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Exact ordering of energy levels for one-dimensional interacting Fermi gases with SU(N) symmetry
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Based on the exact solution of one-dimensional Fermi gas systems with SU (N) symmetry in a hard wall, we
demonstrate that we are able to sort the ordering of the lowest-energy eigenvalues of states with all allowed
permutation symmetries, which can be solely marked by certain quantum numbers in the Bethe ansatz equations.
Our results give examples beyond the scope of the generalized Lieb-Mattis theorem, which can only compare
the ordering of energy levels of states belonging to different symmetry classes if they are comparable according
to the pouring principle. In the strongly interacting regime, we show that the ordering of energy levels can be
determined by an effective spin-exchange model, and we extend our results to a nonuniform system trapped in a
harmonic potential.
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I. INTRODUCTION

The experimental progress in trapping and manipulating
ultracold atomic systems has provided an ideal platform for
studying novel phenomena that are not easily accessible
in solid-state systems [1]. A typical example is that the
ultracold fermion system with large hyperfine spin can possess
high symmetries of SU (N) and exhibits exotic quantum
magnetic properties fundamentally different from the large-
spin solid-state systems, which usually have only SU (2)
symmetry. Large-spin alkaline and alkaline-earth fermion
systems with SU (N) symmetry have already been realized
experimentally in recent years [2–10]. The experimental
progress in ultracold Fermi gases has stimulated a considerable
number of theoretical studies, which unveiled the high SU (N)
symmetry that can give rise to exotic properties in quantum
magnetism and pairing superfluidity [11–14]. In particular,
in the strongly interacting limit, recent studies have shown
that one-dimensional (1D) multicomponent gases can be
effectively described by spin-exchange models [15–29] and
may be applied to study the quantum magnetism of a spin
system with SU (N) symmetry [30–37].

For an interacting spin-1/2 Fermi system with SU (2)
symmetry, the ground state is the spin singlet state according
to the well-known Lieb-Mattis theorem (LMT) [38], which
indicates E(S) < E(S

′
) if S < S

′
for a system composed of

N electrons interacting by an arbitrary symmetric potential,
where E(S) is the lowest energy of states with total spin S.
Such a theorem cannot be applied to the system with SU (N)
symmetry as the energy levels can no longer be sorted by
the total spin S. Nevertheless, for the high-symmetry SU (N)
system, Lieb and Mattis proved a theorem (hereafter referred
as LMT II) that if α can be poured in β, then E(α) > E(β),
where α and β are two different symmetry classes and E(α)
and E(β) are the respective ground-state energies of the two
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classes [38]. Obviously, there exist some symmetry classes
beyond LMT II where one class cannot be poured into another
and thus one is not able to compare their energy levels directly.
Recently, the LMT II for the trapped multicomponent mixtures
was tested by studying the 1D strongly interacting few-body
Fermi gases, showing that the ground state corresponds to
the most symmetric configuration allowed by the imbalance
among the components [39].

Although the LMT II generally can predict correctly the
ground state for a high-symmetry multicomponent system, it
is still not clear whether the ordering of energy levels can be
solely sorted according to their symmetry classes, especially
for those symmetry classes that are not comparable by the pour-
ing principle [38]. In this work, we attempt to provide some
clues to this question by studying the repulsively interacting 1D
multicomponent Fermi gas with SU (N) symmetry confined in
a hard-wall potential. The model can be solved exactly using
the powerful Bethe ansatz (BA) method [40,41], permitting us
to obtain the exact energy spectrum for all allowed permutation
symmetry classes corresponding to various Young tableaus. In
particular, in the strongly interacting limit, we show that the
spin part is effectively described by an SU (N) spin-exchange
model, and its coupling strength can be derived exactly from
the expansion of the ground-state energy. Therefore, the
ordering of energy levels can be determined by the effective
spin-exchange model. We then generalize our study to a system
trapped in a harmonic trap, which can be effectively described
by an inhomogeneous spin-exchange model, and we find that
the ordering of energy levels fulfills similar distributions to
those in the exactly solvable case.

II. MODEL AND RESULTS

We consider the 1D n-component fermionic systems with
SU (N) symmetry, which can be described by the following
Hamiltonian:

H =
N∑
i

[
− h̄2

2m

∂2

∂x2
i

+ V (xi)

]
+ g

∑
i<j

δ(xi − xj ). (1)
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FIG. 1. Young tableau for the state of the SU (N) N -particle
system with given quantum numbers Mr . The left and right Young
tableaus represent symmetry classes of the coordinate and spin wave
functions, respectively, which are conjugated with each other.

