Bq,Bq(x) are the Bernoulli numbers and polynomials.
We therefore have

s1(X) = − lim
n→1

1

n − 1

(n−1)/2∑
k>0

ln(tk/n(X))

∼
∞∑

p=1

�p/2�∑
q=1

ap,q

1

2
B2q

1

Xp

= 1

6X
− 1

6X2
+ 2

9X3
− 1

3X4
+ 8

15X5
+ . . . . (D3)

Although this asymptotic series has a zero convergence radius
and hence diverges for all |X| < ∞, it may nevertheless
be summed using superasymptotics methods to a satisfying
accuracy for large enough X. Specifically, for X � 4 its
superasymptotic summation agrees with the exact results of
Appendix C to within at least three significant digits.

2. Short distance expansion

The small X expansion of s1(X) is done using a similar
technique to that of the summation lemma. We use the known

properties of the Meijer G function to expand Eq. (28) and get

ln(tβ(X)) ∼ ln(cos(πβ)) + X ln2(X)
2β

π
tan(πβ) + . . . .

(D4)

By repeating the derivation of the lemma we find

s1(X) ∼ 1

2
ln(2) − X ln2(X)

1

2

∞∑
p=1

B2p

(2p)!
∂2p
z

2z

π
tan(πz)

∣∣∣∣
z=0

+ . . . . (D5)

To evaluate the derivatives, we first use Cauchy’s integral
formula; next, we may invert the integral, and use reflection
symmetry to integrate over its positive poles zj = 1

2 + j ,

1

2

∞∑
p=1

B2p

(2p)!
∂2p
z

2z

π
tan(πz)

∣∣∣∣
z=0

= 1

2

∞∑
p=1

B2p

∮
z=0

2z
π

tan(πz)

z2p+1

dz

2πi

= −
∞∑

p=1

∞∑
w= 1

2

2B2p

πw2p

∮
z=w

tan(πz)
dz

2πi

=
∞∑

z= 1
2

∞∑
p=1

2B2p

π2z2p
=

∞∑
z= 1

2

2z

π2

(
ψ (1)(z) − 1

z
− 1

2z2

)
= 1

8
.

(D6)

Here, we have recalled the asymptotic expansion and
summation properties of the first Polygamma func-
tion ψ (1)(z) = ∂zψ

(0)(z) = z−1 + 1
2z−2 + ∑∞

p=1 B2pz−2p−1.
We therefore conclude that

s1(X) ∼ 1
2 ln(2) − 1

8X ln2(X) + . . . . (D7)

Note that further coefficients may be found using similar
techniques.
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