Here V (xi) is the external potential and g is the zero-
range two-body interaction strength. The interactions between
different components have the same coupling strength. For the
spin-independent interactions, the particle number of each spin
component is conserved. First we consider the exactly solvable
case with V (xi) = 0 for xi ∈ (−L/2,L/2) and otherwise V =
∞ under the open boundary condition �(xi = ±L/2) = 0.
For convenience, we introduce the interaction strength c =
mg/h̄2 and use the natural units h̄2 = 2m = 1 in the following
calculation. The system can be solved exactly using the BA
method [40–42], and the corresponding Bethe ansatz equations
(BAEs) are as follows:

2kjL = 2πIj −
M1∑
α=1

[
θ

(
kj − λ1

α

c/2

)
+ θ

(
kj + λ1

α

c/2

)]
(2)

with j = 1,2, . . . ,N and

Mr∑
β �=α

[
θ

(
λr

α − λr
β

c

)
+ θ

(
λr

α + λr
β

c

)]

= 2πJ r
α +

Mr+1∑
γ=1

[
θ

(
λr

α − λr+1
γ

c/2

)
+ θ

(
λr

α + λr+1
γ

c/2

)]

+
Mr−1∑
δ=1

[
θ

(
λr

α − λr−1
δ

c/2

)
+ θ

(
λr

α + λr−1
δ

c/2

)]
, (3)

with α = 1, . . . ,Mr and r = 1,2, . . . ,n − 1, where λ0
δ = kδ ,

θ (x) = 2 arctan x, M0 = N , Mn = 0, and Mr takes integers
in descending order, M0 > M1 > · · · > Mr . The quantum
numbers Ij and J r

α are integers. k j ’s are quasimomentum and
λr

α denote the spin rapidities, which are introduced to describe
the motion of spin waves. The particle number nr in each spin
component connects with Mr via the relation nr = Mr−1 −
Mr , where we have assumed the components are ordered so
that n1 � n2 � · · · � nn. For the repulsive case with c > 0,
there is no charged bound state and the quasimomenta {kj }
take real values. The eigenvalue is given by E = �N

j=1k
2
j .

For a given set of {Mr} (r = 0, . . . ,n − 1), there exists
a unique Young tableau corresponding to the unique set
of particle number distributions {nr} (see Fig. 1). Taking
the case of N = 4 with SU (4) symmetry as an example,
{Mr} (r = 0, . . . ,3) can have five different configurations,

FIG. 2. Ground-state energies of states with different permutation
symmetries vs the dimensionless interaction strength γ for the SU (4)
system with particle number (a) N = 4 and (c) N = 6. (a) Area
from the dash-dot-dot line to the solid line corresponds to the lowest-
energy states with different symmetry classes described by the Young
tableaus of the coordinate wave function in (b). (c) Area from the solid
line to the dash-dot line corresponds to different symmetry classes
described by the Young tableaus shown in (d).

i.e., {Mr} = {4,3,2,1}, {4,2,1,0}, {4,2,0,0}, {4,1,0,0}, and
{4,0,0,0}. Correspondingly there exist five sets of {nr},
say, {nr} = {1,1,1,1}, {2,1,1}, {2,2}, {3,1}, and {4}, which
belong to different symmetry classes with their eigenfunctions
described by the Young tableaus in Fig. 2(b), denoted by the
simplified notations Y = (1,1,1,1) ≡ (14), (2,1,1) ≡ (2,12),
(2,2) ≡ (22), (3,1), and (4), from right to left, respectively.
Here nr (r = 1, . . . ,4) in (n1,n2,n3,n4) indicates the number
of squares in the rth column of the Young tableau, and the
square numbers in the rth column are equal to the particle
numbers nr of the rth component. For example, (1,1,1,1)
describes the Young tableau ����, which corresponds to
the system with the component-dependent particle numbers
n1 = n2 = n3 = n4 = 1. We note that the notation adopted
here is different from the standard notation of a representation
of the Young tableau, but it is the same as that in Ref. [43].

According to the LMT II for the high-symmetry system, one
can compare the ground-state energies of different symmetry
classes if they fulfill the pouring principle. When we say that
α can be poured in β, where the Young tableau α has the
columns n1 � n2 � n3 � · · · and β has the columns n′

1 �
n′

2 � n′
3 � · · · , it means that we have n1 � n′

1; (n1 − n′
1) +

n2 � n′
2; (n1 − n′

1) + (n2 − n′
2) + n3 � n′

3; et al., here any
missing columns are to be regarded as having n = 0 [38].
Different from the SU (2) system, for the SU (N) system some
symmetry classes are not comparable by the pouring principle,
e.g., symmetry classes denoted by (3,3) and (4,12) for the
SU (4) system with N = 6.

Due to the unique correspondence between the symmetry
classes and quantum numbers in the BAEs, we can calculate
the lowest eigenenergy for each given symmetry class by
numerically solving the corresponding BAEs with the quan-
tum numbers {Ij } = {1,2, . . . ,N} and {J r

α } = {1,2, . . . ,Mr},
which permits us to determine the order of energy levels with
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different symmetries. We present our results for the spin-3/2
fermionic gas with SU (4) symmetry in Fig. 2. For the case
of N = 4 with five sets of {Mr}, the corresponding lowest
energies for each symmetry class are shown in Fig. 2(a),
indicating that the order of the energy levels fulfills E(4) >

E(3,1) > E(2,2) > E(2,12) > E(14) in the whole regime
0 � γ < ∞ except in the Tonks-Girardeau limit, γ → ∞, in
which all the levels approach the same value, where γ = cL/N

is the dimensionless interaction strength. We note that in
this case, the order of energy levels can also be determined
by applying the LMT II, as all five symmetry classes are
comparable according to the pouring principle. However,
for the case of N = 6, there exist incomparable symmetry
classes, as discussed before. Neither (4,12) nor (32) can be
poured into each other, so the LMT cannot determine the
order of E(4,12) and E(32). Also, E(3,13) and E(23) are not
comparable by the pouring principle. Similar to the case of
N = 4, all the symmetry classes for N = 6 can be uniquely
determined by solving the BAEs, and thus we can give an
order of the energy levels as demonstrated in Fig. 2(c). From
our calculated results, we can determine the order of energy
levels of the incomparable symmetry classes, and we have
E(4,12) > E(32) and E(3,13) > E(23). As shown in Fig. 2(c),
the order of ground-state energies with different symmetries
does not change for arbitrary finite interaction strength, and
no phase transition occurs in the whole repulsive interaction
region.

In the strongly repulsive regime (cL/N � 1), spin rapidi-
ties λ(r)

α are proportional to c while kj remains finite. From the
expansion of Eq. (2) up to the first order in kj/c, the quasimo-
mentum is given by 2kjL = 2πIj − 2ζ

kj

c
+ O(|c|−3), which

leads to kj = π
L
Ij (1 + 1

cL
ζ ) with

ζ =
M1∑
α=1

4

1 + 4
(
γ 1

α

)2 . (4)

Here γ r
α ≡ λr

α/c, and γ 1
α is determined by the following

equation:

2Nθ
(
2γ 1

α

) = 2πJ 1
α −

M1∑
β �=α

[
θ
(
γ 1

α − γ 1
β

) + θ
(
γ 1

α + γ 1
β

)]

−
M2∑
γ=1

[
θ
(
2γ 1

α − 2γ 2
γ

) + θ
(
2γ 1

α + 2γ 2
γ

)]
, (5)

which is obtained from the expansion of the second BAEs,
i.e., Eq. (3) with r = 1, up to first order in kj/c. The above
equation cannot solely determine γ 1

α as it includes γ 2
α , which

should be iteratively determined by the following equations:

Mr∑
β �=α

[
θ
(
γ r

α − γ r
β

) + θ
(
γ r

α + γ r
β

)]

= 2πJ r
α +

Mr+1∑
γ=1

[
θ
(
2γ r

α − 2γ r+1
γ

) + θ
(
2γ r

α + 2γ r+1
γ

)]

+
Mr−1∑
δ=1

[
θ
(
2γ r

α − 2γ r−1
δ

) + θ
(
2γ r

α + 2γ r−1
δ

)]
, (6)

FIG. 3. (a) The lowest energy vs 1/γ for various symmetry
classes. The scattered symbols represent results obtained from the
effective spin chain, whereas the solid lines are obtained by solving
the BAES. (b) The lowest energy calculated by exact diagonalization
of the effective spin chain model of the SU (4) system with N = 6 in
a harmonic trap for various symmetry classes. Here we use the Young
tableaus of the spin wave function, which conjugate with the tableaus
of the coordinate wave function in Fig. 2(d), to represent different
symmetry classes.

with α = 1, . . . ,Mr (r = 2, . . . n − 1). Up to the order of c−1,
the ground-state energy of the SU (N) Fermi gas is given by

E = EF

(
1 − 2

cL
ζ

)
= EF

(
1 − 2

ζ/N

γ

)
, (7)

where EF = h̄2π2

2mL2
2N3+3N2+N

6 is the energy at c = ∞. It is
equal to the Fermi energy of fully polarized Fermi gas,
consistent with that from the generalized Bose-Fermi mapping
[42–47].

We note that Eqs. (5) and (6) are the well-known Bethe
equations for the open SU (N) Heisenberg spin chain

HS = J

N−1∑
i=1

(Pi,i+1 − 1), (8)

where Pi,i+1 is the permutation operator, which permutes the
spin states of the ith and (i + 1)th particles. The ground-state
energy of HS with J > 0 is given by ES = −Jζ [48]. By
comparing with Eq. (7), we see that the effective Hamiltonian
describing the spin dynamics in the strongly interacting limit is
given by Heff = H − EF = HS with the exchange parameter
given by J = 2 εF

γ
, where εF = EF /N is the average Fermi

energy. In Fig. 3(a), we show the energy spectrum of H
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in the strongly repulsive limit for the uniform system with
N = 6 by using the effective Hamiltonian H = EF + HS .
In the infinitely repulsive limit γ → ∞, all the energy
levels of different symmetry classes are degenerate. Since the
ground-state energies of HS for systems belonging to different
symmetry classes take different values, the energy levels split
when the interaction strength deviates from the TG limit. The
order of the splitting levels can conveniently be distinguished
by the Young diagrams of the spin wave function, which are
the conjugations of the Young diagrams of the coordinate wave
function (see Fig. 1).

In the strongly interacting regime, the SU (N) Fermi gas
in an inhomogeneous potential can also be described by a
nonuniform effective spin-chain model,

Heff =
N−1∑
i=1

Ji(Pi,i+1 − 1), (9)

with the coefficients given by

Ji = 2N !

c

∫ ∏
j

dxj |∂iϕA|2δ(xi − xi+1)θ1
[i,i+1],

where θ1
[i,i+1] = θ1/θ (xi − xi+1) is a reduced sector function,

θ1 being the Heaviside step function whose value is 1 in
the region x1 < x2 < · · · < xN and zero otherwise [22,24].
The wave function ϕA is taken as the ground state of N

spinless fermions, i.e., the Slater determinant made up of the
lowest N level of eigenstates. The difference from the uniform
system is that the exchange coefficients are site-dependent.
A generalization of LMT for the SU (N) chain is given
in Ref. [49]. Consider the SU (4) system with N = 6 in a
harmonic trap V (x) = mω2x2/2 with the trapping frequency
ω. We get a nonuniform SU (4) spin chain with J3 ≡ Jc, J1 =
J5 = 0.5743Jc, and J2 = J4 = 0.8956Jc, where Jc represents
the effective exchange strength between two spins in the trap
center. By directly diagonalizing the corresponding spin chain
model, we can get the order of energy levels for the harmonic
system in the strong interaction strength region. As shown in
Fig. 3(b), the order of energy levels is solely related to their
symmetry classes, which agrees with the case of a uniform
system. Our result indicates that the order of energy levels in
the strongly interacting regime is not changed when the trap
potential is changed from the hard wall to the harmonic trap.
Strongly interacting systems trapped in other external traps
can also be studied similarly by solving the corresponding
effective spin-exchange models.

Our results can be directly generalized to the multicompo-
nent SU (N) system with larger n, for example the system with
SU (6) symmetry, for which the BAEs take the form of Eqs. (2)
and (3) with n = 6. For the example system with N = 6, by
solving the corresponding BAEs, we can get the ground-state
energies for 11 symmetry classes. The corresponding results
are shown in Fig. 4. Compared to the case of SU (4), there
are two extra symmetry classes (2,14) and (16), and similarly
there also exist incomparable symmetry classes by the pouring

FIG. 4. The ground-state energies of 11 symmetry classes vs 1/γ

for the SU (6) system with N = 6. The area from the dark red solid
line to the dark blue dotted line corresponds to the lowest-energy
states of different symmetry classes described by the corresponding
Young tableaus.

principle, e.g., (4,12) and (32), as well as (3,13) and (23). The
exact BA result gives the order of ground-state energy levels
of different symmetry classes: E(6) � E(5,1) � E(4,2) �
· · · � E(2,14) � E(16), where “=” holds true only in the TG
limit γ → ∞. As shown in Fig. 4, the order is unchanged in
the whole interaction region.

III. SUMMARY

In summary, based on the BA solution of few-particle
systems, we have studied the ordering of energy levels for all
kinds of permutation symmetry classes of 1D multicomponent
Fermi systems with SU (N) symmetry. In the strongly inter-
acting regime, from the expansion of the BA solutions, we
demonstrate that the system can be effectively described by
an SU (N) spin exchange model with the exchange parameter
being exactly determined. Furthermore, the ordering of energy
levels of the strongly interacting system trapped in a harmonic
potential is also determined by solving its effective spin-
exchange model.
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